Encoding
Distributed Process Calculi
into LMNtal

Kazunori Ueda

Dept. of Computer Science, Waseda University
September 2006

LMNtal allows us to represent computation in terms 2
of hierarchical graph rewriting

links nhodes
L — hub formed by channel formed by v
.................... membrane membrane
Y0 -
send
X
protected by
. ~membrane unpro‘rec‘red

recelve
operation
(ot pfer

"""""""""""""" header asynchronous n-calculus

[“‘D‘Q] closed unary | [O-D-G]

I

o
cyclic structures map function

LMNtal in a Nutshell

¢ Rule-based concurrent language for expressing
& rewriting both connectivity and hierarchy

¢ Substrate model of X-calculi (X = lambda, pi,
ambient, . . .), multiset rewriting, etc.

¢ Computation is manipulation of diagrams
e Links express 1-to-1 connectivity

e Membranes express hierarchy and locality of
rules and data

e Allows programming by self -organization
® Good also for knowledge representation

Syntax and Semantics, in one slide

(Process) P:—=0 | p(Xy...,Xw) | P,P | {P} | T:-T
(Process template) T:=0 | p(Xy,...,Xm) | T,T | {T} | T:-T
| ep | $plXy,..., XmlAl | p(*Xy,...,*Xy)
(Residual) A:=x:=1[1 | =*X
(E1) 0,P=P (E2) P,Q=Q,P (E3) P,(Q,R)=(P,Q),R
(E4) P = P|Y/X] if X is a local link of P
(E5 P=P = P,Q=P,Q (E6) P=P = {P}={P'}
(E7) X=X=0 (E8) X=Y=Y=X

(E9) X=Y, P=P[Y/X]

if Pis an atom and X occurs free in P

(E10) {X=Y, P} = X=Y, {P} if exactly one of X and Y occurs free in P
P— P P— P Q=P P—P P=0
(RT) (R2) (R3)
PIQ_*PJF#Q {P}—\{P"} (2_}@Jr
(R4) {X=Y,P} — X=Y,{P} if Xand Y occur freein {X=Y, P}
(R5) X=Y, {P} — {X=Y,P} if XandY occur freein P

(R6) T, (T =~

U) — Ue, (T :- U)

Towards a Unifying Rule-based Language

¢ The calculi encoded in LMNtal include:

® A-calculus ([new] nondeterministic,
call-by-name) based on graph reduction

m B-reduction, 8-reduction, graph copying

e n-calculus ([new] synchronous, asynchronous)
® names as cells

® [new] Ambient calculus (this talk)

® CHR (Constraint Handling Rules)

® (more calculi underway)

Distributed Process Calculi

¢ Generic name for process calculi with the notion
of locations and locality

¢ Membranes are typically used for representing
(delimiting) locations

¢ Ambient Calculus is the best studied formalism,
with many similarities with LMNfal

® hierarchical membranes
e reconfiguration (mobility)
® ho remote actions

Ambients

¢ A bounded place where computation happens.

e The place is delimited by explicit boundaries
(cf. membranes)

¢ An ambient can contain other ambients

¢ An ambient can migrate across boundaries of
other ambients (if agreed upon between the
both camps)

¢ Interprocess communication respects ambient
boundaries

Structure of an Ambient

¢ Each ambient has its own name used for access
control (enter / exit / communication)

¢ Each ambient has its own collection of agents
(processes) executed inside the ambient.

¢ The top-level agent of an ambient takes care of
migration

Ambient Calculus (Pure Mobility Calculus)

(names) g
(processes) P.O := (vn)P

0
PO
| P
n| P]
M.P

(capabilities) M := inn
out »
open n

(restriction)
(Inactivity)
(composition)
(replication)
(ambient)
(action)

(can enter n)
(can exit n)

(can open n)

Actions

n m
inmP|Q | | | R
m
n
outm.P|Q||R
m
openm.P| | O

m
n

- PlO | |R
n

- P|O

- P|O

10

Ambient Names !

¢ As in the n-calculus, names play important roles
in the ambient calculus

¢ Basic operations, interrelated to each other
(a) create a fresh local name (secret keys)
(b) pass it around
(c) name an ambient
(d) associate with capabilities (= mobility
operations)

¢ The main issue in encoding into LMNtal is how to
represent names.

