
Deriving Quasi-Linear-Time Algorithms from
Union-Find in CHR

Extended Abstract

Thom Frühwirth

Faculty of Computer Science
University of Ulm, Germany

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract The union-find algorithm can be seen as solving simple equa-
tions between variables or constants. With a few lines of code change,
we generalise its implementation in CHR from equality to arbitrary bi-
nary relations. By choosing the appropriate relations, we can derive fast
algorithms for solving certain propositional logic (SAT) problems as well
as certain polynomial equations in two variables. While linear-time algo-
rithms are known to check satisfiability and to exhibit certain solutions
of these problems, our algorithms are simple instances of the generic
algorithm and have additional properties that make them suitable for
incorporation into constraint solvers: From classical union-find, they in-
herit simplicity and quasi-linear time and space. By nature of CHR, they
are anytime and online algorithms. They can be parallelised. They solve
and simplify the constraints in the problem, and can test them for entail-
ment, even when the constraints arrive incrementally, one after the other.
We show that instances where relations are bijective functions yield pre-
cise and correct algorithm instances of our generalised union-find.

1 Introduction

Constraint Handling Rules (CHR) [Frü98,FA03] is a logical constraint-based
concurrent committed-choice programming language consisting of guarded rules
that rewrite multisets of atomic formulas.

It was shown recently that the classical optimal union-find algorithm
[TvL84] is implementable in CHR with best-known quasi-linear time complex-
ity [SF06,SF05]. This result is not accidental, since the paper [SSD05] shows
that a subset of the CHR language can simulate Turing and RAM machines
in polynomial time, thus establishing that CHR is Turing-complete and, more
importantly, that every algorithm can be implemented in CHR with best known
time and space complexity, something that is not known to be possible in other
pure declarative programming languages.

The union-find algorithm maintains disjoint sets under the operation of
union. By definition of set operations, a union operator working on represen-
tatives of sets is an equivalence relation, i.e. we can view sets as equivalence

classes. Especially iff the elements of the set are variables or constants, union
can be seen as equating those elements and giving an efficient way of finding out
if two elements are equivalent (i.e., in the same set).

This extended abstract investigates the question if the union-find algorithm
written in CHR can be generalised so that other relations than simple equations
between two variables are possible without compromising efficiency.

Overview of the Paper. This extended abstract discusses the following
topics in the next sections.

– Quasi-Linear Time Union-Find Algorithm
– Generalised Union-Find in CHR
– Example Instances: Boolean and Polynomial Equations in Two Variables
– Time and Space Complexity and Correctness of the Generalisation
– Conclusions and Future Work

We assume some familiarity with CHR [Frü98,FA03] in this extended abstract.

2 The Union-Find Algorithm

In this section we follow the exposition of [SF06]. The classical union-find (also
referred to as disjoint-set-union) algorithm was introduced by Tarjan in the
seventies [TvL84]. A classic survey on the topic is [GI91]. The algorithm solves
the problem of maintaining a collection of disjoint sets under the operation of
union. Each set is represented by a rooted tree, whose nodes are the elements of
the set. The root is called the representative of the set. The representative may
change when the set is updated by a union operation. With the algorithm come
three operations on the sets:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained.
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

changing the representative).

A new element must be introduced exactly once with make before being subject
to union and find operations. To find out if two elements are in the same set
already, i.e. to check entailment, one finds their representatives and checks them
for equality, i.e. checks find(X)=find(Y).

2.1 Implementing Union-Find in CHR

The following CHR program in concrete ASCII syntax implements the operations
and data structures of the naive union-find algorithm without optimisations. In
the naive algorithm, these three operations are implemented as follows.

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree. Return the

root as representative.

– union(X,Y): find the representatives of X and Y, respectively. To join the
two trees, it suffices to link them by making one root point to the other
root.

In the CHR implementation, the constraints make/1, union/2, find/2 and
link/2 define the operations (functions are written in relational form), so we
call them operation constraints. The constraints root/1 and ->/2 (using infix
notation) represent the tree data structure and we call them data constraints.
We use the infix notation ->/2 to evoke the image of a directed arc, since it
is often helpful for the understanding of the algorithm to imagine the tree as
directed graph.

make @ make(X) <=> root(X).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> X -> Y, find(Y,R).
findRoot @ root(X), find(X,R) <=> root(X), R=X.

linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> X -> Y, root(Y).

