
Grammar-based

Pattern Matching and Type Checking

for Difference Data Structures

Naoki Yamamoto, Kazunori Ueda

Waseda University, Tokyo, Japan

APLAS2024-NIER@Kyoto / PPDP 2024@Milan (paper in ACM DL)

October 25, 2024

1

Used since early days of Prolog (for NLP etc.)

 for constant-time list concatenation

 modular construction of a list from building blocks

a.k.a. list segments in Separation Logic

Difference is ubiquitous:

Historical Background: Difference Lists

2

[1,2,3|X]-X

Q. Can be generalized to richer data structures?

→ Difference Data Structures (DDSs)

time vs. duration

position vs. displacement

contexts
C[]

sequents
⊢ functions

implications continuations

Graph structures

Generalizes algebraic data types

Abstracts pointer structures

Not just data structures (passive);
encompasses process/control structures (autonomous)

 unifies data, functions & HO, processes, messages, proofs, ...

supported poorly by high-level languages
at the “right” level of abstraction

 cf. algebraic graph transformation formalisms

 https://www.ueda.info.waseda.ac.jp/~ueda/pub/ICGT2024-v1.pdf

(ICGT 2024 tutorial on GT from the PL perspective)

3

https://www.ueda.info.waseda.ac.jp/~ueda/pub/ICGT2024-v1.pdf

Graph transformation in different guises

4

Overview

Difference Data Structures (DDSs):

Unified framework for handling diverse concepts

 (linear) functions, continuations, evaluation contexts, ...

Problem: How to formulate types for DDSs ?

Contribution: LMNtalGG and Difference Types,
a typing framework for DDSs based on Graph Grammars

 Implemented on a graph rewriting language LMNtal

 Applications:

(runtime) subgraph (pattern) matching

(compile-time) type checking of rewrite rules

5

Outline

1. LMNtal: a graph rewriting language

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

6

LMNtal: a graph rewriting language

A Programming language and a modeling language

Full-fledged implementation SLIM/LaViT provides both

ordinary execution and

parallel model checker (up to ∼109 states)
with state space visualizer

7

K. Ueda: LMNtal as a hierarchical logic programming language.
Theoretical Computer Science 410(46), 2009.

M. Gocho et al.: Evolution of the LMNtal Runtime to a Parallel
Model Checker. Computer Software 28(4), 2011.

Portal: https://bit.ly/lmntal-portal
Toolchain: https://github.com/lmntal

State space of the
water jug problem

We can handle non-algebraic data types without dangling pointers

LMNtal: powerful data structures

8

General Graph Structures

Skip list†

Algebraic Data Types

Linear list

Tree

Ring

Grid graph

42 3 651

Difference list
(d-list)

λ

λ

@

@

Lambda term

λfx.f(fx)

Balanced red-black tree

† W. Pugh: Skip lists: A probabilistic alternative to balanced trees, C. ACM, 33(6), 1990.

b

r

b

r

l

b

l lr
l l

b

l l

b

r
l l

r
l l

LMNtal: Syntax

9

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ::= 𝐺𝑟𝑎𝑝ℎ , 𝑅𝑢𝑙𝑒𝑠𝑒𝑡

𝐺𝑟𝑎𝑝ℎ ::= 𝟎 | 𝑝(𝑋1, … , 𝑋𝑚) | 𝐺𝑟𝑎𝑝ℎ , 𝐺𝑟𝑎𝑝ℎ

𝑅𝑢𝑙𝑒𝑠𝑒𝑡 ::= 𝟎 | 𝐺𝑟𝑎𝑝ℎ :- 𝐺𝑟𝑎𝑝ℎ | 𝑅𝑢𝑙𝑒𝑠𝑒𝑡 , 𝑅𝑢𝑙𝑒𝑠𝑒𝑡

Link Condition:
Each link name must occur at most twice in a term

Null Rewrite Rule

Atom

𝑝

𝑋1 𝑋2 … 𝑋𝑚

a(L1,F),b(L1,L2,L3,L4),

c(L2,L5,L6,L6),d(L5,L3,L4)
a b

c

d

L1

F
L2

L3

L4

L5

L6

Free link

Local link

Self loop

Multiple
edges

totally ordered links (= port graph)

* We consider a subset of LMNtal (Flat LMNtal) which omits membranes (hierarchy)

Functor 𝑝/𝑚

LMNtal: Structural Congruence

10

Gives the interpretation of LMNtal terms as graphs

 cf. standard graph theory considers graphs up to isomorphism

Connector: A binary infix atom

𝑋 = 𝑌 fuses two links

Examples

b
L1

X

a

Y

L2
L b

L1

X

a

Y

L2
L

a(L1,L2,L,L,X),b(L1,L2,Y)

