Indexing Techniques for CHR based on
program transformation

Beata Sarna-Starosta
Tom Schrijvers

Report CW 500, August 2007

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A — B-3001 Heverlee (Belgium)

Indexing Techniques for CHR based on
program transformation

Beata Sarna-Starosta
Tom Schrijvers

Report CW 500, August 2007

Department of Computer Science, K.U.Leuven

Abstract

Multi-headed rules are essential for the expressiveness of CHR,
but incur a considerable performance penalty. Current indexing
techniques are often unable to address this problem. They are ef-
fective only when matchings have a particular form, or offer good
run-time complexity rather than good absolute figures.

In this paper we describe three advanced indexing techniques:
(1) two program transformations that make other indexing tech-
niques more effective, (2) an index for ground terms more efficient
than hash tables, and (3) a post-processing program transformation
that eliminates runtime overhead of (1) and (2). We compare these
techniques with the current state of the art, and give measurements
of their effectiveness in K.U.Leuven CHR and CHRd.

Keywords : Constraint Handling Rules, indexing, program transformation,
program specialization

CR Subject Classification : D.3.2 Language Classifications (Constraint and
logic languages), D.3.4 Processors (Compilers).

Indexing Techniques for CHR based on program
transformation

Beata Sarna-Starosta' and Tom Schrijvers*?

! Department of Computer Science and Engineering, Michigan State University, USA
bss@cse.msu.edu
2 Department of Computer Science, K.U.Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. Multi-headed rules are essential for the expressiveness of
CHR, but incur a considerable performance penalty. Current indexing
techniques are often unable to address this problem. They are effective
only when matchings have a particular form, or offer good run-time com-
plexity rather than good absolute figures.

In this paper we describe three advanced indexing techniques: (1) two
program transformations that make other indexing techniques more ef-
fective, (2) an index for ground terms more efficient than hash tables,
and (3) a post-processing program transformation that eliminates run-
time overhead of (1) and (2). We compare these techniques with the
current state of the art, and give measurements of their effectiveness in
K.U.Leuven CHR and CHRd.

keywords: Constraint Handling Rules, indexing, program transforma-
tion, program specialization

1 Introduction

CHR is a high-level rule-based programming paradigm. Much of the expres-
sive power of CHR stems from the multi-headedness of its rules, which allows
to easily combine information from distinct constraints via matching. As the
head multiplicity exponentially affects the complexity of rule evaluation [4], this
source of expressiveness often contributes to performance bottlenecks. Aware of
this problem, CHR developers have built data structures supporting efficient in-
dexing on variables (attributed variables [6]) and ground data (search trees [7]).
With [14] came the realization that O(1) indexing is essential for implementing
CHR algorithms with optimal complexity, which led to the use of hash tables
for indexing ground data, and the general result that the complexity of CHR
systems equals that of RAM machines [16]. CHRd [11] has slimmed the original
attributed variable indexing for faster evaluation of the class of direct-indexed
CHR and use in a tabulated environment. In this paper we advance the research
on CHR indexing with the following contributions:

* Post-Doctoral Researcher of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O. - Vlaanderen)

— two transformational approaches that improve indexing behavior of CHR
programs with respect to function symbols (Section 2),

— an alternative to hash tables for indexing ground data that does not suffer
from amortization-related overhead (Section 3),

— post-processing program transformations that eliminate the disadvantages
of the indexing optimizations (Section 4),

— measurements that demonstrate the usefulness of all presented techniques in
K.U.Leuven CHR and CHRAd (Section 5).

The effectiveness of an indexing technique depends on the structure of the
program it is applied to. The techniques we propose focus on two structural
elements—function symbols and ground data—and for many programs that rely
on these elements, provide satisfactory performance improvement, thus helping
increase the reliability of CHR evaluation in general.

We assume that the reader is familiar with the syntax and operational se-
mantics of CHR. For an overview we refer to [3,12].

2 Function Symbol Indexing

The Problem CHR systems build indexes on the constraint store to speed up
matching multi-headed rules. Consider the rule: a(X), b(X,Y) ==> write(Y).
Given X, an index returns all stored constraints b(X,Y). Thus, for a new a(X)
we can quickly find all matchings of the form b(X,Y) that make the rule fire.
Now consider the variant of the previous rule: a(X), b(£()),Y) ==> write(Y).
Here, for efficient matching, we need an index that returns all instances of b/2
in which the first argument has top-level function symbol £/1. Current CHR
systems do not generate indexes that involve partial structure of the constraints.
Instead, they enumerate all b(A,B) in the constraint store and, for each A, test
whether its top-level function symbol is £/1. When only a small fraction of all
As have this form, there are many failing tests. Partial structures may even be
parameterized:

a(X), b(f(X,)),Y) ==> write(Y). (2.1)

Existing CHR systems cannot exploit the variable X to find all stored constraints
matching b(f (X,),Y) more quickly: as before, finding the matchings for an
active constraint a(X) requires that all stored b/2 constraints are enumerated.

The Solution We propose two techniques—both based on term flattening—for

indexing on partial structures. The first, generic flattening (Section 2.1), trans-

forms rule (2.1) into: a(X), b’ (£,X,_,Y) ==> write(Y), and the second, con-

straint symbol specialization (Section 2.2), into: a(X), by (X,_,Y) ==> write(Y).
As source-to-source transformations, the proposed techniques are portable to

many CHR systems. Furthermore, they both reuse available indexing data struc-

tures. Hence, further optimizations of such data structures, e.g. that of Section

3, also improve partial structure indexing.