2.2 Optimised Union-Find

The basic algorithm requires O(n) time per find (and union) in the worst case,
where n is the number of elements (make operations). With two independent
optimisations that keep the tree shallow and balanced, one can achieve logarith-
mic worst-case and quasi-constant (i.e. almost constant) amortised running time
per operation.

The first optimisation is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimisation is union-by-rank. It keeps the tree shallow by point-
ing the root of the smaller tree to the root of the larger tree. Rank refers to an
upper bound of the tree depth (tree height). If the two trees have the same rank,
either direction of pointing is chosen but the rank is increased by one. With this
optimisation, the height of the tree can be logarithmically bound.

The following CHR program implements the optimised classical union-find
algorithm with path compression for find and union-by-rank [TvL84].

make @ make(X) <=> root(X,0).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> find(Y,R), X -> R.
findRoot @ root(X,N), find(X,R) <=> root(X,N), R=X.

linkEq @ link(X,X) <=> true.
linkLeft @ link(X,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

Y -> X, root(X,max(RX,RY+1)).
linkRight@ link(X,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X -> Y, root(Y,max(RY,RX+1)).

When compared to the naive version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. The
union/2 operation constraint is implemented exactly as for the naive algorithm.
The rule findNode has been extended for path compression. By the help of
the variable R that serves as a place holder for the result of the find operation,
path compression is already achieved during the first pass, i.e. during the find
operation. The link rule has been split into two rules, linkLeft and linkRight,
to reflect the optimisation of union-by-rank: The smaller ranked tree is added to
the larger ranked tree without changing its rank. When the ranks are the same,
either tree is updated (both rules are applicable) and the rank is incremented
by one.

3 Generalised Union-Find

The idea of generalising union find is to replace equations between variables
by arbitrary binary relations. The operation union now asserts a given relation
between its two variables, find finds the relation between a given variable and
the root of the tree in which it occurs. The operation link includes the relation
as well so that it is stored in the tree data constraint, i.e. the arcs in the tree are
labelled by relations now. In the CHR implementation, the operation constraints
union, find, link and the data constraint -> get an additional argument to hold
the relation.

We also need some standard operations on relations from relational algebra
that are implemented by constraints as follows (where we use relational notation
and id is the identity function, i.e. equality):

– compose(r1, r2, r3) iff r1 ◦ r2 = r3

– invert(r1, r2) iff r1 = r−1
2

– equal(r1) iff r1 = id

The following code extends the CHR implementation of optimal union-find by
additional arguments and by additional constraints on them. These additions are
emphasised for clarity. Our implementation in Sicstus Prolog CHR is available
at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl.

make @ make(X) <=> root(X,0).
union @ union(X,XY,Y) <=> find(X,XA,A), find(Y,YB,B),

combine(XA,YB,XY,AB), link(A,AB,B).

findNode @ X-XY->Y, find(X,XR,R) <=> find(Y,YR,R),
compose(XY,YR,XR), X-XR->R.

findRoot @ root(X,N), find(X,XR,R) <=> root(X,N), equal(XR), X=R.

linkEq @ link(X,XX,X) <=> equal(XX).
linkLeft @ link(X,XY,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

invert(XY,YX), Y-YX->X, root(X,max(RX,RY+1)).
linkRight@ link(X,XY,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X-XY->Y, root(Y,max(RY,RX+1)).

The operation constraint union(X,XY,Y) now means that we enforce relation
XY between X and Y. The operation find still returns the root for a given node,
but also the relation that holds between the node and the root. From these three
relations, combine derives the relation AB that must hold between the roots that
are to be linked.

The combine operation can be defined in CHR as follows:

combine(XA,YB,XY,AB) <=> X -- XA* -- A
compose(XY,YB,XB), | |
invert(XA,AX), XY AB?
compose(AX,XB,AB). | |

Y -- YB* -- B

The crude graphics on the right of the CHR code shows the relations between
the four relations that are arguments of combine. It is a so-called commutative
diagram. The question mark after AB reminds us that this relation is the one
that combine computes from the other three. The starred relations * remind us
that find computes these relations by repeated composition of the relations on
the path of the tree. Overall, given the relations between X and Y, X and A, Y and
B, combine computes the relation between A and B that will replace the relation
XY in the tree representation.

