
1

Encoding

Distributed Process Calculi

into LMNtal

Kazunori Ueda
Dept. of Computer Science, Waseda University

September 2006

2

c

i o

m

+

i o

+

c m

s

X
X

mm

g

m

X

m

m

X

m

Y Y

Z

Y Y

i o
X0

Y0

X

Y

A

hub formed by
membrane

n-to-1 comm.

cyclic structures

asynchronous -calculus

map function

b

nn

nn

n

right

S

L2

L1

AL0

S1

channel formed by
membrane

closed unary
function

operation

buffer
header

send

receive

protected by
membrane

unprotected

LMNtal allows us to represent computation in terms

of hierarchical graph rewriting

LMNtal allows us to represent computation in terms

of hierarchical graph rewriting

links nodes

3
LMNtal in a NutshellLMNtal in a Nutshell

 Rule-based concurrent language for expressing
& rewriting both connectivity and hierarchy

 Substrate model of X-calculi (X = lambda, pi,
ambient, . . .), multiset rewriting, etc.

 Computation is manipulation of diagrams

 Links express 1-to-1 connectivity

 Membranes express hierarchy and locality of
rules and data

 Allows programming by self-organization

 Good also for knowledge representation

4
Syntax and Semantics, in one slideSyntax and Semantics, in one slide

5
Towards a Unifying Rule-based LanguageTowards a Unifying Rule-based Language

 The calculi encoded in LMNtal include:

 -calculus ([new] nondeterministic,
call-by-name) based on graph reduction

 -reduction, -reduction, graph copying

 -calculus ([new] synchronous, asynchronous)

 names as cells

 [new] Ambient calculus (this talk)

 CHR (Constraint Handling Rules)

 (more calculi underway)

6
Distributed Process CalculiDistributed Process Calculi

 Generic name for process calculi with the notion
of locations and locality

 Membranes are typically used for representing
(delimiting) locations

 Ambient Calculus is the best studied formalism,
with many similarities with LMNtal

 hierarchical membranes

 reconfiguration (mobility)

 no remote actions

7
AmbientsAmbients

 A bounded place where computation happens.

 The place is delimited by explicit boundaries
(cf. membranes)

 An ambient can contain other ambients

 An ambient can migrate across boundaries of
other ambients (if agreed upon between the
both camps)

 Interprocess communication respects ambient
boundaries

8
Structure of an AmbientStructure of an Ambient

 Each ambient has its own name used for access
control (enter / exit / communication)

 Each ambient has its own collection of agents
(processes) executed inside the ambient.

 The top-level agent of an ambient takes care of
migration

9
Ambient Calculus (Pure Mobility Calculus) Ambient Calculus (Pure Mobility Calculus)

(restriction)

(inactivity)

(composition)

(replication)

(ambient)

(action)

(can enter n)

(can exit n)

(can open n)n

n

nM

PM

Pn

P

QP

PnQP

n

open

out

in



::

.

][

!

|

)(::,

0



(names)

(processes)

(capabilities)

10

| R

ActionsActions

in m.P | Q R| P | Q

n n

m

m



Q

m

open m.P | P | Q

| Rout m.P | Q

n

m

P | Q R|

n m



11
Ambient NamesAmbient Names

 As in the -calculus, names play important roles
in the ambient calculus

 Basic operations, interrelated to each other

(a) create a fresh local name (secret keys)

(b) pass it around

(c) name an ambient

(d) associate with capabilities (= mobility
operations)

 The main issue in encoding into LMNtal is how to
represent names.

12
Encoding of Names, Two AlternativesEncoding of Names, Two Alternatives

(Ambient Calculus) (LMNtal)

Ambient names  atom names

Ambient names  hierarchical graphs

 We choose the latter

 to make reference
structures explicit

 to handle local names

 to use atom names to encode fixed language
constructs (in/out/open) only

+
+ +

+

id
name

name

occurrence

13
Encoding Ambients in LMNtalEncoding Ambients in LMNtal

(Ambient Calculus) (LMNtal)

global name cell {id, name(n), +N1, ..., +Nk}

name reference incident link Ni

local name (n) cell without name(n)

name proxy cell {id, +N1, ..., +Nk, –N }

ambient cell {a.use, amb(n), ... }

// composition P |Q multiset

action M.P in/2, out/2, open/2

action body P process enclosed by
membrane

14
Name TreesName Trees

a
b

root cell of
global name

root cell of
local name

proxy
cell

ambient

 Ambient hierarchies
called for name
proxies to recognize
name identity locally

 Each name forms a
tree of name proxies

 Normal form of a name tree should
correspond to an ambient hierarchy

15
Encoding Ambients, FormallyEncoding Ambients, Formally

normalization
of name trees

hide the name n

16
Encoding ActionsEncoding Actions

 LMNtal rules for in/out/open are the literal
translation of the original operational semantics.

/* n[in m.P | Q] | m[R] --> m[n[P|Q] | R] */

in@@

{amb(N0), {id,+N0,$n}, {id,+M0,-M1,$m0}, in(M0,{$p}), $q,@q},

{amb(M2), {id,+M2,-M3,$m1}, $r,@r},

{id,+M1,+M3,$m2} :-

{amb(M4), {id,+M4,+M5,-M,$m1},

{amb(N2), {id,+N2,$n}, {id,-M5,$m0}, $p,$q,@q},

$r,@r},

{id,+M,$m2}.

. . . (similarly for out and open) . . .

17
Name Tree NormalizationName Tree Normalization

 in/out/open moves indefinite number of name
references across ambient boundaries, violating
the normal form conditions temporarily

 Name trees are reformed autonomously and
asynchronously

 Examples:

proxy_enter

proxy_resolve

proxy_insert_middle

18
Name Tree NormalizationName Tree Normalization

 [invariant] Both in/out/open actions and
asynchronous reformation preserve connectivity
(of names cells representing a name).

 [partial correctness] A name tree is in (unique)
normal form iff no reformation rules apply.

 [total correctness] Exercise.

proxy_enter

proxy_resolve

proxy_insert_middle

19
Examples and DemonstrationExamples and Demonstration

1. Locks

2. Mobile agent authentication

3. Firewall access

4. Objective moves

5. Choice

6. Renaming

20
Uses of LMNtal MembranesUses of LMNtal Membranes

 Encoding of the ambient calculus makes heavy
use of membranes

 names and name proxies (no rulesets)

 ambients (with rulesets)

 action body (for protection)

 Type systems should be able to infer different
uses

 Planned: lightweight/featherweight membranes

21
Encoding ReplicationEncoding Replication

 Replication is defined in terms of structural
congruence: !P  P | !P

 Use of ! in the AC: to encode procedures

 !(open n . Q) | n[]  !(open n . Q) | Q

 P should be spawned on demand

 otherwise it causes divergence

 Current solution: to encode
!(open n . P) | n[Q]  !(open n . P) | P | Q

 Copying P may increase references to names
(i.e., name tree leafs) indefinitely

 handled by aggregates or nlmem API

22
ConclusionsConclusions

 Migration of ambients involves migration of name (=
resource) accesses across administrative domains.
Our encoding of the AC into LMNtal has

 made the topology of name accesses explicit and

 given an autonomous and asynchronous algorithm
for name tree management.

 The encoding consists of

 3 rules for the basic operations,

 8 rules for name tree management, and

 4 rules for GC,

all allowing graphical interpretation.

