
Introducing Quantification

into a Hierarchical Graph Rewriting Language

Haruto MISHINA, Kazunori UEDA

Waseda University

LOPSTR 2024 @ Milan, Italy September 10, 2024



Graph rewriting languages can model diverse structures in the real world.

2

Overview

A challenge towards an expressive 

graph rewriting language is to 

provide its syntax and semantics 

with the ability to handle 

quantities of graph elements.

We introduced into LMNtal 

(a hierarchical graph rewriting 

language) quantification for 

matching and rewriting that 

support

✓ Cardinality

✓ Non-existence

✓ Universal Quantification

in an integrated manner.

Petri Nets Repotting all the geraniums 

of broken pots

Problem Contribution

[1] Rensink, A., Kuperus, J.H.: Repotting the geraniums: On nested graph transformation rules. Electronic 

     Communications of the EASST 18 (2009).

[1]



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

3

Contents



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

4

Contents



◆ express computation as rewriting of graphs,

◆ handle complex data structures safely and clearly, and

◆ can model diverse structures in the real world.

Existing tools have proposed various methods to handle “quantities” 

(e.g., all G’s, no G’s), but how to provide those features by the formal 

syntax and semantics of programming languages has been an open 

question.

5

Graph Rewriting Languages

Grid graph Ring Skip list Leaf-linked tree



◆ a hierarchical graph rewriting language,

◆ suitable for modelling consisting of connectivity and hierarchy,

◆ based on term-based syntax, and the semantics consists of 

structural congruence and (small-step) reduction relation, and

◆ our implementation provides a model checker with state space  

visualization.

6

LMNtal    is …[2]

[2] Ueda, K.: LMNtal as a hierarchical logic programming language. Theoretical Computer Science 410(46), 

     4784–4800 (2009).

LMNtal graph State space visualization

Link Membrane

Toolchain available from

https://github.com/lmntal



Syntax of LMNtal

7

𝑇 ∷= 𝟎 
      | 𝑝 𝑋1, … , 𝑋𝑚

      | 𝑇, 𝑇
      | 𝑇
      | $𝑝

null

atom

molucule

membrane

null

atom

molucule

membrane

context

𝑃 ∷= 𝟎 
      | 𝑝(𝑋1, … , 𝑋𝑚) 
      | 𝑃, 𝑃
      | {𝑃} 

a(W),{b(W,X,Y),c(X,Z),{d(Z,Y)}}

:-

{a(X),$b},{c(X),$d} :- {$b,$d} 

LMNtal Graph (Process)

LMNtal Rewrite Rule

process

rule
template

𝑅 ∷= 𝑇 :- 𝑇

Wildcard of Processes

links



Structurally congruent LMNtal terms represent the same graph.

8

Structural Congruence of LMNtal

(if 𝑋 is a local link of 𝑃)

a(A,C,C,D),b(B,D) b(B,D),a(A,C,C,D)

a(A,C,C,D),b(B,D) a(A,E,E,F),b(B,F)

(E4)
≡

(E2)
≡

Local Link

(E1)

(E2)

(E3)

(E4)

(E5)

(E6)

0, 𝑃 

𝑃, 𝑄 

𝑃, 𝑄, 𝑅

 

𝑃 

𝑃 ≡ 𝑃′ 
𝑃 ≡ 𝑃′ 

≡
≡
≡

≡

⇒
⇒

𝑃 

𝑄, 𝑃 

(𝑃, 𝑄), 𝑅 

𝑃[𝑌/𝑋] 

𝑃, 𝑄 ≡ 𝑃′, 𝑄 

𝑃 ≡ {𝑃′} 

Characterizing atoms as multisets

α-conversion of local link names

Structural rules



This is called the small-step semantics.

9

Reduction Relation of LMNtal

:-

{a(X),$p} :- {a(Y),$p},b(Y,X)

{a(A),a(B)},c(A,B)

{a(C),a(B)},b(C,A),c(A,B)

{a(A),a(C)},c(A,B),b(C,B)

“Insert a binary b next to a unary a in a membrane.”

