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LMNtal allows us to represent computation in terms 

of hierarchical graph rewriting

LMNtal allows us to represent computation in terms 

of hierarchical graph rewriting

links nodes
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LMNtal in a NutshellLMNtal in a Nutshell

 Rule-based concurrent language for expressing 
& rewriting both connectivity and hierarchy

 Substrate model of X-calculi (X = lambda, pi, 
ambient, . . .), multiset rewriting, etc.

 Computation is manipulation of diagrams

 Links express 1-to-1 connectivity

 Membranes express hierarchy and locality of 
rules and data

 Allows programming by self-organization

 Good also for knowledge representation



4
Syntax and Semantics, in one slideSyntax and Semantics, in one slide
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Towards a Unifying Rule-based LanguageTowards a Unifying Rule-based Language

 The calculi encoded in LMNtal include:

 -calculus ([new] nondeterministic,
call-by-name) based on graph reduction

 -reduction, -reduction, graph copying

 -calculus ([new] synchronous, asynchronous)

 names as cells

 [new] Ambient calculus (this talk)

 CHR (Constraint Handling Rules)

 (more calculi underway)
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Distributed Process CalculiDistributed Process Calculi

 Generic name for process calculi with the notion 
of locations and locality

 Membranes are typically used for representing 
(delimiting) locations

 Ambient Calculus is the best studied formalism, 
with many similarities with LMNtal

 hierarchical membranes

 reconfiguration (mobility)

 no remote actions 
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AmbientsAmbients

 A bounded place where computation happens.

 The place is delimited by explicit boundaries
(cf. membranes)

 An ambient can contain other ambients

 An ambient can migrate across boundaries of 
other ambients (if agreed upon between the 
both camps)

 Interprocess communication respects ambient 
boundaries
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Structure of an AmbientStructure of an Ambient

 Each ambient has its own name used for access 
control (enter / exit / communication)

 Each ambient has its own collection of agents 
(processes) executed inside the ambient.

 The top-level agent of an ambient takes care of 
migration
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Ambient Calculus (Pure Mobility Calculus) Ambient Calculus (Pure Mobility Calculus) 
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Ambient NamesAmbient Names

 As in the -calculus, names play important roles 
in the ambient calculus

 Basic operations, interrelated to each other

(a) create a fresh local name (secret keys)

(b) pass it around

(c) name an ambient

(d) associate with capabilities (= mobility 
operations)

 The main issue in encoding into LMNtal is how to 
represent names.
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Encoding of Names, Two AlternativesEncoding of Names, Two Alternatives

(Ambient Calculus) (LMNtal)

Ambient names  atom names

Ambient names  hierarchical graphs

 We choose the latter

 to make reference
structures explicit

 to handle local names

 to use atom names to encode fixed language 
constructs (in/out/open) only

+
+ +

+

id
name

name

occurrence
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Encoding Ambients in LMNtalEncoding Ambients in LMNtal

(Ambient Calculus) (LMNtal)

global name cell {id, name(n), +N1, ..., +Nk}

name reference incident link Ni

local name (n) cell without name(n)

name proxy cell {id, +N1, ..., +Nk, –N }

ambient cell {a.use, amb(n), ... }

// composition P |Q multiset

action M.P in/2, out/2, open/2

action body P process enclosed by 
membrane
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Name TreesName Trees

a
b

root cell of 
global name

root cell of
local name

proxy
cell

ambient

 Ambient hierarchies 
called for name 
proxies to recognize 
name identity locally 

 Each name forms a 
tree of name proxies

 Normal form of a name tree should 
correspond to an ambient hierarchy
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Encoding Ambients, FormallyEncoding Ambients, Formally

normalization
of name trees

hide the name n



16
Encoding ActionsEncoding Actions

 LMNtal rules for in/out/open are the literal 
translation of the original operational semantics.

/* n[in m.P | Q] | m[R] --> m[n[P|Q] | R] */

in@@

{amb(N0), {id,+N0,$n}, {id,+M0,-M1,$m0}, in(M0,{$p}), $q,@q},

{amb(M2), {id,+M2,-M3,$m1}, $r,@r},

{id,+M1,+M3,$m2} :-

{amb(M4), {id,+M4,+M5,-M,$m1},

{amb(N2), {id,+N2,$n}, {id,-M5,$m0}, $p,$q,@q},

$r,@r},

{id,+M,$m2}.

. . . (similarly for out and open) . . .
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Name Tree NormalizationName Tree Normalization

 in/out/open moves indefinite number of name 
references across ambient boundaries, violating 
the normal form conditions temporarily

 Name trees are reformed autonomously and 
asynchronously

 Examples:

proxy_enter

proxy_resolve

proxy_insert_middle
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Name Tree NormalizationName Tree Normalization

 [invariant] Both in/out/open actions and 
asynchronous reformation preserve connectivity 
(of names cells representing a name).

 [partial correctness] A name tree is in (unique) 
normal form iff no reformation rules apply.

 [total correctness] Exercise.

proxy_enter

proxy_resolve

proxy_insert_middle
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Examples and DemonstrationExamples and Demonstration

1. Locks

2. Mobile agent authentication

3. Firewall access

4. Objective moves

5. Choice

6. Renaming
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Uses of LMNtal MembranesUses of LMNtal Membranes

 Encoding of the ambient calculus makes heavy 
use of membranes

 names and name proxies (no rulesets)

 ambients (with rulesets)

 action body (for protection)

 Type systems should be able to infer different 
uses

 Planned: lightweight/featherweight membranes
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Encoding ReplicationEncoding Replication

 Replication is defined in terms of structural 
congruence: !P  P | !P

 Use of ! in the AC: to encode procedures

 !(open n . Q) | n[ ]  !(open n . Q) | Q

 P should be spawned on demand

 otherwise it causes divergence

 Current solution: to encode
!(open n . P) | n[Q]  !(open n . P) | P | Q

 Copying P may increase references to names 
(i.e., name tree leafs) indefinitely

 handled by aggregates or nlmem API
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ConclusionsConclusions

 Migration of ambients involves migration of name (= 
resource) accesses across administrative domains.  
Our encoding of the AC into LMNtal has

 made the topology of name accesses explicit and

 given an autonomous and asynchronous algorithm 
for name tree management.

 The encoding consists of

 3 rules for the basic operations,

 8 rules for name tree management, and 

 4 rules for GC,

all allowing graphical interpretation.


