Grammar-based
Pattern Matching and Type Checking
for Difference Data Structures

Naoki Yamamoto, Kazunori Ueda

Waseda University, Tokyo, Japan

APLAS2024-NIER@Kyoto / PPDP 2024@Milan (paperin ACM DL)
October 25, 2024

Historical Background: Difference Lists

» Used since early days of Prolog (for NLP etc.) [[1,2,3|X]-X J

m for constant-time list concatenation
® modular construction of a list from building blocks

»a.k.a. list segments in Separation Logic

" co ntexts}

» Difference is ubiquitous: C[]

(\
sequents b :
5 - } functlons]

— (implications} (continuations}

Q. Can be generalized to richer data structures?
— Difference Data Structures (DDSs)

Graph structures
» Generalizes algebraic data types

» Abstracts pointer structures

> Not just data structures (passive);
encompasses process/control structures (autonomous)

® unifies data, functions & HO, processes, messages, proofs, ...
»supported poorly by high-level languages
at the “right” level of abstraction

m cf. algebraic graph transformation formalisms

B https://www.ueda.info.waseda.ac.jp/~ueda/pub/ICGT2024-v1.pdf
(ICGT 2024 tutorial on GT from the PL perspective)

https://www.ueda.info.waseda.ac.jp/~ueda/pub/ICGT2024-v1.pdf

Graph transformation in different guises

Home Tutorial Publications The ZX Seminar Accessibility Map PyZX Demo 3ReTA - Graph Transformation Theory and Applications fome

Graph Rewriting as a Foundation

for Science and Technology (and
The ZX-calculus the Universe)

nng

anglemer

The ZX-calculys s torging the next generation of quantum software, Using the
optimisation strategles that pe state-of-the-art T-count
compllation

cakulus give
reducts

0) - H— o
)]

Thuon b
e

String Diagram Rewrite Theory I: Rewriting with
Frobenius Structure

FILIPPO BONCHI and FABIO GADDUCCI, University of Pisa
ALEKS KISSINGER, University of Oxford

PAWEL SOBOCINSKI, Tallinn University of Technology
FABIO ZANASI, University College London

Overview

Difference Data Structures (DDSs):

Unified framework for handling diverse concepts
® (linear) functions, continuations, evaluation contexts, ...

Problem: How to formulate types for DDSs ?

Contribution: LMNtalGG and Difference Types,
a typing framework for DDSs based on Graph Grammars

® Implemented on a graph rewriting language LMNtal
® Applications:

® (runtime) subgraph (pattern) matching

® (compile-time) type checking of rewrite rules

Outline

LMNtal: a graph rewriting language
LMNtalGG and Difference Types
Classifying LMNtalGGs: Disjoint & Indexed

Applications: Pattern Matching & Static Type Checking

ok W=

Type Checking of Functional Atoms

LMNtal: a graph rewriting language

» A Programming language and a modeling language

» Full-fledged implementation SLIM/LaViT provides both
B ordinary execution and

® parallel model checker (up to ~107 states)
with state space visualizer water jug problem

State space of the

Portal: https://bit.ly/Imntal-portal
Toolchain: https://github.com/Imntal

K. Ueda: LMNtal as a hierarchical logic programming language.
Theoretical Computer Science 410(46), 2009.

M. Gocho et al.: Evolution of the LMNtal Runtime to a Parallel
Model Checker. Computer Software 28(4), 2011.

LMNtal: powerful data structures

We can handle non-algebraic data types without dangling pointers

General Graph Structures
Skip list'! 2gF-@-@rEREB-@-8-®
Diffgrencelist . . . ' ' .
© @ 6® ® 6 G

(d-list)

Balanced red-black tree

Algebraic Data Types

Seleteses Tree

Linear list

Lambda term
Grid graph Afx.f(fx) S J

o

t W. Pugh: Skip lists: A probabilistic alternative to balanced trees, C. ACM, 33(6), 1990.

LMNta l: SyntaX (Xl o totally ordered links (= port graph)]

4 Functorp/m]

Process ::= Graph , Ruleset /\ Gl

Graph ::= 0| p(Xy,...,X,,) | Graph , Graph Self loop
Ruleset ::=40 | Gra%— Graph | Ruleset , Ruleset Local link .