𝑅

𝑅

𝑅

𝑅

Structural rules

Rewriting

(R1) 
𝑃 𝑃′

𝑃,𝑄 𝑃′,𝑄

(R3) 
𝑄≡𝑃 𝑃 𝑃′ 𝑃′≡𝑄′ 

𝑄 𝑄′

(R6) 𝑇𝜃
 

𝑈𝜃
𝑇 :- 𝑈

Instantiating wildcards



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

10

Contents



To enhance the usefulness of hierarchical graph rewriting for high-level 

modelling, we extended LMNtal by introducing quantifiers into both 

matching and rewriting.

Key features of QLMNtal

1. Introducing 

a.  cardinality,

b.  non-existence (negative application condition, NAC), and 

c.  universal quantification

in an integrated manner

2. Relating different quantification by labelling

3. Combination and nesting of quantification

11

QLMNtal (LMNtal with Quantification)



Specifies the minimum and the maximum numbers of processes and 

rewrite them in a single step.

12

1a :  Cardinality Quantification

a(A,B),a(B,C),a(C,A)

{a(A,B)},{a(B,C)},a(C,A)

{a(A,B)},{a(B,C)},{a(C,A)}

:-

<2,3>a(X,Y) :- <2,3>{a(X,Y)}

<2,3> <2,3>

“Wrap 2 to 3 a‘s 

with membranes”



Ensures that specified processes don’t exist.

13

1b :  Non-existence Quantification

{a(A),b(A)},{a(B),a(B)}

{a(A),b(A),a(C),b(C)},{a(B),a(B)}

{a(A),b(A)},{a(B),a(B),a(C),b(C)}

:-

{<^>(a(X),b(X)),$p} :- {$p,a(X),b(X)}

<^>

×

“Add connected a and b to 

a membrane that does not 

contain them.”



Finds all specified process greedily and rewrite them in a single step.

14

1c :  Universal Quantification

a(A,B),b(B,C),a(C,D),a(D,E),b(E,A) {a(A,B),a(C,D),a(D,E)},b(B,C),b(E,A)

:-

<+>a(X,Y) :- {<+>a(X,Y)}

<+>

“Wrap all binary a‘s 

with a membrane.”

<+>



Labels control the (in)dependence of quantification.

15

2 : Relating Different Quantification by Labelling

a(A),a(B),a(C),a(D),a(E),
{b(A),b(B),c(C),b(D),c(E)}

:-

M<+>a(X),N<+>a(Y),{M<+>b(X),N<+>c(Y)} :- {M<+>a(X)},{N<+>a(Y)},{M<+>b(X),N<+>c(Y)} 

{a(A),a(B),a(C)},{a(D),a(E)},
{b(A),b(B),c(C),b(D),c(E)}

M<+> N<+>

“Wrap all a‘s connected to b's with a membrane and 

all a's connected to c's with another membrane.”

M<+> N<+>



The approach based on structural operational semantics allows 

combined and nested use of quantification without restrictions.

16

3 :  Combination and Nesting of Quantification

:-<+>

{a(A),a(B)},{a(B),b(C)},{b(C),b(A)} {a(A),a(B),ok},{a(B),b(C)},{b(C),b(A),ok}

<+>{<^>(a(X),b(Y)),$p} :- <+>{$p,ok}

<^> <+>

“Add ok to all membranes that do not contain both a and b.”



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

17

Contents



We added cardinality and non-existence quantifier for templates.

