
Unification of Hypergraph λ-Terms

Alimjan Yasin and Kazunori Ueda

Waseda University, Tokyo

November 24, 2017

1 / 1

Overview

• Unification of higher-order terms are essential parts of
logic programming languages and proof systems in which
terms involve with name binding.

• We present a simple unification algorithm for unifying
higher-order terms represented by hypergraphs.

2 / 1

Name Binding

Example

λx .M , where λ is the binder, x is a bound variable with possible
occurrences in M .

• We face variable name binding in programming languages, type
systems and proof systems.

• There are many existing techniques for name binding (next slide),
and each has pros and cons.

• Previously, we proposed hypergrpah λ-terms1, which is the
hypergraph representation of untyped λ-terms.

1Alimujiang Yasen and Kazunori Ueda: Hypergraph Representation of Lambda-Terms. In Proc. TASE 2016,

3 / 1

Techniques for Name Binding

• De Bruijn representation
• Use numbers to represent variables
• Poor readability, shifting operations in substitutions

• Higher-order abstract syntax
• λ-calculus as meta-language
• Implementation cost is high

• Nominal logic
• First-order representation, equips names with swapping and freshness
• Sometimes difficult to reason with

• Hypergraph based approach
• Representation is straightforward
• Allows intuitive definition of substitutions
• Very close to theory

4 / 1

Motivation

Modeling type inferences of programming languages with terms
involving name binding requires unification of terms with name
binding.

System F<: Type Inference

Finding T in the following.

` sone : T

where sone is Church numeral one in System F<:.

sone = λX <: top . λS <:X . λZ <:X .λs : X → S . λz : Z . s z

5 / 1

Hypergraph λ-Terms: Representation

R=abs(F,abs(X,app(F,app(F,X)))) represents λf .λx .f (f x).

• Atoms represent constructors.
• R=abs(X,Y) as λ(x , y)
• R=app(M,N) as (M N)
• R=sub(X,N,M) as M[x := N]

• Hyperlinks represent variables.

• Regular links represent
subterm-superterm relations.

• Rewrite rules implement
substitutions (subsequent slide).

These are implemented in HyperLMNtal.

6 / 1

Advantage of Hypergraph Representation

Variable Convention for Graph Representation

• Bound variables and free variables are distinct.

• All bound variables are distinct.

Example: λa.λa.a should be written as R=abs(B,abs(A,A)).

(a) Incorrect representation of
λa.λa.a

(b) Correct representation of
λa.λa.a 7 / 1

The Encoding of λ-Calculus

HyperLMNtal implementation of λ-Calculus is as follows.

beta@@ R=app(abs(X,M),N) :- R=sub(X,N,M).

var1@@ R=sub(X,N,X) :- hlink(X) | R=N.

var2@@ R=sub(X,N,Y) :- X\=Y, hlground(N,1) | R=Y.

abs@@ R=sub(X,N,abs(Y,M)) :- R=abs(Y,sub(X,N,M)).

app@@ R=sub(X,N,app(M1,M2)):- hlink(X), hlground(N,1) |

R=app(sub(X,N,M1), sub(X,N,M2)).

• Substitution is capture free.

• Carries no side conditions.

• Intuitive.

8 / 1

Unification: Examples

Example 1

abs(A,X) = abs(B,B)

X = [A/B]B

X = A

Unifier: [X := A].

Note: A replacing X leads to
variable capture.

Example 2

abs(A,X) = abs(B,X)

X = [A/B]X

Unifier: {A # X, B # X}.

Note: it seems we need fresh-
ness #.

9 / 1

Unification of Hypergraph λ-Terms

Unification Problem

Classic definition: For terms M and N containing un-
known variables X ,Y , . . . , finding δ=[X :=t1,Y :=t2,. . .], so
δ(M)=δ(N).
Definition in our case: A unification problem P is a finite
set consisting of equations over hypergraph λ-terms and fresh-
ness constraints, where equations, such as M = N , may contain
X ,Y ,

Notations

• X ,Y , . . . , are unknown variables.

• A,B,C,D,... are hyperlinks

• M,N,P are hypergraph λ-terms

10 / 1

Unification: Swapping and Freshness

• Swapping: [A↔ B]M means swap hyperlinks A and B in
term M .

• Freshness: A#M means hyperlink A does not occur in M .

