Unification of Hypergraph A\-Terms

Alimjan Yasin and Kazunori Ueda
Waseda University, Tokyo

November 24, 2017

1/1

Overview

e Unification of higher-order terms are essential parts of
logic programming languages and proof systems in which
terms involve with name binding.

e We present a simple unification algorithm for unifying
higher-order terms represented by hypergraphs.

-
Name Binding

Ax.M, where X is the binder, x is a bound variable with possible
occurrences in M.

o We face variable name binding in programming languages, type
systems and proof systems.

o There are many existing techniques for name binding (next slide),
and each has pros and cons.

e Previously, we proposed hypergrpah \-terms!, which is the
hypergraph representation of untyped A-terms.

1Alimujiang Yasen and Kazunori Ueda: Hypergraph Representation of Lambda-Terms. In Proc. TASE 2016,

3/1

-
Techniques for Name Binding

De Bruijn representation
e Use numbers to represent variables
e Poor readability, shifting operations in substitutions
Higher-order abstract syntax
e)\-calculus as meta-language
e Implementation cost is high
Nominal logic
o First-order representation, equips names with swapping and freshness
e Sometimes difficult to reason with
Hypergraph based approach
e Representation is straightforward
e Allows intuitive definition of substitutions
e Very close to theory

4/1

Motivation
]

Modeling type inferences of programming languages with terms
involving name binding requires unification of terms with name
binding.

System F.. Type Inference

Finding T in the following.

Fsone: T

where sone is Church numeral one in System F...

sone=AX <:top AS<:X.ANZ<:XAs:X—=>S.\z:Z.s5z

5/1

|
Hypergraph A-Terms: Representation

R=abs(F,abs(X,app(F,app(F,X)))) represents \f.\x.f (f x).

e Atoms represent constructors.
e R=abs(X,Y) as \(x, y)
e R=app(M,N) as (M N)
e R=sub(X,N,M) as M[x := N]

e Hyperlinks represent variables.

e Regular links represent
subterm-superterm relations.

e Rewrite rules implement
substitutions (subsequent slide).

These are implemented in HyperLMNtal.

-
Advantage of Hypergraph Representation

Variable Convention for Graph Representation

e Bound variables and free variables are distinct.
e All bound variables are distinct.

(a) Incorrect representation of (b) Correct representation of
Aa.\a.a Aa.\a.a 7/1

-
The Encoding of A\-Calculus

HyperLMNtal implementation of A-Calculus is as follows.

beta@@ R=app (abs(X,M),N) :— R=sub(X,N,M).

var1@@ R=sub(X,N,X) :— hlink(X) | R=N.

var20@ R=sub(X,N,Y) :- X\=Y, hlground(N,1) | R=Y.
abs@@ R=sub(X,N,abs(Y,M)) :- R=abs(Y,sub(X,N,M)).

app@@ R=sub(X,N,app(M1,M2)):- hlink(X), hlground(N,1) |
R=app (sub(X,N,M1), sub(X,N,M2)).

e Substitution is capture free.
e Carries no side conditions.

e Intuitive.

8/1

Unification: Examples

Example 1 Example 2

abs(A,X) = abs(B,B) abs (A, X) = abs(B, X)
X = [A/BIB X = [A/B1X
X =A
Unifier: [X := A]. Unifier: {A # X, B # X}.
Note: A replacing X leads to Note: it seems we need fresh-
variable capture. ness #.

9/1

-
Unification of Hypergraph A\-Terms

Unification Problem

Classic definition: For terms M and N containing un-
known variables X, Y, ..., finding d=[X:=t1,Y:=t,,...], so
d(M)=4(N).

Definition in our case: A unification problem P is a finite
set consisting of equations over hypergraph \-terms and fresh-
ness constraints, where equations, such as M = N, may contain

X, Y,
Notations
e X, Y, ..., are unknown variables.

e AB,C,D,... are hyperlinks
e M,N,P are hypergraph \-terms

—
o
=

Unification: Swapping and Freshness

o Swapping: [A <> B]|M means swap hyperlinks A and B in
term M.

e Freshness: A#M means hyperlink A does not occur in M.