≡

b(L1,L2,Y),a(L1,L2,L,L,X)

(E2)

X a
L

L=X,a(L)

≡

a(X)

(E9)

= X a

(E6) & (E10) are omitted because these are rules for membranes (boxes)

LMNtal: Reduction Relation (small-step semantics)

11

Structural Rules

(R2), (R4) & (R5) are omitted because these are rules for membranes (boxes)

:-

Rewrite rule

Initial graph

Example

𝑟

𝑟

Main rule

Non-determinism

Outline

1. LMNtal: a graph rewriting language

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

12

LMNtalGG: Graph Grammar on LMNtal

13

 Inductively defines a set of graphs

by a context-free graph grammar

Example: Production rules of skip lists

S S S S S:- :- :-
𝑝1 𝑝2 𝑝3

SWhen we repeatedly apply the rules above on

S , the resulting graph is a skip list.and get a graph without

Formal Language
Theory

LMNtal

Production rules Rewrite rules

Symbols Functors*

* Pairs of name and arity of atoms

non-terminal atom terminal atom

LMNtalGG: Context-freeness assumption

14

We assume all production rules are context-free

 i.e., the LHS must be a single (non-terminal) atom

and refer to a set of production rules as a grammar

 Every non-terminal atom can be the start symbol

 The sets of non-terminal/terminal symbols are automatically

determined by the grammar

Non-terminal
symbols

Terminal
symbols

Types with the concept of difference based on LMNtalGG

 The idea of difference lists generalized to graphs

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

LMNtalGG: Difference Types

15

“The graph 𝐺 has the type 𝛼 − 𝛽 with the grammar 𝑃” 𝑃 may be omitted
if clear from the context

where

𝛼 is a single non-terminal atom

𝛽 consists only of non-terminal atoms

𝐺 doesn't include non-terminal atoms

LMNtalGG: Example

16

Production rules of skip lists

Start Symbol

Applying the production rules to the start symbol

S S S S S

S

:- :- :-
𝑝1 𝑝2 𝑝3

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

In this example, is the only non-terminal symbol

and all the other atoms are terminal

S

LMNtalGG: Example

17

Production rules of skip lists

Start Symbol

Applying the production rules to the start symbol

S S S S S

S S

:- :- :-

𝑝3

𝑝1 𝑝2 𝑝3

𝑃
*

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

LMNtalGG: Example

18

Production rules of skip lists

Start Symbol

Applying the production rules to the start symbol

S S S S S

S S S

:- :- :-

𝑝3 𝑝2

𝑝1 𝑝2 𝑝3

𝑃
*

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

LMNtalGG: Example

19

Production rules of skip lists

Start Symbol

Applying the production rules to the start symbol

S S S S S

S S S

:- :- :-

𝑝3 𝑝2 𝑝1

𝑝1 𝑝2 𝑝3

𝑃
*

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

LMNtalGG: Example

20

Start Symbol

Resulting in a graph without non-terminal symbols

S S S

It's a skiplist!

𝑝3 𝑝2 𝑝1

𝑃
*

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

S: (− 𝟎)
The graph on the left

is a skip list

S:H1

H2

T1

T2

SH1

H2

T1

T2

−

Difference Types

21

Start Symbol

Difference data structures can also be typed!

S S S
𝑝3 𝑝2 𝑝1

𝑃
*

𝐺 ∶𝑃 𝛼 − 𝛽
def

𝛼
𝑃 ∗

(𝐺, 𝛽)

The graph on the left is

a difference skip list

H1

H2

H1

H2

H1

H2

T1

T2

It's a skiplist!

Outline

1. LMNtal: a graph rewriting language

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

22

Classifying LMNtalGGs

Two useful classes of LMNtalGGs

23More examples in https://lmntal.github.io/lmntalgg-examples/

Disjoint LMNtalGGs

Skip List

Indexed LMNtalGGs

Binary Search
Tree

Red-black
Tree

Linear List

Binary TreeAlgebraic
Data Types

4

2

1 3

5

7

6 Threaded Tree

b

r

b

r

l

b

l l
r

l l

b

l l

b

r

l l

r

l l

https://lmntal.github.io/lmntalgg-examples/

Basic Class: Disjoint LMNtalGG

 a.k.a. inversion property in standard type theory
 Types of subterms can be inferred from the top-level constructor

 Example: The grammar of skip lists is disjoint

24

A grammar 𝑃 is disjoint

RHS of each rule contains exactly one terminal symbol
that never appears in the RHSs of other production rules

S S S S S:- :- :-

def

For disjoint LMNtalGGs, we can derive types of graphs uniquely

Type derivation with disjoint LMNtalGG

25

S :-
H1

H2

H1

H2

S S:-
H1

H2

H1

H2

T1

T2

S S:-
H1

H2

H1

H2

T

1. Obtain typings of all terminal symbols from production rules

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

26

S :-
H1

H2

H1

H2

S S:-
H1

H2

H1

H2

T1

T2

S S:-
H1

H2

H1

H2

T

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

Type derivation with disjoint LMNtalGG

27

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

We use these typings as axioms of typing

1. Obtain typings of all terminal symbols from production rules

Type derivation with disjoint LMNtalGG

28

:H1

H2

T1

T2

T

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

How can we get
the type here?