Preliminaries For both approaches, we consider the ith argument of a constraint
¢/n, and a given set F' of function symbols f;/a; that appear in the rule heads
at the ith position of the constraint ¢/n. We define the maximal arity of F' as
Amaz = ma’ij/lljeF(aj)'

We assume that, at run time, all instances of ¢/n have their top-level function
symbol instantiated, but not necessarily to one in F. This assumption can be
satisfied by groundness analysis [15] or programmer-supplied mode annotations.

Ezample 1. For the CHR program in Table 1(a), we are concerned with the first
argument of the constraint ¢/1. In the program, this argument takes on function
symbols given by the set F' = {f/2,¢/0}. The maximal arity of F, a4z, iS 2.

2.1 Generic Flattening

Our first flattening approach augments the arity of each constraint symbol c,
which appears in the heads of the program rules with function-term arguments,
to accommodate new arguments of ¢ representing these function terms. Formally:

Definition 1 (Flattening and Unflattening Functions). The flattening
function ¢ with respect to the set of function symbols F, maps a term T onto a
sequence of terms:

fiste,...,e if T = f;i(t) s.t. fj/a; € F and |t| = a;

T,e,...,e otherwise

Qmaz

where dj = amaz — a; and e is an arbitrary constant.
The unflattening function ¢ = ¢_1 maps a sequence of terms onto a term:

W(T) = i) ofT=fjte st fi/ajeF and |t|=a; and |e| = amaez — a;
Tt if T =te st |e] =ama

We encode the unflattening and flattening functions as auxiliary Prolog pred-
icates, the former invoked when the rule bodies reference function symbols from
the heads, and the latter when the rule bodies pose the unflattened constraints.

Ezample 2. Table 1(b) shows the flattening (lines 2-4) and unflattening (lines
5-7) predicates for the constraint c/1 from Table 1(a).

Another auxiliary predicate encodes the correspondence between the original
and flattened instances of the constraints:

Definition 2 (Flattening Correspondence). The flattening correspondence
& relates a constraint instance c(5,t,%) to a flattened constraint instance ¢’ (3,t,u):

Vs, t,t,u:¢9(t)=t < c(5tu) s d(5tu) (2.2)

:- chr_constraint c’/3. ¢D)

flatten(f(X,Y),A,B,C) :- !, A=f ,B=X,C=Y. (2)
flatten(g(X),A,B,C :- !, A=g,B=X,C=e. (3)
flatten(T,A,B,C) :— A=T,B=e,c=e. (4)
:= chr_constraint c/1. unflatten(f,A,B,T) :- !, T=f(A,B)). (5)
unflatten(g,A,_,T) :- !, T=g(A). (6)
c(X) \ c(X) <=> true. unflatten(A,_,_,T) :- T=A. @)
c(f(X,Y)) ==> c(X), c(Y).
c(gX) ==> c(X). c(T) :- flatten(T,A,B,C), c’(A,B,C). (8)
c(X) <=> write(X).
c’(Y,Z,W) \ ¢’ (Y,Z,W) <=> true. (9
¢’ (£,X,Y) ==> c(X), c(Y). (10)
c’(g,X,Y) ==> c(X). (11)
c’(Y,Z,W) <=> unflatten(Y,Z,W,X) (12)
| write(X).
(a) (b)

Table 1. CHR program with function-term arguments (a) after generic flattening (b)

Ezample 3. For the head constraints in the rules of the program in Table 1(a),
P ={c(f(X,)Y)) & d(f,X,Y), c(g(X)) & ' (g,X,e), ¢(X) & (X e,€)}, and
is encoded as the predicate ¢/1 (Table 1(b), line 8).

Definition 3 (Flattened Rule). The flattening ¢ of a CHR rule with respect
to the ith argument of a constraint c¢/n for function symbols F is defined as:

¢(H 2=>G | B) = H ?2=>G' G| B
where

— H' differs from H in that any constraint c(t1,...,ti,...,tn) is replaced by
the flattened form c'(t1,...,t,...,t,), where t are fresh variables
— the new guard G’ contains the pre-condition of the Equation (2.2): one

t; = () for each flattened argument.

Ezample 4. Lines 9-12 of Table 1(b) show flattened rules of the program in
Table 1(a), partially post-processed (Section 4) for readability.

Definition 4 (Flattened Program). The flattening ¢(P) of a CHR program
P given by the set of rules R, with respect to the ith argument of a constraint
¢/n, for the set of function symbols F, is defined as the flattening of each rule
in R, the functions ¢ and v, and the encoding of ®: ¢(P) = ¢(R) U ¢ Uh U .

Ezample 5. Table 1(b) shows generic flattening of the program from Table 1(a).

Our approach is sound and complete w.r.t. CHR’s theoretical and refined
operational semantics [2], and the set-based operational semantics [11]:

Theorem 1 (Soundness & Completeness). Given a CHR program P, its
flattening ¢(P) and an initial state o, a derivation from o under ¢(P) reaches
the same (modulo flattening) final state as the derivation under P:

or—p oy = 0=y dof)
where ¢ is naturally extended to range over CHR execution states.

Proof. Sketch. We consider the theoretical operational semantics.
Soundness:
o=y ¥lof) = o—p oy

In words, for any derivation in the flattened program of the form:
0 =00 72¢(P) T1 7 6(P) -+ 7 (P) On = $(0F)
there is a corresponding derivation in the original program:
0 =04 —p0y—op...—po, =0F

with m <n.