4 Instance of Boolean Equations

With our generalised union-find algorithm, we can solve inequations between
Boolean variables (propositions), i.e. certain 2-SAT problems. This instance fea-
tures a finite domain and a finite number of relations. In the CHR implemen-
tation, the relations are eq for = and ne for 6= , and the truth values are 0 for
false and 1 for true. The operations on relations can be defined by the following
facts:

compose(eq,R,R). invert(X,X).
compose(R,eq,R).
compose(ne,ne,eq). equal(eq).

Here is a very simple example of a query for Booleans. Note that we introduce
0 and 1 by make and add union(0,ne,1) to enforce that they are distinct. This
suffices to solve this type of Boolean inequations and to simplify them thanks
to union-find such that the relation (eq or eq or none) between variables can be
found in quasi-constant time.

?- make(0),make(1),union(0,ne,1),
make(A),make(B),union(A,eq,B),union(A,ne,0),union(B,eq,1).

root(A,2), B-eq->A, 0-ne->A, 1-eq->A.

The result of the query shows that A is also equal to 1.
Related Work. It is well known that 2-SAT (conjunctions of disjunctions of

at most two literals) [APT79] and Horn-SAT (conjunctions of disjunctions with
at most one positive literal, i.e. propositional Horn clauses) [BB79,DG84,Min88]
can be checked for satisfiability in linear time.

The class of Boolean equations and inequations we can deal with is a proper
subset of 2-SAT, but not of Horn-SAT, since A ne B ⇔ (A ∨ B) ∧ (¬A ∨ ¬B).

These two classical linear-time SAT algorithms assume that the graph is
initially known, because it has to be traversed along its edges. The algorithms
only check for satisfiability and can report one possible solution, but they do not
simplify or solve the given problem in a general way.

The 2-SAT algorithm translates a given problem into a directed graph where
arcs are the implications that are logically equivalent to the individual clauses
in the problem. It then relies on a linear-time preprocessing of the given graph
to find is maximal strongly connected components in reverse topological order.
Then truth values are assigned to components by assigning them to all nodes in
that component. Respecting the topological order, truth values are propagated
through the components.

In contrast, our generalised union-find algorithm is an online algorithm and
incremental in the sense of constraint logic programming. It can find the rela-
tion between two given variables in amortised quasi-constant time and space. It
produces a simple normal form that has the same size of the original problem.
By using find, the results can be normalised in quasi-linear time. It can be used
for ask and tell, for assertion and entailment testing of constraints and is thus
well-suited to be used in constraint solvers. It can even be run in parallel on
variable-disjoint parts of the problem (that is, unions that share variables must
be processed in sequential order). A more parallel version of union-find in CHR
is discussed in [Frü05].

Our Boolean algorithm instance can be integrated into a Boolean constraint
solver. For example, the classical Boolean solver in CHR is based on value
(unit) propagation, e.g. and(X,Y,Z) <=> X=0 | Z=0, and propagation of equal-
ities, e.g. and(X,Y,Z) <=> X=Y | Y=Z. It can be now extended by propaga-
tion of inequalities, e.g. and(X,Y,Z) <=> XȲ | Z=0 and and(X,Y,Z) <=> XZ̄ |
X=1,Y=0,Z=0.

Can we extend our algorithm instance of generalised union-find to deal with
2-SAT? As put to use in the classical algorithm, any disjunction in two variables,
A ∨ B can be written as implication ¬A → B. Since we can get negation using
an auxiliary variable A ne negA, we just would have to introduce the relation
→ (that corresponds to a total non-strict order ≤ on the truth values). But the
implication relation looses too much information when composed. For example,
given a tree B-≤->A, C-≤->A, B and C can be arbitrarily related. So if one adds

union(B,eq,C) it has no effect on the tree, and thus the information that B eq
C is lost.

5 Instance of Linear Polynomials

Another instance of our generalised union-find algorithm deals with linear poly-
nomial equations in two variables. It features an infinite domain and an infinite
number of relations. The CHR data constraint X-A|B->Y (with A6=0) now means
X=A*Y+B. Note that these type of equations can be interpreted as functions. The
operations on relations are defined as follows:

compose(A|B,C|D,A*C|A*D+B).
invert(A|B,1/A|-B/A). equal(1|0).

Again, a small example illustrates the behaviour of this instance.

?- make(X),make(Y),make(Z),make(W),
union(X,2|3,Y),union(Y,0.5|2,Z),union(X,1|6,W).

root(X,1), Y-0.5|-1.5->X, Z-1.0|-7.0->X, W-1.0|-6.0->X.