_ Y,
‘ Null | [Rewrite Rule J

a(L1,F),b(L1,L2,L3,L4),
c(L2,L5,L6,L6),d(L5,L3,L4)

Link Condition:

Free link

. .. Multiple
Each link name must occur at most twice in a term edgé’s

* We consider a subset of LMNtal (Flat LMNtal) which omits membranes (hierarchy)

LMNtal: Structural Congruence

» Gives the interpretation of LMNtal terms as graphs
® cf. standard graph theory considers graphs up to isomorphism

(El) 0,P = P Connector: A binary infix atom
(E2) PO = 0O,P X =Y fuses two links
(E3) P,(O,R) = (P,0),R
(E7) X= =
(E4) P = Pl¥/X B
Gf X isal[oca/l lir!k of P) (E?)) 2))(f)’: - ;/’F)i(/X]

— D/ L (EY)) S =

(ES) P=P = P, Q =F ’Q (if P is an atom and X is a free link ofP)|

Examples X Y

(E2)
D = 20 =0
[a(L1,L2,L,L,X),b(L1,L2,Y) 1 [b(L1,L2,Y),a(L1,L2,L,L,X) }

E9

—
~

(E6) & (E10) are omitted because these are rules for membranes (boxes) 10

LMNtal: Reduction Relation (small-step semantics)

Structural Rules

G 5 q G,=G, G —G, G =G,
(Rl) T--U (RB) T:-U
GI,GQ.—}G’,GQ Gz'—>G’2
T:-U
(R6) T —— U [-
Non-determinism]
Example i
Rewrite rule

e ee

Initial graph

(R2), (R4) & (R5) are omitted because these are rules for membranes (boxes)

Outline

LMNtal: a graph rewriting language
LMNtalGG and Difference Types
Classifying LMNtalGGs: Disjoint & Indexed

Applications: Pattern Matching & Static Type Checking

ok W=

Type Checking of Functional Atoms

LMNtalGG: Graph Grammar on LMNtal

® Inductively defines a set of graphs

by a ConteXt-free graph grammar Production rules Rewrite rules

Symbols Functors*

* Pairs of name and arity of atoms

Example: Production rules of skip lists

8'» 88 B8°'+8
| non- termlnalatom terminal atom]

When we repeatedly apply the rules above on :a

and get a graph without :B , the resulting graph is a skip list.

LMNtalGG: Context-freeness assumption

»We assume all production rules are context-free

W i.e., the LHS must be a single (non-terminal) atom

»and refer to a set of production rules as a grammar
® Every non-terminal atom can be the start symbol

® The sets of non-terminal/terminal symbols are automatically
determined by the grammar

N(P) = U Funct(a), T(P) £ Funct(P)\ N(P).

a:- p)eP
Non-terminal (P) Terminal
symbols symbols

LMNtalGG: Difference Types

> Types with the concept of difference based on LMNtalGG
® The idea of difference lists generalized to graphs

[“The graph ¢ has the ‘7ype a — [with the grammar P”] [{;g:gr?reo?nmtlrt]teegontext]
def P
Gipa—fp &S a— (G,p)
where

a is asingle non-terminal atom
[consists only of non-terminal atoms
G doesn'tinclude non-terminal atoms

LMNtalGG: Example CGwa—p &l Gp]

o

Applying the production rules to the start symbol

[Start Symbol
In this example, :a is the only non-terminal symbol

:a and all the other atoms are terminal

Production rules of skip lists
[ﬂa“% B8-+0 0O =0

LMNtalGG: Example o p DG |

Applying the production rules to the start symbol

P *
[Start Syﬁﬂ] >

..................

Production rules of skip lists
[Ja“bc B8-+0 B0 08

LMNtalGG: Example o p DG |

Applying the production rules to the start symbol

P *
[Start Sﬁcﬁ] >

Production rules of skip lists
[Ja“bc B8-+0 0O -0

LMNtalGG: Example o p DG |

Applying the production rules to the start symbol

P

[Sta rt Symbol

R =
Production rules of skip lists
EEE B

®

LMNtalGG: Example o p DG |

Resulting in a graph without non-terminal symbols

P *
[Start S)ﬁ(ﬁ] > uc'sVaskiplist!]

8-e0>eeh e

_Ps P2 e

m . :a 0 The graph on the left
. (_) is a skip list

Difference Types o p DG |

Difference data structures can also be typed!

P *
[Start Symbol > uc'sVaskiplist!]