18

Syntax of QLMNtal

𝒬 ∷= 𝑙 𝑧, 𝑧  
      | 𝑙 ^

cardinality

non-existence

𝑅 ∷= 𝑇 :- 𝑇
𝑇 ∷= 𝟎 
      | 𝑝 𝑋1, … , 𝑋𝑚

      | 𝒬𝑇
      | 𝑇, 𝑇
      | 𝑇
      | $𝑝

null

atom

quantified template

molucule

membrane

context

rule
template

quantifier

M<^>

<2,3>

Label

Non-existence Template

<2,3>{a,$p}

M<^>(a(X),b(X))

Cardinality Template

Nested use

M<3,5>(N<^>a)

M<3,5> N<^>



Universal quantification of QLMNtal (two versions) is not a primitive;

it can be represented by combining cardinality quantification and 

non-existence quantification:

19

Representation of Universal Quantification

𝑙 + 𝑇 ≡  𝑙 1, ∞ 𝑇,𝑙 ^ 𝑇′
𝑇 ‘s variant with renamed 

links, contexts and labels

𝑙 ∗ 𝑇 ≡  𝑙 0, ∞ 𝑇,𝑙 ^ 𝑇′

grabs 

all 𝑇 ‘s

grabs

arbitrary 

# of 𝑇 ‘s

ensures no 

remaining  

𝑇 ‘s

allows 

zero 𝑇 ‘s

disallows 

zero 𝑇 ‘s



We added the following equivalence relation (EQ) :

That is, outermost cardinality quantified templates can be unrolled 

(or expanded) by decrementing the cardinalities.

20

Structural Congruence of QLMNtal

≡ :-

M<0,2>a(X),a(X1) :- M<0,2>b(X),b(X1)

M<0,2> M<0,2>
:-M<1,3> M<1,3>

M<1,3>a(X) :- M<1,3>b(X)

(EQ) 𝑇 :- 𝑈 ≡ (𝑇 :- 𝑈)[(𝑙 𝑧1 − 1, 𝑧2 − 1 0𝑇𝑖 , 𝑇𝑖
′)/𝑙 𝑧1, 𝑧2 0𝑇𝑖]

 
𝑖

replace

decrement unroll

“Replace 1 to 3 a‘s with b‘s.” “Replace 0 to 2 a‘s with b‘s, and a with b.”



We replaced the rule (R6) with the following (RQ) :

When (Cardcond) ∧ (Negcond) is satisfied, rewriting takes place by (RQ’).

21

Reduction Relation of QLMNtal

(RQ)
∀𝑙 𝑧1, 𝑧2 0 𝑧1 ≤ 0 ∧ 𝑧2 ≥ 0 ∀𝑙 ^ 0 𝑐𝑥𝑡 {𝑇, $𝛾} 𝜃

 𝑛𝑒𝑔 𝑙, {𝑇, $𝛾} :-
∧

𝑠𝑖𝑚𝑝 𝑇 , $𝛾 𝜃
 

𝑠𝑖𝑚𝑝 𝑈 , $𝛾 𝜃
𝑇 :- 𝑈

Have all top-level cardinalities been 

unrolled the right number of times by 

(EQ) ?  (Cardcond) 

Are there no processes that match templates 

quantified by top-level negation quantifiers?

(Negcond) 

rewriting by 𝑇:-𝑈 (RQ’) 

/

unquantified 

part of 𝑇
global context 

of 𝑠𝑖𝑚𝑝(𝑇)



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

22

Contents



If all inputs of a transition contain at least one token, delete one token 

from each input place and create one token in each output place.

23

Petri Nets

[3] Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic 

     Models: Advances in Petri Nets, pp. 122–173. Springer Berlin Heidelberg (1998). 

[3]



Petri Nets

24

:-

M<+> N<+> M<+> N<+>

M<+>{token,s(X),$p}, {M<+>t(X),N<+>s(Y)}, N<+>{t(Y),$q}
 :- M<+>{s(X),$p}, {M<+>t(X),N<+>s(Y)}, N<+>{token,t(Y),$q}

{t(X1),t(X2),s(Y1),s(Y2),s(Y3)},
{token,s(X1)}, {token,s(X2)},
{t(Y1)}, {t(Y1)}, {t(Y1)}

{t(X1),t(X2),s(Y1),s(Y2),s(Y3)},
{s(X1)}, {s(X2)},
{t(Y1),token}, {t(Y1),token}, {t(Y1),token}



“There are several pots, each with several geranium plants. Some pots 

were broken because the geraniums filled the space with their roots. New 

pots are prepared for the broken pots with flowering geraniums and all 

the flowering geraniums are moved to the new pots.”

