
Hypergraph Representation of λ-Terms

Alimjan Yasin and Kazunori Ueda

Waseda University, Tokyo

July 18, 2016

1 / 17

Content

• A technique to represent variable binding (binders) and manipulate
such representation

• The λ-calculus as an example

• λx .t where λx is a binder
• λx .x the same as λy .y
• Substitution:

(λx .x y)λy .y
≡ (x y)[x := λy .y] leads to variable capture without renaming of y
6≡ λy .y y Wrong!
≡ (λz .z) y Right!
≡ y

• Many formal systems involve variable binding, such as programs,
logical formulas, types and proofs

2 / 17

Existing techniques for representing binders

Well-known techniques
• de-Bruijn representation

• λx .λy .λz .x z (y z) as λλλ 3 1 (2 1)
• poor readability and shifting operation in substitution

• Higher-order abstract syntax
• representation is exact
• implements a variant of λ-calculus and higher-order unification

• Locally nameless representation
• numbers for bound variables and fresh names for free variables
• λx .x y as abs(app(bvar 0)(fvar y))
• extra operations: variable opening and variable closing,

• Nominal logic
• freshness constraint α#t (atom α free for term t)

Motivation

• Can we define the substitution without side-conditions on such terms
which look like λ-terms exactly?

3 / 17

The untyped λ-calculus

syntax
t ≡ x | λx .t | t t.

β-reduction
(λx .m)n ≡ m[x := n]

substitution (no side conditions on freeness of variables)
x [x := n] ≡ n
y [x := n] ≡ y , (x 6= y)
(m1m2)[x := n] ≡ (m1[x := n])(m2[x := n])
(λy .m)[x := n] ≡ λy .(m[x := n]) , (x 6= y)

• Barendregt’s variable convention is assumed

4 / 17

HyperLMNtal: a hypergraph rewriting language

• Graph elements
• atom: a node in the graph
• freshly created links

• regular link: an edge between two atoms
• hyperlink: edges to one or more atoms
• A hyperlink could have an attribute

• Rewrite rules

Head :- Guard | Body.

• type checking in the Guard

5 / 17

Graph types in HyperLMNtal

• hlink(L,attribute)
• successful when L is a hyperlink with a particular attribute

• hlground(K,attribute)
• Identifies a subgraph by the root link K
• When K is copied (or removed) in a rewrite rule

• freshly copies (or removes) hyperlinks with matched
attribute

• shares (or removes) hyperlinks with unmatched attribute
• copies (or removes) atoms

6 / 17

HyperLMNtal: an example

• A term a(b) is the same as a(A), b(A).

init.

init :- new(H,1),new(K,2) | a(b(H,H,K)).

cp@@ a(A) :- hlground(A,1) | a(A,A).

rm@@ a(A) :- hlground(A,1) | a.

(a) a(b(H,H,K)) (b) applying cp@@ (c) applying rm@@

7 / 17

Representing λ-terms in HyperLMNtal

• Hyperlinks as λ-variables
• new(H,1) for bound variables
• new(H,2) for free variables

• Atoms for ..
• lam(X,Y,R) as λ(x , y)
• app(X,Y,R) for (x y)
• subs(Z,X,Y,R) for z [x := y]
• Note: R is a regular link

i.e. lam(F,lam(X,app(F,app(F,X))),R)
represents λf .λx .f (f x).

Figure: λf .λx .f (f x)

8 / 17

Defining substitution in HyperLMNtal

• Substitution without side conditions (but with issues)

subs(X,X,N,R) :- hlink(X) | R=N.

subs(X,Y,N,R) :- hlink(X), X\=Y, hlground(N,1) |

R=X.

subs(lam(X,M),Y,N,R) :- X\=Y |

R=lam(X,subs(M,Y,N)).

subs(app(M1,M2),X,N,R) :- hlink(X), hlground(N,1)|

R=app(subs(M1,X,N),

subs(M2,X,N)).

beta@@ app(lam(X,A),B,R) :- subs(A,X,B,R).

• Exactly corresponds to original definition of substitution

9 / 17

An example of substitution

• A reduction should look like as shown below

(λx .xx)λmλn.mn

(xx)[x := λmλn.mn] step 2

(λm1λn1.m1n1)(λm2λn2.m2n2)

(λn1.m1n1)[m1 := λm2λn2.m2n2]

λn1.((m1n1)[m1 := λm2λn2.m2n2]) step 5

λn1.((m1[m1 := λm3λn3.m3n3])(n1[m1 := λm4λn4.m4n4]))

λn1.((λm3λn3.m3n3)n1)

λn1.((λn3.m3n3)[m3 := n1])

λn1.(λn3.((m3n3)[m3 := n1])) step 9

λn1.(λn3.((m3[m3 := n1])(n3[m3 := n1])))

λn1.(λn3.(n1n3))
10 / 17

Issues: finding scope and sharing of bound variables

• λn1.(λn3.((m3n3)[m3 := n1])) step 2, scope is clear

• λn1.(λn3.((m3n3)[m3 := n1])) step 9 presents a cycle

• Previous hlground accepts no cycle

• Bound variables are not copied always

(a) step 2 (b) step 9 11 / 17

Solution (step 1): Global hyperlinks

• Define Global hyperlinks for hlground(K , attribute)
• Break cycles by cutting hyperlinks (called global hyperlinks)
• Root link K and global hyperlinks define a subgraph

• Global hyperlinks are s-t min-cut edges
• Root link defines a source atom and a target atom
• Find minimum number of hyperlinks whose removal disconnects the

source and target atom
• Never cut regular links

12 / 17

Solution (step 2): hlground extension

• Operation for hlground(K , attribute)

• When K is copied (or removed) in a rewrite rule

• A hyperlink with matched attribute
• freshly copied (or removed) if it is not a global hyperlink
• shared (or partly removed) if it is a global hyperlink

• unmatched attributed hyperlinks are always shared

cp@@ a(A,B):- hlground(A)|a(A,A,B).

rm@@ a(A,B):- hlground(A)|a(B).

(a) a term (b) applying cp@@ (c) applying rm@@

13 / 17

Conclusion

• Straightforward encoding of λ-terms

• Straightforward encoding of substitution
• free from side-conditions

subs(X,X,N,R) :- hlink(X) | R=N.

subs(X,Y,N,R) :- hlink(X), X\=Y, hlground(N,1) |

R=X.

subs(lam(X,M),Y,N,R) :- X\=Y |

R=lam(X,subs(M,Y,N)).

subs(app(M1,M2),X,N,R) :- hlink(X), hlground(N,1)|

R=app(subs(M1,X,N),

subs(M2,X,N)).

• The untyped λ-calculus is encoded and worked

14 / 17

Thanks for your attention!

15 / 17

Substitution through hlground

• Hlground fails if there is a cycle without
hyperlinks for the root link, such cycle
path is called pure path

• Both rules, cp@@ and @@rm, cannot
rewrite the term a(b(L), c(L))

• because existence of a pure path for
the given root link

init.

init :-a(b(L),c(L)).

cp@@ a(A,B):-hlground(A,1)|a(A,A,B).

rm@@ a(A,B):-hlground(A,1)|a(B).

• No pure path occurs in hypergraph
represented λ-terms for any root link

Figure: a(b(L), c(L))

16 / 17

Solution (step 2): hlground extension

• Operation for hlground(K , attribute)

• When K is copied (or removed) in a rewrite rule

• A hyperlink with matched attribute
• freshly copied (or removed) if it is not a global hyperlink
• shared (or partly removed) if it is a global hyperlink

• unmatched attributed hyperlinks
• always shared

17 / 17