H H2
p3 b2
= e = 1 °
H1
H2 12 H2 T2
@@ g -

The graph on the left is
a difference skip list

Outline

LMNtal: a graph rewriting language
LMNtalGG and Difference Types
Classifying LMNtalGGs: Disjoint & Indexed

Applications: Pattern Matching & Static Type Checking

ok W=

Type Checking of Functional Atoms

Classifying LMNtalGGs

Two useful classes of LMNtalGGs

Indexed LMNtalGGs)

Red-black
Tree

Disjoint LMNtalGGs
SkipList JFQrGrORFOGHe
Binary Search ﬁl
free Ii Algebraic EIEINRIT:

Data Types
g g q Linear List

20,0 0 0,
Threaded Tree R

More examples in https://lmntal.github.io/lmntalgg-examples/ 23

https://lmntal.github.io/lmntalgg-examples/

Basic Class: Disjoint LMNtalGG

A grammar P is disjoint

&5 RHS of each rule contains exactly one terminal symbol

that never appears in the RHSs of other production rules

® a.k.a. inversion property in standard type theory
® Types of subterms can be inferred from the top-level constructor

® Example: The grammar of skip lists is disjoint

B B8-%a 8-
For disjoint LMNtalGGs, we can derive types of graphs uniquely

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

EEE B IEEY)

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

([:iﬂa=-:i>o]{:ifa=-:i:a][:ia=-%}

H2 H2 H2 T2 H2 T2
H1 b . lea Hl‘T 'HlZB T:a Hl‘Tl) HlZB T1:a

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

H2

H1

H2

H2 H2
%'lea Fﬁ‘7'H1:a T:a

H2 T2 H2 T2
Hl'iTl ' Hl:a Tl:a

[We use these typings as axioms of typing J

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

H2

H1

H2

@ 1)

H2 H2
70 : H1:a - T:a

H2 12 H2 T2
Hl‘Tl 'H1:a T1:a

How can we get
the type here?

/

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

H2 H2

H2 H2 H2 T2 H2 T2
%'m:a H_l‘7'H1:a T:B Al Tl'HlZB TlZB

H1

2. Construct the type of graph from subgraphs' typings

7@

H2 12

7 w7

Decompose!]

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

H2 H2

H2 H2 H2 T2 H2 T2
Hl% : Hl:a Fﬁ‘7: lea_T:a H1¥T1 : Hla_Tla
2. Construct the type of grgph from subgraphs' typings
[We know these types!]
H2 H2 H2 T2 H2 T2
Fﬁ‘7:H1:a_T:B T¥T1 : T:a_Tl:a

* We rename link names as needed (a-conversion, Prop. 3.5) 30

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

H2

H1

H2

@ 10

H2 H2
m‘7'141:B_T:a

H2 T2 H2 T2
Hl‘Tl 'H1:a lea

2. Construct the type of graph from subgraphs' typings

[These are the same!]

H2

%:]lli%%; '§1;:|I§Il§ T1

T2 H2 T2

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules
H2 H2

H2 H2 H2 T2 H2 T2
H1 ‘ | lea Hl.T 'HlZB T:a Hl‘Tl ; HlZB T1:a

2. Construct the type of graph from subgraphs' typings

Cancel them

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules
H2 H2

H2 H2 H2 T2 H2 T2
H1 ‘ | lea Hl.T 'HlZB T:a Hl‘Tl ; HlZB T1:a

2. Construct the type of graph from subgraphs' typings

H2 T2 H2 T2

i| Goal! |

H2

2@ H1:a

Type derivation: remarks

» Costs linear time w.r.t. # of atoms

® For non-disjoint LMNtalGGs, you can still typecheck rules but
at a cost

> Similar to the cut rule of the Sequent Calculus

difference types <> sequents,
type composition < cutrule

H2 H2 H2 T2 H2 T2

i| Goal! |

Broader Class: Indexed LMNtalGG

»Non-terminal symbols can have integer indices

W Inspired by indexed grammars

® Can handle shapes with numeric constraints
(e.g., balanced red-black trees)

Requirements for red-black trees

1. Theroot and leaves are ()

2. @ 'schildrenare @

3. #of & on the path from the root to
a leaf (black height) is a constant

. J

| numeric constraint |

T A.V. Aho: Indexed Grammars—An Extension of Context-Free Grammars, J. ACM, 15(4),

Red-black Trees with Indexed LMNtalGG

At AL b L

Color of the root (0: black, 1: red or black)
Black height

Indices: {

Requirements for red-black trees This grammar can be

1. The root and leaves are (& considered disjoint
2. @ 'schildrenare @ (when indices are ignored)

3. #of & on the path from the root to
a leaf (black height) is a constant

Outline

Target Language: LMNtal
LMNtalGG and Difference Types
Classifying LMNtalGGs: Disjoint & Indexed

N

Applications
B (dynamic) Pattern Matching
W (static) Type Checking

5. Type Checking of Functional Atoms

Application to pattern matching
Disjoint LMNtalGG supports tree-shaped (difference) structures

