
Introducing Symmetry to
Graph Rewriting Systems

with Process Abstraction

Taichi Tomioka, Yutaro Tsunekawa, Kazunori Ueda 
Waseda University, Tokyo

ICGT 2019, Eindhoven, July 14, 2019

Outline of the presentation
• Model checking of graph rewriting systems enjoys the

synergy of two key features:

• Model abstraction is another key technique for reducing
state space and often strengthens model symmetry.

• To make these two ideas work together, we propose an
abstraction technique, UPE (unused process elimination), that
automatically simplifies models based on verification
conditions.

• The whole framework has been developed in the graph
rewriting language LMNtal and its model checker SLIM.

!2

natural way to represent
inherent symmetry of

models

symmetry reduction
based on graph

isomorphism

Topics

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!3

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!4

Topics

Model checking in LMNtal 
Visual Tool (LaViT)
―Tower of Hanoi with one rewrite rule

!5

rewrite rule: 
"move a disk on

top of a bigger one
on a different pole"

initlal state goal stateLTL formula

counterexample path 
and its visualization

Symmetry reduction in model checking

!6

N1 T2
tok=1

C1 N2
tok=1

T1 T2
tok=1

C1 T2
tok=1

N1 T2
tok=2

T1 N2
tok=2

N1 C2
tok=2

T1 T2
tok=2

T1 C2

tok=2

N1 T2
tok=1

C1 N2
tok=1

T1 T2
tok=1

C1T2
tok=1

• States in the same colors are symmetric to each other

• State space on the right is obtained by merging states

Spec. : two processes do not enter the critical 
 section ("C") at the same time

Model : mutual exclusion problem (*)

T1 N2
tok=1

T1 N2
tok=1

N1 N2
tok=1

N1 N2
tok=1

N1 N2
tok=2

(*) A.Miller, A.Donaldson, M.Calder: Symmetry in Temporal Logic Model Checking, ACM CSUR 38(3), 2006

N neutral
T try
C critical

Symmetry reduction + Graph rewriting

!7

N1 T2
tok=1

T1N2
tok=2

In symmetry reduction, we must define 
equivalence relation between states.

In graph rewriting systems, 
symmetry can be naturally regarded 
as graph isomorphism.

Both states are the same  
except their labelsImplementations of graph rewriting  

systems featuring model checking include:
• GROOVE

• LMNtal + SLIM model checker (next slide)

≃
?

philosopher D
with 0 forks

available fork

unavailable
forkA1

B0

C0D0

E0

≃

A0

B1

C0D0

E0

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!8

Topics

LMNtal, a unifying language for  
modeling and programming
• Designed as a model of concurrency (2002) and

implemented as a full-fledged programming language

• unified view of processes, messages, functions and data

structures by atoms, links and membranes

• Evolved into a modeling tool (2007) with

• parallel state-space search and LTL model checking 

 (up to 109 states) and

• IDE (LaViT) with state and state-space visualizers.

• Both extremely useful for understanding models with

concurrency and nondeterminism

• Available open-source from GitHub;  
Portal at https://www.ueda.info.waseda.ac.jp/lmntal/

!9K. Ueda, LMNtal as a Hierarchical Logic Programming Language. Theor. Comput. Sci. 410(46), 2009.

• A rule-based concurrent language for expressing and
rewriting connectivity and hierarchy

• Computation is manipulation of  
(hierarchical) graphs consisting of:

• atoms (simple nodes), each with 

its name and arity

• links for 1-to-1 connectivity

• hyperlinks for multipoint connectivity

• membranes (composite nodes)  

for hierarchy, locality and  
first-class multisets

• Well-defined notion of atomic actions  
(= rewrite steps)

• Allows concise encoding of the lambda calculus [RTA2008]

LMNtal in a nutshell

!10

atom link
membrane

p(L1,R1), {+R1,+L2},
p(L2,R2), {+R2,+L3},
p(L3,R3), {+R3,+L4},
p(L4,R4), {+R4,+L5},
p(L5,R5), {+R5,+L1}.