We show this by induction from left to right through the derivation. For a
derivation of length zero, i.e. only one state is involved, the theorem obviously
holds. For every subsequent transition step o; »—4(py 0441, we have that

— either a flattening transformation is applied, such that ¥ (o;) = ¥(o; + 1),
— or another transition step is taken.

In the first case, we do not extend the derivation for the original program.
In the latter case, we can extend the derivation in the original program with
Y(0i) —p Y(oit1)-

Finally, when the derivation for the transformed program reaches a fixed
point, we have that o, = ¢(o,,). Hence, o,, = ¢(0,). Moreover, oy, is a final
state as o, is a final state and there are fewer derivations possible from o, in
P than from o, in ¢(P).

Completeness:

o—poy = 0 >—>25(P) (o)

The completeness proof has a similar structure, but now we introduce rather
than eliminate flattening steps.

Both proofs are similar for the refined and set-based operational semantics,
but involve more transition steps.

Confluence, termination and the complexity of the number of derivation steps
of the transformed programs are preserved from the original ones. The encoding
of @ introduces additional derivation steps, the number of which is proportional
to the number of new constraints introduced during the transformation.

Since the formal results of the optimizations proposed in the following sec-
tions are similar, we omit their discussion in this paper.

2.2 Constraint Symbol Specialization

Our second flattening technique differs from the first one in that it uses a different
constraint symbol for each function symbol. As a consequence, it defines one
flattening function and multiple unflattening functions:

Definition 5 (Flattening and Unflattening Functions). The flattening
function ¢ with respect to the set of function symbols F, maps a term T onto a
sequence of terms:

_ft ifT=fi() st fi/a; € F and |t| = a;
¢(T) = {T otherwisje Y ’

For a function symbol f;/a;, the unflattening function ¢z, (t1,...,tq;) = f(t1,...
The default unflattening function is the identity function: ¢¥'(t) = t.

Definition 6 (Flattening Correspondence). The flattening correspondence

& relates a constraint instance c(5,t,w) to a flattened constraint instance ' (5,t,u):

Vs t,t,u:t=fi(t) Np(t) =t <= c(5,t,u) & cp,(5,1,7)
V5t tu: g(t) =t < c(5,t,u) < d(35,t,7)
Definition 6 yields an important corollary:

Corollary 1.
V5, 1,57 5, t,10) <= \/ (u;fj(f):mcfj(g,f,a)) v (¢’(t)ztAc’(§,t,ﬂ)>
j=1

Constraint symbol specialization differs from generic flattening in that it may
map a single CHR rule to multiple flattened rules.

Definition 7 (Flattened Rule). The flattening ¢ of a« CHR rule (H ?=>G | B)
with respect to the ith argument of a constraint c¢/n for the set of function symbols
F is a set of rules of the form:

H ?2=>G',G| B
There is one rule for each disjunction in Corollary 1. In each flattened rule:

— H' differs from H in that any constraint c(ty,...,t,) is replaced by its flat-
tened form, cg (t1,...,tn) or c'(t1,... tn). B

— the new guard G’ contains the pre-condition: one vy, (t) = t; or '(t) = t;
for each flattened argument.

The flattened program is defined as for generic flattening.

Ezample 6. Table 2 shows the program from Table 1(a) flattened using con-
straint symbol specialization: lines 2-4 and 5-7 encode, resp., the flattening and
unflattening functions; line 8 implements flattening corrspondence @; whereas
lines 9-16 show the flattened rules of the original program (the rules in lines 9-11
(resp. 14-16) represent flattening of the first (resp. last) rule in Table 1(a)).

tay)-

:— chr_constraint c_f/2, c_g/1, c’/1. ¢V

flatten(f(X,Y),C) :- !, C = c_f(X,Y). (2)
flatten(g(X),0) :- !, C = c_g(X). (3)
flatten(X,C) - C=c X). (4)
unflatten_f(A,B,T) :- T = £(A,B) (5)
unflatten_g(A,T) :- T = g(A). (6)
unflatten’ (A,T) = T = A. 7
c(T) :- flatten(T,C), call(C). (8)
c_f(X,Y) \ c_f(X,Y) <=> true. (9
c_g(X) \ c_g(X) <=> true. (10)
c’(X) \ c’(X) <=> true. (11)
c_f(X,Y) ==> c(X), c(YV). (12)
c_gX) ==> c(X). (13)
c_f(Y,Z) <=> unflatten_f(Y,Z,X) | write(X). (14)
c_g(Y) <=> unflatten_g(Y,X) | write(X). (15)
c’(Y) <=> unflatten’(Y,X) | write(X). (16)

Table 2. CHR program with function terms after constraint symbol specialization

2.3 Discussion

Both presented flattening approaches enable indexing on partial structures. Ge-
neric flattening separates the function symbol from the rest of the term, so that
it can be matched against as an ordinary argument. Constraint symbol special-
ization makes the matching against the function symbol implicit by considering
only the constraints with the specialized symbol.

Each approach has its own trade-offs: Constraint symbol specialization ad-
mits more program specialization through copying the rules, whereas generic
flattening keeps the size of the transformed programs linear w.r.t. the original
ones. Although better specialization may improve the performance, increased
program size causes slow-downs resulting from a larger number of cache misses.

Moreover, each technique suffers from its own form of space fragmentation:
Generic flattening wastes (@mqs — a;) argument slots for function symbol f;/a;
per constraint instance, whereas constraint symbol specialization allocates space
for specialized constraint symbols that may never be used.