1. Obtain typings of all terminal symbols from production rules

Type derivation with disjoint LMNtalGG

1. Obtain typings of all terminal symbols from production rules

2. Construct the type of graph from subgraphs' typings

29

:

T

H2

T1

T2

::H1 T

H1

H2

T1

T2

T

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

？ ？

Decompose!

Type derivation with disjoint LMNtalGG

30

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1

H2

T1

T2

T

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

* We rename link names as needed （α-conversion, Prop. 3.5）

We know these types!

？

1. Obtain typings of all terminal symbols from production rules

2. Construct the type of graph from subgraphs' typings

Type derivation with disjoint LMNtalGG

31

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1

H2

T1

T2

T

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

These are the same!

1. Obtain typings of all terminal symbols from production rules

2. Construct the type of graph from subgraphs' typings

Type derivation with disjoint LMNtalGG

32

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1

H2

T1

T2

T
？

Cancel them

1. Obtain typings of all terminal symbols from production rules

2. Construct the type of graph from subgraphs' typings

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

Type derivation with disjoint LMNtalGG

33

: −

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1

H2

T1

T2

T
S

T1

T2

S
H1

H2

Goal!

1. Obtain typings of all terminal symbols from production rules

2. Construct the type of graph from subgraphs' typings

S
H1

H2

H1

H2

:
H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

Type derivation: remarks

Costs linear time w.r.t. # of atoms

 For non-disjoint LMNtalGGs, you can still typecheck rules but
at a cost

Similar to the cut rule of the Sequent Calculus

34

: −

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1

H2

T1

T2

T
S

T1

T2

S
H1

H2

Goal!

difference types ↔ sequents,

type composition ↔ cut rule

Broader Class: Indexed LMNtalGG

Non-terminal symbols can have integer indices

 Inspired by indexed grammars †

 Can handle shapes with numeric constraints
(e.g., balanced red-black trees)

35
† A. V. Aho: Indexed Grammars―An Extension of Context-Free Grammars, J. ACM, 15(4),

1968.

b

r

b

r

l

b

l lr

l l

b

l l

b

r

l l

r

l l

1. The root and leaves are

2. 's children are

3. # of on the path from the root to
a leaf (black height) is a constant

r b

b

Requirements for red-black trees

b

numeric constraint

Red-black Trees with Indexed LMNtalGG

36

This grammar can be

considered disjoint

(when indices are ignored)

T
b

T T

:-
(k, n+1)

(1, n) (1, n)

T
l:-

(k, 0)

T
r

T T

:-
(1, n)

(0, n) (0, n)

Indices:
Color of the root (0: black, 1: red or black)

Black height

1. The root and leaves are

2. 's children are

3. # of on the path from the root to
a leaf (black height) is a constant

r b

b

Requirements for red-black trees

b

Outline

1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications

 (dynamic) Pattern Matching

 (static) Type Checking

5. Type Checking of Functional Atoms

37

Application to pattern matching

Disjoint LMNtalGG supports tree-shaped (difference) structures

38

Example: binary trees consisting of add nodes (addtree)

add:-A
i

int
A A

:-A

i i

add

i

3 5

4

add

Grammar

: A

Example
Typings

R R

add

i

4

: A

R R

H
A

H

−

Application to pattern matching

We can describe pattern matching on DDSs with LMNtalGGs

39

Rewrite rule

eval

add

i i

eval

Example of application

add

i

3 5

4

add

i i

8 4

𝑒𝑣

eval

$p

add

i i

$x $y

:-

eval

$p

i

$z

𝑒𝑣

$p $p

where

$p : A

R

A

H

−

R

H

$x + $y = $z This simulates evaluation contexts

∀𝐺, 𝐺′. 𝐺 ∶ 𝜏 ∧ 𝐺
𝑅

𝐺′ ⟹ 𝐺′ ∶ 𝜏

Application to rule type checking

Checks if the application of a rule preserves types of graphs

40

✘
:- :-

✔

Applying this to a skip list
always results in a skip list

Applying this to a skip list
does not result in a skip list

To confirm that a given rule preserves types of graphs,

check if the LHS and the RHS are of the same type

simply perform type derivation for both sides

Intuition: The type of the whole graph will not change because
it just rewrites a difference skip list to a difference skip list