Example: binary trees consisting of add nodes (addtree)

Grammar

Example
Typings

Application to pattern matching
We can describe pattern matching on DDSs with LMNtalGGs

~ Example of application

where

_ Y, [This simulates evaluation contexts]

Application to rule type checking

Checks if the application of a rule preserves types of graphs
Pp preserves yp grap

R
{VG,G’. G:T N G—G = G’iT}

7~ O\

v
- e - 0E e o

Applying this to a skip list Applying this to a skip list
always results in a skip list does not result in a skip list

Application to rule type checking

To confirm that a given rule preserves types of graphs,

H2 T2 H2 T2
Hl“Tl - Hlﬁ T1
//\\ //\\
same

H2 T2 H2 T2
Hl:a Tl:a types Hl:a Tl:a

check if the LHS and the RHS are of the same type

®simply perform type derivation for both sides

® Intuition: The type of the whole graph will not change because
it just rewrites a difference skip list to a difference skip list

Outline

Target Language: LMNtal
LMNtalGG and Difference Types
Classifying LMNtalGGs: Disjoint & Indexed

Applications: Pattern Matching & Static Type Checking

ok W=

Type Checking of Functional Atoms

Multi-step/shape-changing operations

»In most of the existing typing frameworks for graphs,

® Type Safety: “Rewrite rules will never destroy the shape of graphs”
— Operations that may result in other types were out of scope

v R .
o

X R . .
NN Difference List

Functional Atoms: Example

» Graph nodes that behave like functions (in functional languages)

» Common design pattern (LMNtal has no functions a-priori)

@
| ! | Q T

o s

N
®30@30 ¢ o 6660 @3

® -
N Y,
IR T S
® 5 - =) P IP1P-p-p-p
o O Q0 @06 ©

@-@}@-\ ‘oo @-@}@-\ ¢o
6060 6060

Expected Property of Functional Atoms
» We expect (t2)) satisfies ... _ R

® Ifitreceives a binary tree, it eventually returns a difference list

» In general, this property can be formalized as:

f is a functional atom that takes types t,, ..., t, and returns type T

Forany graphs G, ..., G, having types ty, ..., t, (resp.),

, " 6 .

if (f, Gy, ..., Gt,) can be reduced to G ——
-th

that includes no f atoms, then G has the type T.

def
—

We write this property as F: ty;--;t, » T
e.g., ©21(P,T,H) : tree(P) » list(H)—1ist(T)

Checking Functional Atoms with LMNtalGG

» If the input types include no differences (i.e., of the form t — 0),

To check that the atom F has the functional property,

Frgg itn > a—p ﬁ T4, ..., Tp @re inputs]
we assume the following typing ‘

Fia—(f,Ty, ., Tn) ﬁ 4, ..., T, are holes J
and confirm that the rules preserve types

» For details (esp., correctness), see our previous work™

1t N.Yamamoto et al.: Engineering Grammar-based Type Checking for Graph Rewriting Languages.
IEEE ACCESS, 10, 2022.

Related Work

»Graph Types': Based on regular expressions

» Structured Gamma®™ and Shape Types™

a subset that satisfies
completeness

® Based on context-free graph grammars

> Refinement Types™: Types with numeric constraints

® Implemented on Liquid Haskell with type inference

» Typed Prolog™: Difference lists are typable
® Types (e.g., list, int) with Modes (direction)

t1 P.Fradetetal.: Structured Gamma, Science of Computer Programming, 31(2), 1998.

12 N.Klarlund et al.: Graph Types, Proc. POPL’93.

13 P.Fradetetal.: Shape types, Proc. POPL’97.

t4 N.Vazou et al.: Refinement types for Haskell, SIGPLAN Not., 49(9), 2014.

15 P.M.Rondon et al.: Liquid types, SIGPLAN Not., 43(6), 2008.
T.K. Lakshman et al.: Typed Prolog: A Semantic Reconstruction of the Mycroft-O'Keefe Type System, Proc. ICLP’90.

Conclusion

1. Proposed
.. LMNtalGG as graph grammar on LMNtal
1. Difference Types on LMNtalGG to deal with DDSs

2. Introduced two major applications of LMNtalGG:
.. Pattern Matching on DDSs
1. Static Type Checking of rewrite rules

3. Introduced Functional Atoms
to handle multi-step and/or shape-changing operations

Future Work

L. Full implementation of type checking

® with indices and functional atoms

2. Expanding the target language
® Membranes (boxes), hyperedges (HyperLMNtal)

3. Non-terminating programs and infinite structures

4. Index types with indices richer than integers