Experimental evaluation in Section 5 allows us to determine whether either
technique stands out in practice.

2.4 Related Work

Most relational databases we are aware of do not support compound values.
Hence, to map compound data onto (flat) rows requires application of techniques
similar to the flattening transformations presented in this section.

The need for symbol specialization arises naturally in the context of partial
evaluation [8]. Similar, but less ambitious in scope, is the work on constructor
specialization for the Glasgow Haskell Compiler [10]. These two approaches, for
single-headed languages, aim in the first place at reducing intermediate data
structures and matching costs, and specializing the body. In contrast, the fore-
most goal of our approach, for multi-headed CHR rules, is to provide better
constraint store indexes. Of course, we benefit from the other effects as well.

In XSB [18] specialized trie-like structures store previously computed answer
substitutions. These substitutions are indexed on their call patterns, and in-
terpreted as partial structure indexes for subsumption-based tabling. However,
this approach requires excessive data structure implementation, does not enable
further rule specialization, and does not easily compose with other indexes.

2.5 Future Work

We consider only top-level function symbols in a single argument position. Re-
peated application extends either technique to multiple constraint arguments
and nested function symbols. Although straightforward, repeated application
may cause the program size—and hence performance—grow out of bounds. Con-
straint symbol specialization in particular quickly suffers from program size blow-
ups. Thus, we note a need for heuristics to control the extent of specialization.
We restrict our attention to function-symbol arguments that are always in-
stantiated. Adding support for uninstantiated arguments is a natural next step
in our work. We anticipate this step to increase the overhead of flattening in
general, and its complexity when abiding by the refined operational semantics.
The indexing of function symbols is one of the last gaps in the domain
of equality-based indexing for CHR. However, the field for non-equality-based
guards and indexing remains open. We believe that our approach can be adapted
to this domain. A set of mutually exclusive guards, e.g. N > 0 and N < 0, could
be used to classify the instances of a constraint ¢(N). In the spirit of generic flat-
tening a field would be added to identify the particular class, e.g. ¢/ (positive, N)
for N > 0. Similarly, in the spirit of constraint symbol specialization, a distinct
constraint symbol would be used for each class, e.g. ¢5o(V) for N > 0.

3 Attributed Data

In this section, we assume that a constraint contains ground-term arguments
which are not matched against explicit function symbols, but only against other
terms, i.e. that the ground terms are used as indexing keys. Hash tables provide
O(1) indexing operations for indexing on ground terms, as do attributes for
variables. However, the constant factor involved in hash tables is usually much
larger. We propose a form of attributed data that provides O(1) indexing for
ground data, with constant factors closer to those of attributed variables [5].
The key insight is that the CHR run time can internally use an attributed-
variable-like representation for the externally provided ground term.

3.1 Indexing Key Declarations

We introduce the annotation ‘as_chr_key’ to indicate that a particular ground
argument of a constraint is to be used as an indexing key. An argument specifier
‘+type as_chr key keytype’ states that the argument is ground (+), and uses
type as its external representation and keytype as its internal representation.
The abstract keytype is generated automatically by the CHR compiler.

Ezample 7. Consider the RAM simulator [16] shown in Appendix A. The first
argument of the prog/4 constraint (representing the label of the current program
instruction) is to be used as an indexing key with name pkey:

:— chr_constraint
prog(+int as_chr_key pkey,+int as_chr_key pkey,+,+),
prog_counter(+int as_chr_key pkey).

The same key is used for the second argument of prog/4 (representing the label
of the next program instruction), and for the only argument of prog_counter/1.
In each case, the external representation is an integer, whereas the internal rep-
resentation is of type pkey.

3.2 Indexing Key Representation

The representation of the internal data type keytype resembles that of the at-
tributed variable indexes, except that it does not include the variable itself to
avoid an unnecessary indirection. Thus, the internal representation Int is a term,
the arguments of which are indexes Index; on different argument positions. In
addition, Int maintains the original external representation Fxt:

Int = key(Euat, Indexq, ... ,Indezx,)

There is exactly one internal representation for any given external representation.

Our default representation for the argument indexes Index; is a flat list of
constraint suspensions, with predefined operations for adding and removing the
constraints. The main structure itself can be updated (e.g. for replacing an old
index with a new one) by the destructive argument update predicate setarg/3
implemented by most Prolog systems.

3.3 Source-to-Source Transformation

In this section we define the source-to-source transformation for mapping be-
tween the external and internal representations of the indexing keys.

Definition 8 (Value Mapping Functions). For an indexing key type t, the
injective internalizing function ¢ maps an external value t g,y of t onto the in-
ternal value tp,; of t: ¢(tgs) = tme. The injective externalizing function ¥ is

¢_1: w(tlnt) = tExt-

We use predicates ext _val(Int, Fat) and int_val (Fxt,Int) to encode the
externalizing and internalizing functions, respectively. The predicate int_val/2
looks up the internal values in a hash table. If no internal value is present, a new
one is created and added to the table. Its inverse, ext_val/2, is much cheaper:

ext_val (key(Ext,...), R) <=> R = Ext.