Swapping and freshness are borrowed from nominal logic?.

LAndrew M. Pitts: A First Order Theory of Names and Bindings. Information and Computation, 186, pp.165-193, 2003.

11/1

Unification: A lemma

Lemma

For two a-equivalent hypergraph A-terms
abs(A, M) = abs(B, N) ,

the following holds,
o A#N and B#M,
e M=[A+ B|N and [A <+ B]M = N.

.

The lemma follows from variable convention for graph representation.

12/1

Unification: Inductive Definition of Swappings

‘ 7 - M means applying a list of swappings 7 to M \

@A Cl-BE 7B (A#B,B+#C)
T0[A e Cl-AY 1. C
T0[C Al -A¥ 1. C
7 - abs(A, M) &ef abs(A, 7+ M)
7 - app(M, N) &ef app(m- M, 7 - N)
7o (r - M) E rer - M

[1-M< M

13/1

-
Unification: Judgments

Equality Under Freshness Environment

OFM=N

0 is a freshness environment.
For example:

{A#X,B#X} F abs (A, X) = abs(B, X)

Freshness Under Freshness Environment

0 A#M

For example:

A#X F A#app(X,B)

14/

Unification: Inductive Definition of Judgments

IEA=A =hlink
OFM=[A<B]-N 0+ A#N OF B#M —abs
0+ abs(A, M) = abs(B,N)
OF My=M, 0+ N =N,
0+ app(My, Ny) = app (M, Ny) “epp
(A#X) € 6 for all A € var(m@n’) _susp
OFm-X=n"-X
A#B
@ #hlink
0+ A#N #abs
0 Adtabs (B, N)
OF ALM 0 F A#N yapp
0 - Af#tapp (M, N)
(=L A#X) € 0 pousp

0 Adtm - X 15/1

Unification: Lemmas

0 M =m-N holds if only if - 7= - M = N holds.
We can move swappings to other side of =.

O+ A4+ M holds if only if 0 - 771« A# M holds.
We can move swappings to other side of #.

16/1

Unification: The Unification Problem

A unification problem P is a finite set consisting of equations over
hypergraph A-terms and freshness constraints, where equations,
such as M = N, may contain X, Y,

\.

J

A solution (6, 6).
e O is a set of freshness constraints
e is a substitution, i.e, [X := My, Y := My, ...]

\.

17/1

Unification: Most General Unifier

U(P) is the set of all solutions for a problem P.
(D

e (0,0) € U(P) is a most general unifier if for any
(0,0") € U(P), there is a substitution §” such that
0'F6"(0) and 0'F "0 d =10,

e (0,9) € U(P) is idempotent if 0 =00 =§

18/1

Unification: The Unification Algorithm

e A unification starts with {M = N} and ¢.
e The following rules are applied in an arbitrary order.

=hln
=abs
=app

=rm

=var
#hln
#abs

#app
#sus

{A=A}UP,¢

{abs(A, M) = abs(B,N)} U P, ¢

{app(Mi, Ni) = app(Ma, No)} U P, 6

{m-X=7n"-X}UP,d
{M=m-X}

s

[A#BYU P56,

{A#abs(B,N)} UP,d

{A#app(M,N)} UP,d

{Adr - X}UP,§

Lrre e riel

P,é

(M = [B ¢ AN, A#N, B#M} U P, §
(My =My, Ny = Np} UP,§

P,o

§'(P), 0" 04, where §' = [X :== 71+ M|

provided X does not occur in M
P,é
{A#N}U P06
{A#M,A#N} U P, 6
{n=l A#XYU PG

19/1

|
Unification: Example(1)

abs(A,abs(B, X)) = abs(C,abs(D, X))

has a unifier ({A#X, C#X, B#X, D#X1, ¢).

