
Hierarchical Graph Rewriting as a

Unifying Tool for Analyzing and

Understanding Nondeterministic Systems

Kazunori Ueda, Takayuki Ayano, Taisuke Hori,

Hiroki Iwasawa and Seiji Ogawa

Waseda University

August 2009

Copyright (C) 2002-2009 Kazunori Ueda et al.

Talk Outline

 Brief intro to LMNtal (pronounce: “elemental”),
a language model based on (a class of)
hierarchical graph rewriting

 what it is about (motivations) ?

 what it can do (model, impl., apps) ?

 State-space search and model checking with
LMNtal

 what are the strengths of the LMNtal model
checker?

 how an IDE plays an important role?

2

Water jug problem

 Typical AI search problem

 E.g. use a 300ml jug and a 500ml jug to get
400ml of water

 Operations:

 Empty a jug

 Fill up a jug with tap water

 Move water until it’s emptied

 Move water until the other is filled

3

Fill up
the 500

Move to
the 300

？

500300500300500300

400ml500ml300ml

4
LMNtal (pronounce: “elemental”)

L = “logical” links

M = multisets/membranes

N = nested nodes

ta = transformation

l = language

m

n

m

t a

l

l l

hierarchical graph
More info about LMNtal in WMC5
(LNCS3365), RTA’08, TCS (2009,
to appear), LMNtal webpage, etc.

5

c

i o

m

+

i o

+

c m

s

X
X

mm

g

m

X

m

m

X

m

Y Y

Z

Y Y

i o
X0

Y0

X

Y

A

hub formed by
membrane

many-to-1 comm.

cyclic structures

asynchronous -calculus

map function

b

nn

nn

n

right

S

L2

L1

AL0

S1

channel formed by
membrane

closed unary
function

operation

buffer
header

send

receive

protected by
membrane

unprotected

LMNtal allows us to represent computation in
terms of hierarchical graph rewriting
LMNtal allows us to represent computation in
terms of hierarchical graph rewriting

links nodes

6
LMNtal: What and why

 Rule-based concurrent language for expressing
& rewriting both connectivity and hierarchy

 Substrate model of X-calculi (X = lambda, pi,
ambient, . . .), multiset rewriting, etc.

 Computation is manipulation of diagrams

 Links express 1-to-1 connectivity

 Membranes express hierarchy and locality of
rules and data

 Allows programming with sets and graphs
and programming by self-organization

 Well-defined notion of atomic actions

7Related work: Models and languages
with multisets and symmetric join
Related work: Models and languages
with multisets and symmetric join

 Petri Nets
 Production Systems and RETE match
 Graph transformation formalisms
 CCS, CSP
 Concurrent logic/constraint programming
 Linda
 Linear Logic languages
 Interaction Nets
 Chemical Abstract Machines
 Gamma model
 Maude
 Constraint Handling Rules
 Mobile ambients
 P-system, membrane computing
 Amorphous computing
 Bigraphs

8Models and languages
with membranes + hierarchies
Models and languages
with membranes + hierarchies

 Petri Nets
 Production Systems and RETE match
 Graph transformation formalisms *
 CCS, CSP
 Concurrent logic/constraint programming
 Linda *
 Linear Logic languages
 Interaction Nets
 Chemical Abstract Machines
 Gamma model
 Maude
 Constraint Handling Rules
 Mobile ambients
 P-system, membrane computing
 Amorphous computing
 Bigraphs

* : some versions
feature hierarchies

 Seal calculus
 Kell calculus
 Brane calculi

9
List concatenation

[]

6

.

7

.

8

.

9

. []

a

1

.

2

.

3

.

5

c

4

. =b

a . a. a [] =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a

.

[]

: append

: cons

: nil

a(X0,Y,Z0), ‘.’(A,X,X0) :- ‘.’(A,Z,Z0), a(X,Y,Z) a(X0,Y,Z0), ‘.’(X0) :- Y=Z0

10
List concatenation

1

.

2

.

3

.

5

.

4

. =b

6

.

7

.

8

.

9

. []

= 

a . a. a [] =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a(X0,Y,Z0), ‘.’(A,X,X0) :- ‘.’(A,Z,Z0), a(X,Y,Z) a(X0,Y,Z0), ‘.’(X0) :- Y=Z0

11
Syntax and semantics, in one slide

(process) P ::= 0 | p(X1,...,Xm) | P,P | {P} | T:-T
(process template) T ::= 0 | p(X1,...,Xm) | T,T | {T} | T:-T

| @p | $p[X1,...,Xm|A] | p(*X1,...,*Xn)
(residual) A ::= [] | X

12

highly nondeterministic, but
scheduling achieves O(N2) complexity

compare and swap if $x > $y

guard

3

.