Definition 9 (Internalization Correspondence). An external constraint in-
stance c(3,t,w) corresponds to an internalized constraint instance c'(3,t,u):

Vs, t,Lu:g(t)=t << c(5,t0) = (5t,0)
The dynamic internalizing rule @ applies the function ¢ at run time:

Definition 10 (Dynamic Internalizing Rule). Given an internalizing func-
tion ¢, D is of the form.:

Clti,eistivestn) <=> t, = d(t;), ¢ (t1,.. th, . ty).
Ezxample 8. The dynamic internalizing rule for prog_counter/1 looks like:
prog_counter (Ext) <=> int_val(Ext,Int), prog_counter’(Int).

Definition 11 (Internalized Rule). The internalization ¢ of a CHR rule is
defined as:
¢(H 2=>G | B) = H ?2=>G G| B
where
— H' differs from H in that any constraint c(t1,...,ti,...,tn) is replaced by
its internalized form c(t1,..., %, ..., tyn), where x; is a fresh variable.

— the new guard G’ relates the original arqguments of each constraint to the new
ones: G' contains one t; = V(x;) for each internalized constraint argument.

Example 9. The RAM simulator rule for writing a constant Val in memory
address Addr:

prog(L,L1,const(Val),Instr,Addr) \ mem(Addr,_), prog_counter(L) <=>
mem (Addr,Val), prog_counter(L1).

is internalized into:

prog’ (X,Y,const(Val) ,Addr) \ mem(Addr,_), prog_counter’(Z) <=>
ext_val(X,L), ext_val(Y,L1), ext_val(Z,L) |
mem (Addr,Val), prog_counter(L1).

Definition 12 (Internalized Program). The internalization ¢(P) of a CHR
program P, given by the set of rules R, is defined as the internalization of each
rule in R, the functions ¢ and v, and the encoding @: ¢(P) = p(R)Up Uy U .

10

3.4 Discussion

Operationally, the transformation incurs two (potential) changes in the run-time
performance: (1) mapping from external to internal values, and (2) indexing (or
matching) on internal rather than external values, i.e., using attribute terms
rather than hash tables. While the former clearly adds performance overhead,
we expect the latter to be an improvement. For an ultimate gain, (2) should
outweigh (1). This is the case when there are a lot of matchings and few external
calls. We expect the post-processing (Section 4) to reduce the impact of (1).

3.5 Related Work

Several programming languages define features that resemble our concept of
attributed data. Firstly, the as_chr key annotation is related to (primary, sec-
ondary and foreign) keys in database tables and indexing declarations in some
Prolog systems. Secondly, the internalization function relates to hash consing—a
technique, originated in Lisp, for mapping to and representing terms by unique
(hash) values. Although the main aim of hash consing is to reduce memory con-
sumption by increased sharing, it is also used to speed up equality tests. Thirdly,
the solver types facility of Mercury [1] also imposes a dual view of constraint ar-
guments. The internal representation type is defined by the library programmer,
rather than generated automatically. Externally, the solver type is abstract, but
coercion functions should be provided for external representations. Finally, a
folklore optimization technique in C/C++ adds (pointer) fields to structures to
compactly represent lists (and other data types) that contain them.

3.6 Future Work

In our current scheme, key declarations must be provided by a programmer.
Although this approach is acceptable, we would like to investigate automatic in-
ference of these declarations. If the programmer has no preference for an external
representation, we could directly expose the abstract key type. For example, pro-
grammers often use variables and integers as identifiers in CHR constraints. The
nature of a selected data type is of no concern, as long as it supports unique
value creation and value comparison. By choosing the abstract key type we could
eliminate unnecessary indirections of attributed variables or hash tables.

4 Post-Processing

In this section we outline a four-step rewriting procedure that statically elimi-
nates most of the overhead introduced by the transformations proposed in Sec-
tions 2 and 3. We formulate the steps of the procedure in terms of generic flatten-
ing; their counterparts for attributed data are identical, and their counterparts
for constraint symbol specialization can be easily derived.

Step 1: Unfold constraint calls according to the dynamic flattening rule.

11

Example 10. Say, that after flattening a rule d(X,N) <=> N > 0, d(X,N-1)
w.r.t. the first argument of d(X,N) we get:
d’(A,B,N) <=> unflatten(A,B,X), N > 0 | d(X,N-1).
Applying Step 1 to the above rule yields:
d’(A,B,N) <=> unflatten(A,B,X), N > 0
| flatten(X,A1,B1), d4’(A1,B1,N-1).

Step 2: Apply the equivalence:
YE)=tApt) =1 = PE=tAT=V

Example 11. Applying Step 2 to the last rule in Example 10 yields:
d’(A,B,N) <=> unflatten(A,B,X), N > 0 | 4’(A,B,N-1).

Step 3: Flatten unifications:
th=9l) ANta=9(l2) = ti=tosti=1

Ezample 12. Consider the first rule in Table 1(a). Since the head constraints
share the variable X, before transformation the rule should be normalized.
Flattening the normalized rule yields:
c’(X1,X2,X3) \ c’(Y1,Y2,Y3) <=>
unflatten(X1,X2,X3,X), unflatten(Y1,Y2,Y3,Y),
X =Y | true.
By applying Step 3, we obtain:
c’ (X1,X2,X3) \ c’(X1,X2,X3) <=>
unflatten(X1,X2,X3,X), unflatten(X1,X2,X3,Y) | true.

Step 4: Drop unused unflattening guards and refold the unfolded constraint
calls that could not be simplified.

Example 13. Applying Step 4 to the last rule in Example 12 yields the rule
shown in line 8 of Table 1(b).