Encoding of Names, Two Alternatives -

(Ambient Calculus) (LMNtal)

Ambient names — atom names
Ambient names — hierarchical graphs

Nname

¢ We choose the latter

e to make reference
structures explicit

® to handle local names

e to use atom names to encode fixed language
constructs (in/out/open) only

name
occurrence

Encoding Ambients in LMNtal a

(Ambient Calculus) (LMNtal)

global name cell {id, name(n), +N,, ..., +N,}
name reference incident link N,

local nhame (vn) cell without name(n)

name proxy
ambient

// composition P|Q
action M.P

action body P

ce

ce
mu

{id, *N,, ...,+N,,-N}
{a.use, amb(n), ... }
tiset

in/2, out/2, open/2

process enclosed by
membrane

Name Trees

ambient

root cell of
global name

root cell of
local name

¢ Ambient hierarchies
called for name
proxies to recognize
name identity locally

¢ Each name forms a
tree of name proxies

¢ Normal form of a name tree should
correspond to an ambient hierarchy

14

Encoding Ambients, Formally

def normalization
IIOI = 0 of name trees

[P | Q] el (HPH% hide the name n
[(vn)P] = (hiden(TP]1))!

[n[P]] = {@amb,amb(L),[n](L),[P]}|
[M.P] = ([M|([P]))]

opn] % [opl([n]) (op € {in, out, open})

[op] = AfAp.(op(L,M),{+M,p}, f(L))
(op € {in, out, open})

[n] © A\.{id,name(n) ,+}

15

Encoding Actions °

¢ LMNHal rules for in/out/open are the literal
translation of the original operational semantics.

/* n[linm.P | Q] | m[R] --> m[n[P|Q] | R] */
in@@
{amb(NO), {id,+NO0,$n}, {id,+M0,-M1,$m0}, in(MO,{$p}), $q,@q},
{amb(M?2), {id,+M2,-M3,$m1}, $r,@r},
{id,+M1,+M3,$m2} :-

{amb(M4), {id,+M4,+M5,-M,$m1},

{amb(N2), {id,+N2,$n}, {id,-M5,$m0}, $p,$q,@q},
$r,@r},
{id,+M,$m2}.

. . . (similarly for out and open) . ..

Name Tree Normalization Y

¢ in/out/open moves indefinite number of name
references across ambient boundaries, violating
the normal form conditions temporarily

¢ Name trees are reformed autonomously and
asynchronously

¢ Examples:

GEOVINCEC

proxy_enter é\ %ﬁ proxy_insert_middle

proxy_resolve

Name Tree Normalization 19

¢ [invariant] Both in/out/open actions and
asynchronous reformation preserve connectivity
(of names cells representing a name).

¢ [partial correctness] A name tree is in (unique)
normal form iff no reformation rules apply.

¢ [total correctness] Exercise.

GEOVINCEC

proxy_enter é\ %ﬁ proxy_insert_middle

proxy_resolve

Examples and Demonstration

ool w N

Firewall access

def

def

Firewall = (vw)w|klout w.in kk.in w]

| open kk .open kkk . P|

Agent = kk|open k. kkk[Q)]]

19

Uses of LMNtal Membranes #

¢ Encoding of the ambient calculus makes heavy
use of membranes

® names and name proxies (ho rulesets)
e ambients (with rulesets)
® action body (for protection)

¢ Type systems should be able to infer different
uses

¢ Planned: lightweight/featherweight membranes

Encoding Replication 2

¢ Replication is defined in terms of structural
congruence: !P=P|!P

® Use of ! in the AC: to encode procedures
m l(openn.Q)|n[] > Yopenn.Q)| O

® P should be spawned on demand
= otherwise it causes divergence

® Current solution: to encode
l(openn.P)|n[Q] > Y(openn.P)|P| QO

e Copying P may increase references to names
(i.e., name tree leafs) indefinitely

= handled by aggregates or nlmem API

Conclusions

22

¢ Migration of ambients involves migration of name (=
resource) accesses across administrative domains.
Our encoding of the AC into LMNTtal has

e made the topology of name accesses explicit and

® given an autonomous and asynchronous algorithm
for name tree management.

¢ The encoding consists of

e 3ru
e 8ru
® 4ruy

es for the basic operations,

es for name tree management, and
es for GC,

all allowing graphical interpretation.