25

Repotting the Geraniums

[1] Rensink, A., Kuperus, J.H.: Repotting the geraniums: On nested graph transformation rules. Electronic 

     Communications of the EASST 18 (2009).

[1]



Repotting the Geraniums

26

{cracked,flowering,flowering,unflowering},
{cracked,flowering},
{uncracked,flowering},
{cracked,unflowering}

{cracked,unflowering},{uncracked,flowering,flowering}
{cracked,flowering},{uncracked,flowering},
{uncracked,flowering},
{cracked,unflowering}

M<+>{cracked,N<+>flowering,$p} :- M<+>({cracked,$p},{uncracked,N<+>flowering})

:- M<+>

M<+>
N<+>

N<+>



1. Background: Graph Rewriting Languages and LMNtal

2. QLMNtal

3. Syntax and Semantics of QLMNtal

4. Examples of QLMNtal

5. Related Work

27

Contents



◆ Most graph rewriting tools

⚫ are based on algebraic (Double/Single-Pushout) approaches,

⚫ specify rewriting steps visually,

⚫ provide sublanguages for execution control (e.g., GP 2  , PORGY),

unlike LMNtal defined in a (concurrent) programming language setting.

◆ Some tools (e.g., GROOVE   ) provide nested quantification within a 

single rule, whereas we use inductively defined syntax and semantics to 

allow nested quantification in a natural manner.

◆ Languages/tools that feature cardinality include in Answer Set Pro-

gramming   (ASP), practical regular expressions, and graph databases.

28

Related Work

[4] Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. 

     Int. J. Softw. Tools. Technol. Transfer 14, 15–40 (2012).

[5] Plump, D.: The design of GP 2. Electronic Proceedings in Theoretical Computer Science 82, 1–16 (2012). 

[6] Gebser, M., Kaminski, R., Kaufmann, B., Shaub, T.: Answer Set Solving in Practice. Springer Cham (2013). 

[4]

[5]

[6]



◆ Quantification has been well studied in the (mainstream) algebraic 

approach to graph rewriting.  However,

◆ QLMNtal is the first attempt to formalize quantification in the 

framework of (concurrent) programming languages based on (i) term-

based syntax, (ii) structural congruence, and (iii) small-step semantics.

◆ Non-existence quantification, cardinality quantification and labeling of 

quantification play important role in enabling us to express universal 

quantification, nested quantification, and quantified rewriting. 

◆ Future work includes supporting the full expressive power of QLMNtal 

by extending SLIM (= LMNtal VM) and the LMNtal compiler.

29

Summary and Future Work


	スライド 1
	スライド 2: Overview
	スライド 3: Contents
	スライド 4: Contents
	スライド 5: Graph Rewriting Languages
	スライド 6: LMNtal    is …
	スライド 7: Syntax of LMNtal
	スライド 8: Structural Congruence of LMNtal
	スライド 9: Reduction Relation of LMNtal
	スライド 10: Contents
	スライド 11: QLMNtal (LMNtal with Quantification)
	スライド 12: 1a :  Cardinality Quantification
	スライド 13: 1b :  Non-existence Quantification
	スライド 14: 1c :  Universal Quantification
	スライド 15: 2 :  Relating Different Quantification by Labelling
	スライド 16: 3 :  Combination and Nesting of Quantification
	スライド 17: Contents
	スライド 18: Syntax of QLMNtal
	スライド 19: Representation of Universal Quantification
	スライド 20: Structural Congruence of QLMNtal
	スライド 21: Reduction Relation of QLMNtal
	スライド 22: Contents
	スライド 23: Petri Nets
	スライド 24: Petri Nets
	スライド 25: Repotting the Geraniums
	スライド 26: Repotting the Geraniums
	スライド 27: Contents
	スライド 28: Related Work
	スライド 29: Summary and Future Work