Ideally, post-processing eliminates the overhead entirely, i.e., the transformed
rules operate solely on the flattened constraints, whereas the unflattened con-
straints may be called only by the queries, usually external to the programs.
Thus, a program execution consists of two phases: (1) flattening and (2) pro-
cessing of the flattened constraints. For all but the most trivial programs, we
expect the run-time cost of (1) to be marginal with respect to that of (2).

5 Evaluation

We implemented our optimizations in two CHR systems on SWI-Prolog [19]:
CHRA [11] (except for the attributed data) and K.U.Leuven CHR [13]. All run
times, given in seconds, were measured on an Intel Pentium 4, 2.40 GHz, with
1011 MB RAM. Our benchmark suite? includes several common CHR programs

3 Available at http://www.cs.kuleuven.be/ toms/CHR/Indexing/.

12

K.U.Leuven CHR CHRAd
function symbols function symbols
—flat||+flat +flat —flat||+flat +flat
benchmark || —pp || —pp |relative|| +pp |relative|| —pp || —pp |relative|| +pp |relative
gamma_prime|| 3.2 6.9 215% || 4.2 | 131% || 5.4 || 6.0 | 111% || 5.0 | 93%
listdom 5.7 6.2 109% || 6.0 | 105% || 6.9 || 5.9 86% || 5.8 84%
mergesort || 2.1 [[12.0| 571% || 1.0 | 48% | 6.6 || 7.6 | 115% || 6.8 | 103%
ram_op 89 [[11.2| 126% || 8.8 | 99% || 83 || 7.8 | 94% | 7.4 | 89%
ram prog || 3.0 || 29| 97% || 2.8 | 93% || 4.4 || 4.0 | 91% || 3.8 | 86%
zebra 55 | 6.8|124% || 5.3 | 94% || 6.4 || 7.2 | 113% || 6.6 | 102%
Table 3. Run times (in sec.) for generic flattening benchmarks

— chrg: a pathological CHRg parser

— dijkstra: Dijkstra’s shortest path algorithm

— gamma_prime: an interpreter for the Gamma chemical engine, computing
prime numbers

— listdom: a finite domain solver for integers

— manners: Miss Manners seating assignment

— mergesort: mergesort algorithm

— ram: RAM machine interpreter, computing looping increment with constant
(ram_op) and variable (ram_prog) number of constraints

— reverse: reversing chain of list cells

— uf_opt: optimal union-find algorithm

— zebra: the zebra puzzle.

For each optimization we consider only the relevant benchmarks, i.e. those for
which the transformed programs differ from the original ones.

Whenever possible, we use (ground) mode declarations. Both flattening op-
timizations extend to mode declarations in a straightforward manner: a single
ground argument turns into several ground arguments after flattening. In CHRd,
we evaluate direct-indexed versions of gamma prime, manners, mergesort and
ram, obtained by a trivial program transformation (for details see [11]).

Generic flattening Table 3 shows the results of generic flattening in K.U.Leuven
CHR and CHRAJ. For each system we list run times measured without flatten-
ing or post-processing (—flat,—pp), with flattening but without post-processing
(+flat,—pp), and with both flattening and post-processing (+flat,+pp).

In K.U.Leuven CHR generic flattening has little (but mainly positive) effect
on all benchmarks, except for mergesort, with a 50% speed-up, and gamma _prime,
with a 30% slow-down. In CHRd we observe an improvement in gamma prime,
listdom and ram benchmarks, and a minimal overhead in mergesort and zebra.
For these two small programs, the run-time cost of unflattening exceeds the sav-
ings provided by the transformation. All benchmarks demonstrate positive effects
of post-processing, and we blame insufficient post-processing for the slow-down
of gamma_prime in K.U.Leuven CHR: With stronger reasoning on the constraint

13

argument types (e.g. success typing [9]) we (manually) achieved a relative tim-
ing of 99%. Hence, further improvement of the automated post-processing seems
worthwhile.

Although flattening improves the performance of most benchmarks in our
suite, it does not decrease the complexity of the evaluation. We attribute this
to the fact that the programmers—aware of CHR’s poor handling of partial
structures—tend to write already flattened programs, especially for problems
which involve referencing partial structure arguments (as in rule (2.1)). Such
practice, however, obscures formulation of problems where partial structures ap-
pear naturally and are extensively used, e.g., database reasoning. For problems
of this kind, flattening does cause complexity improvement, thus extending ap-
plicability of CHR to their natural specifications.

For instance, consider a database of employees represented using the con-
straint employee (Name, Date), in which the date of birth Date is a compound
term date (Day, Month, Year). The following rule finds out which employees’
birthdays to celebrate on the current date:

check_birthdays(date(Day, Month, CurrentYear)),
employee (Name, date(Day, Month, YearOfBirth)) ==>
Age is CurrentYear - Year(OfBirth,
celebrate(Name, Age)

The following table lists the run times?*, in milliseconds, before and after flatten-

ing the compound date, for three database sizes. The original program exhibits a
linear behavior, whereas the run time for the flattened version remains constant.

program || number of employees
version || 1,000 [10,000 [50,000

—flat —pp|| 2.000 | 22.000 | 108.000

+flat +pp|| 0.029 | 0.028 0.029

Constraint symbol specialization Table 4 shows the results of constraint symbol
specialization. The columns in the table have the same meaning as in Table 3.

Table 5 lists the number of static and dynamic calls to flattened constraints
with respect to the number of all calls to the affected constraints. Note that the
the number of dynamic calls is at least 50 % as each non-flattened constraint is
flattened.