:-H1

H2

T1

T2

H1

H2

T1

T2

Application to rule type checking

41

− S
T1

T2

S
H1

H2

− S
T1

T2

S
H1

H2same

types

Outline

1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

42

Multi-step/shape-changing operations

In most of the existing typing frameworks for graphs,

 Type Safety: “Rewrite rules will never destroy the shape of graphs”

→ Operations that may result in other types were out of scope

43

✘

✔
Binary Tree Binary Tree

Binary Tree Difference List

𝑅

𝑅
*

44

Functional Atoms: Example

4

t2l

2

1 3

5

6

4

t2l

2

1 3

5

6

t2l

…54

2

1 3

6

t2l t2l t2l

42 3 61 5

54

2

1 3

6

t2l t2l

:-

H T

N

L R

t2l
H T

NL

t2l

R

t2l

H Tt2l
:-

H T

Rewrite rules of t2l (tree-to-list)

 Graph nodes that behave like functions (in functional languages)

 Common design pattern (LMNtal has no functions a-priori)

Example

𝑓 is a functional atom that takes types 𝑡1, … , 𝑡𝑛 and returns type 𝑇

Expected Property of Functional Atoms

 We expect satisfies ...

 If it receives a binary tree, it eventually returns a difference list

 In general, this property can be formalized as:

45

Binary Tree Difference List

def

t2l
𝑅

*

For any graphs 𝐺𝑡1 , … , 𝐺𝑡𝑛 having types 𝑡1, … , 𝑡𝑛 (resp.),

if (𝑓, 𝐺𝑡1 , … , 𝐺𝑡𝑛) can be reduced to 𝐺

that includes no 𝑓 atoms, then 𝐺 has the type 𝑇.

𝑓 𝐺𝑡1

𝐺𝑡𝑛

𝐺…

𝑅
*

We write this property as 𝐹: 𝑡1;⋯ ; 𝑡𝑛 ↣ 𝑇

e.g., t2l(P,T,H) : tree(P) ↣ list(H)−list(T)

Checking Functional Atoms with LMNtalGG

If the input types include no differences (i.e., of the form 𝜏 − 𝟎),

To check that the atom 𝐹 has the functional property,

we assume the following typing

and confirm that the rules preserve types

For details (esp., correctness), see our previous work†

46

𝐹: 𝜏1; … ; 𝜏𝑛 ↣ 𝛼 − 𝛽

𝐹: 𝛼 − (𝛽, 𝜏1, … , 𝜏𝑛)

𝜏1, … , 𝜏𝑛 are inputs

𝜏1, … , 𝜏𝑛 are holes

† N. Yamamoto et al.: Engineering Grammar-based Type Checking for Graph Rewriting Languages.

IEEE ACCESS, 10, 2022.

Related Work

Graph Types†1: Based on regular expressions

Structured Gamma†2 and Shape Types†3

 Based on context-free graph grammars

Refinement Types†4: Types with numeric constraints

 Implemented on Liquid Haskell with type inference†5

Typed Prolog†6: Difference lists are typable

 Types (e.g., list, int) with Modes (direction)

47

†1 P. Fradet et al.: Structured Gamma, Science of Computer Programming, 31(2), 1998.

†2 N. Klarlund et al.: Graph Types, Proc. POPL’93.

†3 P. Fradet et al.: Shape types, Proc. POPL’97.

†4 N. Vazou et al.: Refinement types for Haskell, SIGPLAN Not., 49(9), 2014.

†5 P.M. Rondon et al.: Liquid types, SIGPLAN Not., 43(6), 2008.

†6 T.K. Lakshman et al.: Typed Prolog: A Semantic Reconstruction of the Mycroft-O'Keefe Type System, Proc. ICLP’90.

a subset that satisfies
completeness

Conclusion

1. Proposed

i. LMNtalGG as graph grammar on LMNtal

ii. Difference Types on LMNtalGG to deal with DDSs

2. Introduced two major applications of LMNtalGG:

i. Pattern Matching on DDSs

ii. Static Type Checking of rewrite rules

3. Introduced Functional Atoms
to handle multi-step and/or shape-changing operations

48

Future Work

1. Full implementation of type checking

 with indices and functional atoms

2. Expanding the target language

 Membranes (boxes), hyperedges (HyperLMNtal)

3. Non-terminating programs and infinite structures

4. Index types with indices richer than integers

49

