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Talk Outline

 Brief intro to LMNtal (pronounce: “elemental”),
a language model based on (a class of) 
hierarchical graph rewriting

 what it is about (motivations) ?

 what it can do (model, impl., apps) ?

 State-space search and model checking with 
LMNtal

 what are the strengths of the LMNtal model 
checker?

 how an IDE plays an important role? 
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Water jug problem

 Typical AI search problem

 E.g. use a 300ml jug and a 500ml jug to get 
400ml of water

 Operations:

 Empty a jug

 Fill up a jug with tap water

 Move water until it’s emptied

 Move water until the other is filled
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LMNtal (pronounce: “elemental”)

L = “logical” links

M = multisets/membranes

N = nested nodes

ta = transformation

l = language
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hierarchical graph
More info about LMNtal in WMC5 
(LNCS3365), RTA’08, TCS (2009, 
to appear), LMNtal webpage, etc.
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LMNtal allows us to represent computation in 
terms of hierarchical graph rewriting
LMNtal allows us to represent computation in 
terms of hierarchical graph rewriting

links nodes
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LMNtal:  What and why

 Rule-based concurrent language for expressing 
& rewriting both connectivity and hierarchy

 Substrate model of X-calculi (X = lambda, pi, 
ambient, . . .), multiset rewriting, etc.

 Computation is manipulation of diagrams

 Links express 1-to-1 connectivity

 Membranes express hierarchy and locality of 
rules and data

 Allows programming with sets and graphs
and programming by self-organization

 Well-defined notion of atomic actions



7Related work:  Models and languages
with multisets and symmetric join
Related work:  Models and languages
with multisets and symmetric join

 Petri Nets
 Production Systems and RETE match
 Graph transformation formalisms
 CCS, CSP
 Concurrent logic/constraint programming
 Linda
 Linear Logic languages
 Interaction Nets
 Chemical Abstract Machines
 Gamma model
 Maude
 Constraint Handling Rules
 Mobile ambients
 P-system, membrane computing
 Amorphous computing
 Bigraphs



8Models and languages
with membranes + hierarchies
Models and languages
with membranes + hierarchies

 Petri Nets
 Production Systems and RETE match
 Graph transformation formalisms *
 CCS, CSP
 Concurrent logic/constraint programming
 Linda *
 Linear Logic languages
 Interaction Nets
 Chemical Abstract Machines
 Gamma model
 Maude
 Constraint Handling Rules
 Mobile ambients
 P-system, membrane computing
 Amorphous computing
 Bigraphs

* : some versions
feature hierarchies

 Seal calculus
 Kell calculus
 Brane calculi
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List concatenation
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[]

: append

: cons

: nil

a(X0,Y,Z0), ‘.’(A,X,X0) :- ‘.’(A,Z,Z0), a(X,Y,Z) a(X0,Y,Z0), ‘.’(X0) :- Y=Z0
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List concatenation
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Syntax and semantics, in one slide

(process) P ::= 0 | p(X1,...,Xm) | P,P | {P} | T:-T
(process template) T ::= 0 | p(X1,...,Xm) | T,T | {T} | T:-T

| @p | $p[X1,...,Xm|A] | p(*X1,...,*Xn)
(residual) A ::= [] | X
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highly nondeterministic, but
scheduling achieves O(N2) complexity

compare and swap if $x > $y

guard
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L=[$x , $y|L2] :- $x > $y | L=[$y,$x|L2].

typed process context

Nondeterministic bubblesort (one rule)

5700
states

r=[9,6,2,7,1,4,10,8,5,3]
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/* icosahedron */

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-

p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4),

p(L2,L3,H1,T1,H0), p(L4,L5,H2,T2,H1),

p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9),

dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1).

/* icosahedron -> fullerene */

p(L0,L1,L2,L3,L4) :-

c(L0,X0,X4), c(L1,X1,X0), c(L2,X2,X1), c(L3,X3,X2), c(L4,X4,X3). 

Fullerene (C60) (2 rules + 2 initial atoms)



Implementation overview

 LMNtal in Java (2004–now)

 compiler to (dedicated) intermediate code

 runtime with FLI and visualizer

 SLIM (Slim LMNtal Impl. in C, 2007–now)

 faster and smaller runtime

 state-space search and model checker

 LMNtalEditor (GUI in Java, 2008–now)

 IDE featuring state-space visualization
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Model checking in LMNtal:  Motivations

 LMNtal allows straightforward translation from 
various modeling languages for computer-aided 
verification: 

 state transition systems (automata)

 multiset rewriting systems

 process calculi

 Models in these formalisms generally have a high 
degree of non-determinism and demand a 
support tool for debugging/analyzing properties 
and behavior

 LMNtal turns out to be a suitable tool for 
describing a broad range of search problems 
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MC in LMNtal:  strengths and challenges 

 LMNtal is a full-fledged programming language 
with powerful data structures

 no gap between modeling and programming 
languages (cf. SPIN, nuSMV, . . .)

 your program can be readily model-
checked

 The IDE supports the understanding of models
with and without errors, not just bug catching

 workbench for designing and analyzing models

 complementary to fast, black-box checkers 

 Challenge: implementing state management
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LMNtal model checker
17

LMNtal

program

LMNtal

compiler SLIM

runtime

LTL formula
propositional

symbol definition

Büchi

automaton

intermediate
code

LTL2BA

{wSize(2), nMAX(3).
idMAX(3), sender{
n(0), nextId(0), ... p = error :- |

p is defined as “an 
‘error’ atom exists !”

[]!p

Property in LTL
“always not p”

OKcounterexample
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Experiences with the LMNtal model checker

 Applications so far
 real-time scheduler
 AI search
 checking of the fine-grained, graph encoding 

of the untyped lambda calculus [RTA’08]
 security / data transfer protocol
 etc.

 Multiset rewriting allows very concise encoding 
of problems (e.g., n-queens) and state-space 
(symmetry) reduction (e.g., philosophers)

 Visualization turned out to be very useful for 
understanding systems



Examples (demo)

 Water jug problem

 Dining philosophers

 Dekker’s algorithm (classical mutual exclusion 
algorithm that uses read and write only)
 translated directly from the procedural description

 Security protocol analysis (Needham-Schroeder)
 translated directly from an MSR description

 Sliding window protocol (path property)

 Eight queens (one rule !)

 Tower of Hanoi (one rule !)

 Lambda calculus (Church numeral exponentiation)
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Encoding models in other formalisms

 (Concurrent) Imperative models

 Represent labels (program points), variable 
states and channel states all using molecules

 A rewrite step is atomic

 can represent compare-and-swap, 
synchronous message sends, etc.

 Timeout can be detected as irreducibility of 
(the contents of) a membrane

 MSR (Cervesato et al., [FCSW’99])

 Represent nonces using fresh membranes
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Sliding window protocol (SWP)

 SWP: transmission protocol used in TCP

 Sends data items (up to window size) without 
waiting for acks

 Rollbacks if some item is lost

 Channels may lose items and acks

21

sender receiver
data data

ack

unreliable
channel

may lose items

□(send ⇒ ◇ack) ?

may lose items



Conclusions

 Designed and implemented LMNtal as a unifying 
computational model offering fine-grained 
concurrency

 Built an LMNtal IDE as a unified framework of 
computation and verification

 Towards the ideal of “verified software”

 killer app of LMNtal ?

 Underway: state compression, POR

 Ready to use; very low entry barrier

http://www.ueda.info.waseda.ac.jp/lmntal/

(choose LMNtalEditor)
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