{abs(A,abs(B,X)) = abs(C,abs(D, X))}, ¢

{abs(B,X) = [C +> A] - abs(D, X), A#abs(D,X), C#abs(B,X)}, (=abs)
{abs(B,X) = abs(D, [C «> Al -X), A#abs(D,X), C#abs(B,X)}, ¢ (swapping)
{X =[D+ B,C« A]- X, Aftabs(D, X), C#abs(B, X), (=abs)
D#X, B#[C <> A] X }, ¢

{A#abs(D, X), C#abs(B,X) D#X, B#[C <> A] -X }, ¢ (=rm)
{A#D, A#X, CHB,CHX, DAX, BH[C ¢ A] -X }, & (#abs)
{A#X, C#X, D#X, B#[C +> A] -X }, ¢ (#hln)
{A#X, C#X, D#X, B#X }, € (#sus)
Success

20/ 1

|
Unification: Example(2)

abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))

has no unifiers.

{abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))}, &

{abs(B,app(X,B)) = [C +> A] - abs(D,app(D, X)), (=abs)
A#tabs(D,app(D, X)), C#abs(B,app(X,B))}, ¢
{app(X,B) = [D «+> B] - app(D,[C + 4] - X), (=abs, #abs, #app, #hln)

A#X, C#X, B# app(D,[C <> A] - X), D#app(X,B)}, ¢
{X =B,B=[D« B, C<+ Al -X, A#X, C#X, D#X, B#X}, ¢ (=app,#app,#hln,#sus)
{B =D, B#B}, [X := B| (=var,#hln)
Failure

21/1

Unification: Correctness

For a given unification problem P, the unification algorithm ei-
ther fails if P has no unifier or successfully produces an idempo-
tent most general unifier.

It fails in the following cases.
o A= B where A and B are different hyperlinks.

e M = N where M and N are starting with different constructors such
as abs and app.

e One of M and N is a hyperlink and the other is a constructor.

o m-X = M where M is either abs (A, M;) or app(M,,N) with X
occurring in My, M, and N.

o A#A
22/1

Unification: Implementation

(A
Implemented in HyperLMNtal.

Total 52 rewrite rules.

These rules are very similar to rules of the algorithm.

A number of examples.

. J

It can be found in https://gitlab.com /alimjanyasin.

23/1

Related Work
(D

Higher-order Pattern Unification!
e Typed A-calculus as meta-language
e Unifies modulo =z,
e Substitution is capture free
e Requires higher-order patterns
Nominal Unification?
e First-order nominal terms as meta-language
e Unifies modulo =,
e Substitution allows variable capture
e No requirement for patterns or variables

IDale Miller: A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification. J.
Logic and Comput, 1, 497-536 (1991).

2c. Urban, A.M. Pitts, M.J. Gabbay: Nominal unification. J. Theoretical Computer Science, 323(1-3), 473-497 (2?)4)/ 1

N
Conclusion

Our Algorithm

o First-order graph terms as meta-language

e Unifies modulo =,

o Substitution allows variable capture only during unification
¢ Requires distinct bound and free variables

\.

Features

e Close to nominal unification

o Use first-order terms, only consider a-equality and allows
variable capture.

e Qur proofs are much simpler
o We easily proved lemmas and equivalence relation.

\.

25/1

N
Future Work

HyperLMNtal Implementations in Future

e System F.. type inference
e aProlog

26/1

Thanks for your attention!

27/1

Hypergraph A-terms: An example

e The rule app rewrites R=sub(A,abs(B,B),app(A,A)) into
R=app(sub(A,abs(K,K),A),sub(A,abs(H,H),A)).

-
The untyped A-calculus

Syntax M,N = x| Ax.M | MN
B-reduction (Ax.M)N — M[x := N]
Substitution x[x := N] =N

y[x := N] =y, ifx#y

(Ay-M)[x :=N] = Ay.(M[x:=N]), ifx#y
(MiMp)[x :== N] = (My][x := N])(Mz[x := N])

Figure: The untyped A-calculus

e Barendregt's variable convention is assumed in substitution
definition.

29/1