2

.

7

.

5

. []

L=[$x , $y|L2] :- $x > $y | L=[$y,$x|L2].

typed process context

Nondeterministic bubblesort (one rule)

5700
states

r=[9,6,2,7,1,4,10,8,5,3]

13

/* icosahedron */

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-

p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4),

p(L2,L3,H1,T1,H0), p(L4,L5,H2,T2,H1),

p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9),

dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1).

/* icosahedron -> fullerene */

p(L0,L1,L2,L3,L4) :-

c(L0,X0,X4), c(L1,X1,X0), c(L2,X2,X1), c(L3,X3,X2), c(L4,X4,X3).

Fullerene (C60) (2 rules + 2 initial atoms)

Implementation overview

 LMNtal in Java (2004–now)

 compiler to (dedicated) intermediate code

 runtime with FLI and visualizer

 SLIM (Slim LMNtal Impl. in C, 2007–now)

 faster and smaller runtime

 state-space search and model checker

 LMNtalEditor (GUI in Java, 2008–now)

 IDE featuring state-space visualization

14

14

LMNtal

compiler
SLIM

compile

intermediate
code

program

stdout

visualizeexecute

source
file

Model checking in LMNtal: Motivations

 LMNtal allows straightforward translation from
various modeling languages for computer-aided
verification:

 state transition systems (automata)

 multiset rewriting systems

 process calculi

 Models in these formalisms generally have a high
degree of non-determinism and demand a
support tool for debugging/analyzing properties
and behavior

 LMNtal turns out to be a suitable tool for
describing a broad range of search problems

15

MC in LMNtal: strengths and challenges

 LMNtal is a full-fledged programming language
with powerful data structures

 no gap between modeling and programming
languages (cf. SPIN, nuSMV, . . .)

 your program can be readily model-
checked

 The IDE supports the understanding of models
with and without errors, not just bug catching

 workbench for designing and analyzing models

 complementary to fast, black-box checkers

 Challenge: implementing state management

16

LMNtal model checker
17

LMNtal

program

LMNtal

compiler SLIM

runtime

LTL formula
propositional

symbol definition

Büchi

automaton

intermediate
code

LTL2BA

{wSize(2), nMAX(3).
idMAX(3), sender{
n(0), nextId(0), ... p = error :- |

p is defined as “an
‘error’ atom exists !”

[]!p

Property in LTL
“always not p”

OKcounterexample

18
Experiences with the LMNtal model checker

 Applications so far
 real-time scheduler
 AI search
 checking of the fine-grained, graph encoding

of the untyped lambda calculus [RTA’08]
 security / data transfer protocol
 etc.

 Multiset rewriting allows very concise encoding
of problems (e.g., n-queens) and state-space
(symmetry) reduction (e.g., philosophers)

 Visualization turned out to be very useful for
understanding systems

Examples (demo)

 Water jug problem

 Dining philosophers

 Dekker’s algorithm (classical mutual exclusion
algorithm that uses read and write only)
 translated directly from the procedural description

 Security protocol analysis (Needham-Schroeder)
 translated directly from an MSR description

 Sliding window protocol (path property)

 Eight queens (one rule !)

 Tower of Hanoi (one rule !)

 Lambda calculus (Church numeral exponentiation)

19

Encoding models in other formalisms

 (Concurrent) Imperative models

 Represent labels (program points), variable
states and channel states all using molecules

 A rewrite step is atomic

 can represent compare-and-swap,
synchronous message sends, etc.

 Timeout can be detected as irreducibility of
(the contents of) a membrane

 MSR (Cervesato et al., [FCSW’99])

 Represent nonces using fresh membranes

20

Sliding window protocol (SWP)

 SWP: transmission protocol used in TCP

 Sends data items (up to window size) without
waiting for acks

 Rollbacks if some item is lost

 Channels may lose items and acks

21

sender receiver
data data

ack

unreliable
channel

may lose items

□(send ⇒ ◇ack) ?

may lose items

Conclusions

 Designed and implemented LMNtal as a unifying
computational model offering fine-grained
concurrency

 Built an LMNtal IDE as a unified framework of
computation and verification

 Towards the ideal of “verified software”

 killer app of LMNtal ?

 Underway: state compression, POR

 Ready to use; very low entry barrier

http://www.ueda.info.waseda.ac.jp/lmntal/

(choose LMNtalEditor)

22