Table 4 includes two benchmarks—zebra2 and manners—mnot reported in
Table 3. The benchmark zebra2 applies an additional round of specialization to
the zebra program: the unoptimized entry in zebra2 corresponds to the entry
in zebra optimized with the (+flat,+pp) option. The original zebra program
defines the domain/2 constraint as:

domain(Var, []) <=> fail.
domain(Var, [Vall) <=> Var = Val.
domain(Var,...), ... <=> ...

4in K.U.Leuven CHR; CHRA can evaluate only a transformed version of the rule.

14

K.U.Leuven CHR CHRd
function symbols function symbols
—flat||+flat +flat —flat||+flat +flat
benchmark || —pp || —pp |relative|| +pp |relative|| —pp || —pp |relative|| +pp |relative
gamma_prime|| 1.5 1.7 113% || 1.5 | 100% || 4.6 || 4.3 | 93% || 3.8 | 83%
listdom 6.0 [10.4] 173% || 5.6 93% 7.2 11 9.3 | 129% || 6.5 90%
manners 23| 1.6 70% || 1.7 | 74% || 49 || 6.4 | 131% || 6.1 | 124%
mergesort || 8.5 23| 2% 2.3 27% || 6.7 || 5.5 2% || 5.4 81%
ram_op 8.9 7.0 78% 7.3 82% 7.5 || 6.5 87% 6.6 8%
ram_prog 29 || 2.8 97% || 27| 93% || 45 || 3.7 | 82% || 3.6 | 80%
zebra 5.3 5.1 96% 5.1 96% 6.3 || 6.1 97% 6.1 97%
zebra2 5.1 511 100% || 5.1 | 100% || 6.9 || 6.6 | 96% | 6.7 | 97%
Table 4. Run times (in sec.) for constraint symbol specialization benchmarks

| [[dynamic (flat / all)|static (flat / all)]

gamma_prime 99.5 % 76.9 %
listdom 51.7 % 30.7 %
manners 99.2 % 90.0 %
mergesort 51.8 % 0.4 %
ram_op 50.0 % 0.0 %
ram_prog 50.0 % 0.0 %
zebra 50.0 % 0.0 %
zebra2 50.0 % 0.0 %

Table 5. Unflatten vs. flatten calls for constraint symbol specialization benchmarks

A single round of specialization treats an empty list as a special case, whereas
two rounds also separate singleton lists from longer lists.

The manners benchmark involves constraints with constant but no partial-
structure arguments, and hence it is not affected by generic flattening. We use
this benchmark to demonstrate that constraint symbol specialization may im-
prove the performance of programs without partial structures.

Even before post-processing, constraint symbol specialization behaves well in
both systems. In K.U.Leuven CHR only gamma_prime and listdom suffer perfor-
mance slow-downs, whereas other benchmarks show run-time improvement. This
success is caused by the system’s guard optimization [17], which detects dead
code for the specialized constraint symbols. Post-processing considerably im-
proves the performance of 1istdom and eliminates the overhead of gamma_prime.
It has no significant effect on other benchmarks. In CHRd we observe initial per-
formance slow-down in listdom and manners, the former of which is eliminated
by the post-processing step. For manners, the cost of processing extra constraints
outweighs the benefits of specialization apparent in K.U.Leuven CHR.

In both systems, the repeated flattening of zebra2 is unsuccessful—its in-
cremental benefit is countered by the incremental overhead.

The impact of symbol specialization on the birthday program is virtually the
same as for generic flattening w.r.t. both the complexity and absolute run times.

15

index representation
benchmark|[hash table[[attr. data[relative[[post-processed[relative
chrg 2.6 2.5 96% 2.0 7%
dijkstra 4.4 4.8 109% 3.9 87%
mergesort 2.7 5.5 204% 2.3 85%
reverse 2.1 2.7 129% 1.8 86%
uf_opt 0.3 0.4 133% 0.2 67%

Table 6. K.U.Leuven CHR run times (in sec.) for attributed data benchmarks

Generic flattening vs. constraint symbol specialization The results in Tables 3
and 4 suggest that our flattening transformations may improve performance of
CHR, however, additional optimizations—such as post-processing—are needed
to fully exploit their potential. Overall, in both systems constraint symbol spe-
cialization yields more run-time savings than generic flattening. This, in part,
comes from the nature of our benchmarks: The partial-structure arguments in
most programs uniquely identify the rule to be matched, and so, their specializa-
tion into separate constraint symbols enables immediate matching. In contrast,
with generic flattening, the non-specialized constraints must be enumerated in
each matching search. We expect the outcomes of generic flattening to be better
for programs referencing (variable) parameters of partial-structure arguments.

Attributed data Table 6 lists the run-time results of using attributed data in
K.U.Leuven CHR, measured for plain hash tables, attributed data, and at-
tributed data with post-processed rule bodies.

The results show that the attributed data used alone negatively affects the
performance (up to doubling it for mergesort). However, when augmented with
post-processing, it improves the run time by 10% to 30% for all benchmarks.

6 Conclusion

We have presented two transformational techniques for improving the perfor-
mance of CHR indexing: function symbol flattening (generic and specialized)
and attributed data. A complimentary post-processing transformation compen-
sates for potential transformation overhead.

All techniques have been implemented for the CHRd and K.U.Leuven CHR
systems on SWI-Prolog. Evaluation on a set of benchmarks shows that the index-
ing optimizations enable performance improvement, and that the post-processing
is a critical step to the full realization of their potential.