Note

Swapping and freshness are borrowed from nominal logic1.

1Andrew M. Pitts: A First Order Theory of Names and Bindings. Information and Computation, 186, pp.165–193, 2003.

11 / 1

Unification: A lemma

Lemma

For two α-equivalent hypergraph λ-terms

abs(A,M) = abs(B ,N) ,

the following holds,

• A#N and B#M ,

• M = [A↔ B]N and [A↔ B]M = N .

The lemma follows from variable convention for graph representation.

12 / 1

Unification: Inductive Definition of Swappings

π ·M means applying a list of swappings π to M

π@[A↔ C] · B def
= π · B (A 6= B ,B 6= C)

π@[A↔ C] · A def
= π · C

π@[C ↔ A] · A def
= π · C

π · abs(A,M)
def
= abs(A, π ·M)

π · app(M ,N)
def
= app(π ·M , π · N)

π · (π′ ·M)
def
= π@π′ ·M

[] ·M def
= M

13 / 1

Unification: Judgments

Equality Under Freshness Environment

θ ` M = N

θ is a freshness environment.
For example:

{A#X , B#X} ` abs(A,X) = abs(B,X)

Freshness Under Freshness Environment

θ ` A#M

For example:

A#X ` A#app(X,B)
14 / 1

Unification: Inductive Definition of Judgments

θ ` A = A
=hlink

θ ` M = [A↔ B] · N θ ` A#N θ ` B#M

θ ` abs(A,M) = abs(B,N)
=abs

θ ` M1 = M2 θ ` N1 = N2

θ ` app(M1,N1) = app(M2,N2)
=app

(A#X) ∈ θ for all A ∈ var(π@π′)

θ ` π · X = π′ · X =susp

A 6= B

θ ` A#B
#hlink

θ ` A#N

θ ` A#abs(B,N)
#abs

θ ` A#M θ ` A#N

θ ` A#app(M,N)
#app

(π−1 · A#X) ∈ θ
θ ` A#π · X #susp

Figure: Judgments for non-ground hypergraph λ-terms

15 / 1

Unification: Lemmas

Lemma

θ ` M = π · N holds if only if θ ` π−1 ·M = N holds.
We can move swappings to other side of =.

Lemma

θ ` A#π ·M holds if only if θ ` π−1 · A#M holds.
We can move swappings to other side of #.

16 / 1

Unification: The Unification Problem

A unification problem P is a finite set consisting of equations over
hypergraph λ-terms and freshness constraints, where equations,
such as M = N , may contain X ,Y ,

Unifier

A solution (θ, δ).

• θ is a set of freshness constraints

• δ is a substitution, i.e, [X := M1,Y := M2, . . .]

17 / 1

Unification: Most General Unifier

U(P) is the set of all solutions for a problem P .

• (θ, δ) ∈ U(P) is a most general unifier if for any
(θ′, δ′) ∈ U(P), there is a substitution δ′′ such that
θ′ ` δ′′(θ) and θ′ ` δ′′ ◦ δ = δ′.

• (θ, δ) ∈ U(P) is idempotent if θ ` δ ◦ δ = δ

18 / 1

Unification: The Unification Algorithm

• A unification starts with {M = N} and ε.

• The following rules are applied in an arbitrary order.

=hln {A = A} ∪ P , δ =⇒ P , δ

=abs {abs(A,M) = abs(B ,N)} ∪ P , δ =⇒ {M = [B ↔ A]N ,A#N ,B#M} ∪ P , δ

=app {app(M1,N1) = app(M2,N2)} ∪ P , δ =⇒ {M1 = M2 , N1 = N2} ∪ P , δ

=rm {π · X = π′ · X} ∪ P , δ =⇒ P , δ

=var
{M = π · X}
{π · X = M}

}
∪ P , δ =⇒

δ′(P), δ′ ◦ δ, where δ′ = [X := π−1 ·M]

provided X does not occur in M

#hln {A#B} ∪ P , δ, =⇒ P , δ

#abs {A#abs(B ,N)} ∪ P , δ =⇒ {A#N} ∪ P , δ

#app {A#app(M ,N)} ∪ P , δ =⇒ {A#M ,A#N} ∪ P , δ

#sus {A#π · X} ∪ P , δ =⇒ {π−1 · A#X} ∪ P , δ

19 / 1

Unification: Example(1)

abs(A,abs(B,X)) = abs(C,abs(D,X))

has a unifier ({A#X , C#X , B#X , D#X}, ε).