Note that by the generic linkEq rule, link(X,1|0,X) will succeed but all other
equations involving only one variable will fail. While this is as expected for e.g.
link(X,1|1,X), the equation link(X,2|1,X) has a solution X=-1. Indeed, in
our program, failure will occur whenever a variable is fixed, i.e. determined to
take a unique value. Our algorithm succeeds exactly when the set of equations
has infinitely many solutions.

We now slightly modify the program code of the instance of our generalised
union-find algorithm in order to introduce concrete numeric values and to solve
for determined variables. Since there infinitely many numbers, we express them
in terms of a single number, 1. To make sure that the number 1 always stays the
root, so that it can be always found by the find operation, we add root(1,∞)
instead of make(1) to the beginning of a query. We replace the linkEq rule
by the two rules. The first restricts applicability of the generic linkEq rule to
the case where A=1, the second rule applies to equations that determine their
variable and normalises the equation such that the coefficient is 1 and the second
occurrence of the variable is replaced by the value 1.

linkEq1 @ link(X,A|B,X) <=> A=:=1 | B=:=0.
linkEq2 @ link(X,A|B,X) <=> A=\=1 | link(X,1|B/(1-A)-1,1).

Note that there is a subtle point about these two rules: X may be the value 1,
and in that case the execution of link(X,1|B/(1-A)-1,1) in the right hand
side of rule linkEq2 will use rule linkEq1 to check if B/(1-A)-1 is zero (which
holds if B=1-A).

The following tiny examples illustrate the behaviour of these two rules (∞ is
chosen to be 9):

?- root(1,9), make(X),make(Y),
union(X,2|3,Y),union(X,4|1,1).

root(1,9), X-4|1->1, Y-0.5|-1.5->X.

?- root(1,9), make(X),make(Y),union(X,4|1,1),union(X,2|3,Y).
root(1,9), X-4|1->1, Y-2|-1->1.

We may add another rule that propagates values for determined variables down
the tree data structure and so binds determined variables:

X-A|B->N <=> number(N) | X=A*N+B.

?- root(1,9), make(X),mak e(Y),
union(X,2/3,Y),union(X,4/1,1).

root(1,9), X=5, Y=1.

Related Work. [AS80] gives a linear time algorithm that shares many prin-
ciples with ours, but is more complicated. Equations correspond to directed arcs
in a graph. Like the 2-SAT algorithm [APT79], it computes maximal strongly
connected components. Inside each component, a modification of any linear-
time spanning tree algorithm can be used to simplify the equations. The overall
effect is the same as with our algorithm, and the algorithm is similar on the
components, especially if Kruskal’s algorithm [Kru56] for spanning trees is used
which relies on union-find. However, our algorithm is simpler and more general
in its applicability. It does not need to compute strongly connected components
or spanning tress, it directly uses union-find and moreover is incremental and
parallelisable.

6 Complexity and Correctness

We want to show that our algorithm is a canonical extension of the optimised
union-find algorithm in CHR. In other words, if we instantiate our algorithm to
the case where the only relation is =, we get back the original program.

We first discuss complexity of our algorithm.

Theorem 1 (Complexity). Our algorithm has the same time and space com-
plexity as the original algorithm if the operations on relations take constant time
and space.

Proof Sketch. Any computation in our generalised algorithm can be
mapped into a computation of the original union-find algorithm or it fails.

In the generalisation, we added arguments for the relations to existing CHR
constraints that are variables and constraints on these variables only. The addi-
tional variables on the left hand side of each rule are all distinct and the guards
have not been changed. The additional constraints on the right only constrain the
new variables. In CHR, additional constraints can cause failure (inconsistency)
or make more rules applicable, but never less. Since the new constraints are on
new variables only, and these are not checked by the left hand sides and guards

of rules, the applicability of the rules remains unchanged. So the only change
is that a rule application could cause failure where the computation proceeded
before (this applies to the linkEq rule).

More formally, we construct a mapping function that removes the additional
arguments and additional built-in constraints. The claim is then shown by in-
duction on length of the derivation and case analysis of the rules applicable in a
derivation step. ut

Next we show that our implementation is correct, if the involved relations
are bijective functions. In that case, the composition operation is precise enough
in that it allows to derive any of the three involved relations from the other two.