References

1. Ralph Becket et al. Adding constraint solving to Mercury. In 8th International
Symposium on Practical Aspects of Declarative Languages (PADL), 2006.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Gregory J. Duck, Peter J. Stuckey, Maria Garcia de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In
20th International Conference on Logic Programming (ICLP), pages 90-104, 2004.
Thom Frithwirth. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming, 37(1-3):95-138, October 1998.

Thom Frithwirth. As Time Goes By II: More Automatic Complexity Analysis of
Concurrent Rule Programs. In Alessandra Di Pierro and Herbert Wiklicky, editors,
Electronic Notes in Theoretical Computer Science, volume 59. Elsevier, 2002.
Christian Holzbaur. Metastructures vs. Attributed Variables in the Context of
Extensible Unification. Technical Report TR-92-23, Austrian Research Institute
for Artificial Intelligence, Vienna, Austria, 1992.

Christian Holzbaur and Thom Frithwirth. A Prolog Constraint Handling Rules
Compiler and Runtime System. Special Issue Journal of Applied Artificial Intelli-
gence on Constraint Handling Rules, 14(4), April 2000.

Christian Holzbaur, Maria Garcia de la Banda, Peter J. Stuckey, and Gregory J.
Duck. Optimizing Compilation of Constraint Handling Rules in HAL. Theory and
Practice of Logic Programming, 5(Issue 4 & 5):503-531, 2005.

Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Fvaluation and Automatic
Program Generation. Prentice Hall, 1993.

Tobias Lindahl and Konstantinos F. Sagonas. Practical type inference based on
success typings. In Annalisa Bossi and Michael J. Maher, editors, Proceedings of
the 8th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 167178, 2006.

Simon Peyton-Jones. Constructor Specialization for Haskell Programs. In 12th
International Conference on Functional Programming (ICFP), 2007.

Beata Sarna-Starosta and C.R. Ramakrishnan. Compiling Constraint Handling
Rules for Efficient Tabled Evaluation. In 9th International Symposium on Practical
Aspects of Declarative Languages (PADL), 2007.

Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, June 2005.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation
and application. In Thom Frithwirth and Marc Meister, editors, First Workshop
on Constraint Handling Rules: Selected Contributions, pages 1-5, May 2004.

Tom Schrijvers and Thom Frithwirth. Optimal Union-Find in Constraint Handling
Rules. Theory and Practice of Logic Programming, 6(1&2), 2006.

Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for
Constraint Handling Rules. In 7th International Symposium on Principles and
Practice of Declarative Programming (PPDP), 2005.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and
complexity of Constraint Handling Rules. In 2nd Workshop on Constraint Han-
dling Rules (CHR), pages 3—17, 2005.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and continuation optimiza-
tion for occurrence representations of CHR. In 21st International Conference on
Logic Programming (ICLP), pages 83-97, 2005.

David S. Warren et al. The XSB Programmer’s Manual: version 2.7, vols. 1 and
2, January 2005. http://xsb.sf.net.

Jan Wielemaker. SWI-Prolog release 5.6.0, 2006. http://www.swi-prolog.org/.

17

A Appendix: Random Access Machine Simulator

:- use_module(library(chr)).
:— module(ram, [mem/2, prog/4, prog_counter/1]).
:— chr_constraint mem(+,+), prog(+,+,+,+), prog_counter(+).

% add value of register B to register A
prog(L,L1,add(B),A), mem(B,Y) \ mem(A,X), prog_counter(L) <=>
Z is X+Y, mem(A,Z), prog_counter(Ll).

% subtract value of register B from register A
prog(L,L1,sub(B),A), mem(B,Y) \ mem(A,X), prog_counter(L) <=>
Z is X-Y, mem(A,Z), prog_counter(Ll).

% multiply register A with value of register B
prog(L,L1,mult(B),A), mem(B,Y) \ mem(A,X), prog_counter(L) <=>
Z is XxY, mem(A,Z), prog_counter(Ll).

% divide register A by value of register B
prog(L,L1,div(B),A), mem(B,Y) \ mem(A,X), prog_counter(L) <=>
Z is X//Y, mem(A,Z), prog_counter(Ll).

% put the value in register B in register A
prog(L,L1,move(B),A), mem(B,X) \ mem(A,), prog_counter(L) <=>
mem(A,X), prog-counter(L1).

% put the value in register <value in register B> in register A
prog(L,L1,i move(B),A), mem(B,C), mem(C,X) \ mem(A,), prog_counter(L) <=>
mem(A,X), prog_counter(L1).

% put the value in register B in register <value in register A>
prog(L,L1,move_i(B),A), mem(B,X), mem(A,C) \ mem(C,), prog_counter(L) <=>
mem(C,X), prog-counter(L1).

% put the value B in register A
prog(L,L1,const(B),A) \ mem(A,), prog_counter(L) <=> mem(A,B), prog_counter(Ll).

% unconditional jump to label A
prog(L,L1, jump,A) \ prog_counter(L) <=> prog_counter(A).

% jump to label A if register R is zero, otherwise continue
prog(L,L1,cjump(R),A), mem(R,X) \ prog_counter(L) <=> X == 0 | prog_counter(4).
prog(L,L1,cjump(R) ,A), mem(R,X) \ prog_counter(L) <=> X =\= 0 | prog_counter(L1l).

% halt
prog(L,L1,halt,_) \ prog_counter(L) <=> true.

% invalid instruction
prog_counter (L) <=> true.

18