{abs(A,abs(B,X)) = abs(C,abs(D,X))}, ε
{abs(B,X) = [C ↔ A] · abs(D,X), A#abs(D,X), C#abs(B,X)}, ε (=abs)

{abs(B,X) = abs(D,[C ↔ A] ·X), A#abs(D,X), C#abs(B,X)}, ε (swapping)

{X = [D↔ B, C↔ A] · X , A#abs(D,X), C#abs(B,X), (=abs)

D#X , B#[C ↔ A] ·X }, ε
{A#abs(D,X), C#abs(B,X),D#X , B#[C ↔ A] ·X }, ε (=rm)

{A#D, A#X , C#B,C#X , D#X , B#[C ↔ A] ·X }, ε (#abs)

{A#X , C#X , D#X , B#[C ↔ A] ·X }, ε (#hln)

{A#X , C#X , D#X , B#X }, ε (#sus)

Success

20 / 1

Unification: Example(2)

abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))

has no unifiers.

{abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))}, ε
{abs(B,app(X,B)) = [C↔ A] · abs(D,app(D,X)), (=abs)

A#abs(D,app(D,X)), C#abs(B,app(X,B))}, ε
{app(X,B) = [D ↔ B] · app(D,[C↔ A] · X), (=abs,#abs,#app,#hln)

A#X, C#X, B# app(D,[C↔ A] · X), D#app(X,B)}, ε
{X = B, B = [D ↔ B, C ↔ A] ·X , A#X , C#X , D#X , B#X}, ε (=app,#app,#hln,#sus)

{B = D, B#B}, [X := B] (=var,#hln)

Failure

21 / 1

Unification: Correctness

Theorem

For a given unification problem P , the unification algorithm ei-
ther fails if P has no unifier or successfully produces an idempo-
tent most general unifier.

It fails in the following cases.

• A = B where A and B are different hyperlinks.

• M = N where M and N are starting with different constructors such
as abs and app.

• One of M and N is a hyperlink and the other is a constructor.

• π · X = M where M is either abs(A,M1) or app(M2,N) with X
occurring in M1, M2 and N.

• A#A.

22 / 1

Unification: Implementation

• Implemented in HyperLMNtal.

• Total 52 rewrite rules.

• These rules are very similar to rules of the algorithm.

• A number of examples.

It can be found in https://gitlab.com/alimjanyasin.

23 / 1

Related Work

Higher-order Pattern Unification1

• Typed λ-calculus as meta-language

• Unifies modulo =αβ0η

• Substitution is capture free

• Requires higher-order patterns

Nominal Unification2

• First-order nominal terms as meta-language

• Unifies modulo =α

• Substitution allows variable capture

• No requirement for patterns or variables

1Dale Miller: A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification. J.
Logic and Comput, 1, 497–536 (1991).

2C. Urban, A.M. Pitts, M.J. Gabbay: Nominal unification. J. Theoretical Computer Science, 323(1–3), 473-497 (2004).24 / 1

Conclusion

Our Algorithm

• First-order graph terms as meta-language

• Unifies modulo =α

• Substitution allows variable capture only during unification

• Requires distinct bound and free variables

Features

• Close to nominal unification
• Use first-order terms, only consider α-equality and allows

variable capture.

• Our proofs are much simpler
• We easily proved lemmas and equivalence relation.

25 / 1

Future Work

HyperLMNtal Implementations in Future

• System F<: type inference

• αProlog

26 / 1

Thanks for your attention!

27 / 1

Hypergraph λ-terms: An example

• The rule app rewrites R=sub(A,abs(B,B),app(A,A)) into
R=app(sub(A,abs(K,K),A),sub(A,abs(H,H),A)).

(a) (b)

28 / 1

The untyped λ-calculus

Syntax M,N ::= x | λx .M | MN

β-reduction (λx .M)N → M[x := N]

Substitution x [x := N] ≡ N

y [x := N] ≡ y , if x 6= y

(λy .M)[x := N] ≡ λy .(M[x := N]), if x 6= y

(M1M2)[x := N] ≡ (M1[x := N])(M2[x := N])

Figure: The untyped λ-calculus

• Barendregt’s variable convention is assumed in substitution
definition.

29 / 1