Intuitively the reason why we cannot work with arbitrary relations is that
given n variables, there are up to n(n−1) binary relations between different
variables, but we can only represent n−1 of them in the tree data structure
of the union-find algorithm. That means that all the other possibly existing
relations must be computable from these n−1 relations.

In the following we assume w.l.o.g. that the domains of a variable include
only those values for which the relations in which it occurs are defined. If the
relation is a function this means that the function is total.

Definition 1. A function is bijective if for every y there is exactly one x such
that f(x) = y, that is f(x) = y ∧ f(u) = v ∧ (x = u ∨ y = v) → x = u ∧ y = v.

Bijective functions are closed under inverse and composition.
While bijective functions may seem quite a strong restriction we remind

the reader that permutations, isomorphisms and many other mappings (such
as encodings in cryptography) are bijective functions and that most arithmetic
functions are at least piecewise bijective, since they are piecewise monotone.
Indeed, for a domain of size n, there exist n! different bijective functions, i.e.
more than exponentially many.

The identity function id is bijective. The relations eq and ne are bijective
functions for domains with at most two values, and thus for Booleans. Linear
polynomial equations in two variables can also be interpreted also bijective func-
tions.

Theorem 2 (Correctness). The logical reading of the rules of our generalised
union-find algorithm (for classical union-find, see [SF05]) is a consequence of a
theory for the relations if these relations are bijective functions.

Proof Sketch. We prove by analysing the logical reading of the rules, where
we replace union, find, link and -> as intended by the binary relations be-
tween their variables (using infix notation), and the constraints for operations
on relations by their definitions using functional notation. As usual, formulas
are assumed to be universally closed.

(make) make(X) ⇔ root(X,0).
(union) (X XY Y) ⇔ ∃XA,A,YB,B,AB ((X XA A) ∧ (Y YB B) ∧

XA^-1◦XY◦YB=AB ∧ (A AB B))

(findNode) (X XY Y) ∧ (X XR R) ⇔ ∃YR ((Y YR R) ∧
XY◦YR=XR ∧ (X XR R))

(findRoot) root(X,N) ∧ (X XR R) ⇔ root(X,N) ∧ XR=id ∧ X=R

(linkEq) (X XX X) ⇔ XX=id
(linkLeft) RX>=RY ⇒ ((X XY Y) ∧ root(X,RX) ∧ root(Y,RY) ⇔

∃YX (XY^-1=YX ∧ (Y YX X) ∧ root(X,max(RX,RY+1))))
(linkRight) RY>=RX ⇒ ((X XY Y) ∧ root(Y,RY) ∧ root(X,RX) ⇔

(X XY Y) ∧ root(Y,max(RY,RX+1)))

Even though the logical reading in first order logical does not reflect the
intended meaning of the root data constraint [SF05] (and a linear logic semantics
is more faithful [BF05]), the logical reading suffices for our purposes.

Most rules lead to formulas that do not impose any restriction on the binary
relations involved. The logical readings of linkEq and findRoot imply that the
only relation that is allowed to hold between identical variables is the identity
function id. The findNode rule, however, tells us a logical equivalence,

(X XR R) ∧ (X XY Y) ⇔ (X XR R) ∧ (Y YR R) where XY◦YR=XR,

that is not a tautology and restricts the involved relations. (For example, it
does not hold for ≤=XR=YR=XY even though ≤ ◦ ≤=≤.)

This conditions is obviously satisfied if the involved relations are bijective
functions, because then, for any value given to one of the variables, the values
for the other two variables are uniquely determined on both sides of the logical
equivalence and there cannot be another triple of values that has any of the
values in the same component. ut

To further illustrate the Correctness Theorem, let XR = id. Then the above
condition simplifies to: (X XY Y) ⇔ (Y YR X) where XY◦YR=id. This means
that for any relation g that takes the place of XY or YR, there must be a right
and a left inverse, i.e. g ◦ g−1 = g−1 ◦ g = id. This is the case if the relations
are bijective functions. As a counter-example, take the function g that is defined
by g(a)=c, g(b)=c and its inverse g−1. Now g is not bijective since for c there
exists more than one value that yields it when g is applied to it. Also, g−1 is not
a function. The composition g−1 ◦ g yields the universal relation that includes
any pair taken from {a, b}. The composition g ◦ g−1 yields the pair < c, c >. But
both should yield the identity function id.

Intuitively, we can replace any operation in our generalised union-find al-
gorithm on a given bijective function f by a conjunction of operations on its
individual values using the classical union-find algorithm. That is, we claim
X ∈ DX ∧ Y ∈ DY ∧ union(X, f, Y) is equivalent to

∧
X∈DX

union(X, f(Y)),
where DV denotes the domain of values for variable V .

7 Conclusions

In this extended abstract we have presented work in progress about extending
the applicability of union-find implemented in CHR. We saw that the general-
isation of the algorithm from maintaining equalities to certain binary relations
(in particular bijective functions that admit precise composition) is straightfor-
ward in CHR and that the generalisation does not compromise quasi-linear time
efficiency. We have implemented the generalisation and two instances, for equa-
tions and inequations over Booleans and for linear polynomial equations in two
variables.

Our implementation in Sicstus Prolog CHR is available at
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl.

While linear-time algorithms are known to check satisfiability and to exhibit
certain solutions of these problems, our algorithms are simple instances of the
generic algorithm and have additional properties that make them suitable for
incorporation into constraint solvers: From classical union-find, they inherit sim-
plicity, the possibility to both assert relations and test for entailed relations as
well as quasi-linear time and space. By nature of CHR, they are anytime and on-
line algorithms. They can be parallelised and solve and simplify the constraints
in the problem, even when the constraints arrive incrementally, one after the
other.

It remains to show that the proofs for complexity and correctness are as
straightforward as claimed in this extended abstract. Future work will also try
to extend the class of bijective functuions to other binary relations, and to in-
vestigate relationship with classes of tractable constraints. We also would like to
investigate the potential tradeoff between efficiency and precision (i.e. by apply-
ing our generalised union-find to inequalities like ≤).

References

[APT79] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear time algorithm for test-
ing the truth of certain quantified Boolean formulas. Information Processing
Letters, 8:121–123, 1979.

[AS80] Bengt Aspvall and Yossi Shiloach. A fast algorithm for solving systems of
linear equations with two variables per equation. Linear Algebra and its Ap-
plications, 34:117–124, 1980.

[BB79] Catriel Beeri and Philip A. Bernstein. Computational problems related to
the design of normal form relational schemas. ACM Trans. Database Syst.,
4(1):30–59, 1979.

[BF05] Hariolf Betz and Thom Frühwirth. A linear-logic semantics for constraint
handling rules. In P. van Beek, editor, 11th Conference on Principles and
Practice of Constraint Programming CP 2005, volume 3709 of Lecture Notes
in Computer Science, pages 137–151. Springer, October 2005.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. J. Log. Program., 1(3):267–
284, 1984.

[FA03] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

[Frü98] T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming. Journal of Logic Programming, 37(1–
3):95–138, 1998.

[Frü05] T. Frühwirth. Parallelizing union-find in constraint handling rules using con-
fluence. In M. Gabbrielli and G. Gupta, editors, Logic Programming: 21st
International Conference, ICLP 2005, volume 3668 of Lecture Notes in Com-
puter Science, pages 113–127. Springer, October 2005.

[GI91] Z. Galil and G. F. Italiano. Data Structures and Algorithms for Disjoint Set
Union Problems. ACM Comp. Surveys, 23(3):319ff, 1991.

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical Society,
7:48–50, 1956.

[Min88] Michel Minoux. LTUR: a simplified linear-time unit resolution algorithm for
Horn formulae and computer implementation. Information Processing Letters,
29(1):1–12, September 1988.

[SF05] Tom Schrijvers and Thom Frühwirth. Analysing the CHR Implementa-
tion of Union-Find. In 19th Workshop on (Constraint) Logic Programming
(W(C)LP 2005). Ulmer Informatik-Berichte 2005-01, University of Ulm, Ger-
many, February 2005.

[SF06] T. Schrijvers and T. Frühwirth. Optimal union-find in constraint han-
dling rules, programming pearl. Theory and Practice of Logic Programming
(TPLP), 6(1), 2006.

[SSD05] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The Computational Power
and Complexity of Constraint Handling Rules. In Second Workshop on Con-
straint Handling Rules, at ICLP05, Sitges, Spain, October 2005.

[TvL84] Robert E. Tarjan and Jan van Leeuwen. Worst-case Analysis of Set Union
Algorithms. J. ACM, 31(2):245–281, 1984.