LMNtal: Syntax

Remarks:

• A well-formed process obeys link conditions 

(e.g., a link occurs at most twice in a process)

• A binary atom, X = Y, called a connector, fuses two links

!11

null atom cellmolecule rule

membranefree link
local link (name 
not important)

free  
→ local

LMNtal: Semantics (1/2)
• Structural congruence reflects the interpretation of

LMNtal terms as processes and graphs

•

!12

(E2) a(U,V,X), b(U,V,W,Y) ≡ b(U,V,W,Y), a(U,V,X) (E9) X=U, a(U) ≡ a(X)

Examples:

LMNtal: Semantics (2/2)

• Reduction relation defined in a standard small-step style

• We regard the semantics ⟦P⟧  
of a process P as the state space 
 (= state transition graph) of P.

!13

structural rules

main reduction rule

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!14

Topics

Symmetry reduction in LMNtal

Bridging these two formalisms is not straightforward.

!15

• Equivalence of processes written as LMNtal terms are
inductively defined as structural congruence  
in a syntax-directed manner
 Symmetry in LMNtal = Structural Congruence

• Standard theory of symmetry reduction is stated using
permutation groups of group theory

Structural Congruence and Group

!16

We need to construct a permutation group E that satisfies:

― Not straightforward due to the inductive nature of P and ≡.

We defined an underlying set of E as the least fixed point of an
inductive function F (details omitted) and established the bridge
between ≡ and .

Now, from the known result on symmetry reduction, we have
the soundness of symmetry reduction: For any LTL formula ϕ,

syntactic mapping on P

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!17

Topics

Symmetry of graphs is not sufficient

!18

States of dining philosopher's problem with names are not 
isomorphic

→ Symmetry reduction does not work

Fork Empty (no fork)

≄
Not isomorphic 

due to the names

A1

B0

C0D0

E0

A0

B1

C0D0

E0

Philosopher X 
(with i forks)Xi

Process Abstraction

!19

Abstracting their names reveals the symmetry of states

A1

B0

C0D0

E0 ≄
Not isomorphic 

due to the names

≃
Isomorphic 

by ignoring the names

Abstraction Abstraction

A0

B0

C1D0

E0

X1 X0

X0

X0 X0

X0

X1

X0

X0

X0

Process Abstraction

!20

Symmetry reduction is done by abstracting all states in a state space

A

B

CD

E

A

B

CD

E

A

B

CD

E

x

x

xx

x

x

x

xx

x

x

x

xx

x

Abstraction

IsomorphicNot Isomorphic

one-step 
rewriting

one-step 
rewriting

How to abstract processes?

!21

Sometimes abstraction loses the soundness of model checking.

For example, consider two specifications below:

(1) the model does not cause deadlock

(2) philosopher A eats before philosopher B

A

B

CD

E X

Abstraction

Spec (1) is verified in both models (abstracted and not abstracted),  
but Spec (2) cannot be verified in the abstracted model

X

X

XX

Unused Process Elimination

!22

UPE (Unused Process Elimination) abstracts part of a process  
not appearing in rewrite rules or specifications.

UPE automatically and statically decides whether a process
should be abstracted.

(1) no deadlock?
A

B

CD

E

A

B

CD

E

x

x

xx

x

(2) A eats before B?

Abstracted

Not abstracted

Basics of LMNtal UPE
1. Mark removable atoms not appearing in rewrite rules or

specifications

2. Delete removable atoms

3. Terminate dangling links with some atoms (we used '#')

phi(a, R1,L1), {+R1,+L2},
phi(b, L2,R2), {+R2,+L3},
phi(c, L3,R3), {+R3,+L4},
phi(d, L4,R4), {+R4,+L5},
phi(e, L5,R5), {+R5,+L1}.

%% grab a left fork
{+X,+L}, phi(N,L,R) :-
 {-X,+L}, phi(N,L,R).

%% grab a right fork
{-X,+L}, phi(N,L,R), {+R,+Y} :-
 {-X,+L}, phi(N,L,R), {+R,-Y}.

%% release forks
{-X,+L}, phi(N,L,R), {+R,-Y} :-
 {+X,+L}, phi(N,L,R), {+R,+Y}.

Named dining philosopher's problem in LMNtal

A_can_eat :=
 {-X,+L},phi(a,L,R),{+R,-Y} :-
B_can_eat :=
 {-X,+L},phi(b,L,R),{+R,-Y} :-
Someone_can_eat :=
 {-X,+L},phi(_,L,R),{+R,-Y} :-

Specs

Basics of LMNtal UPE
1. Mark removable atoms not appearing in rewrite rules or

specifications

2. Delete removable atoms

3. Terminate dangling links with some atoms (we used '#')

phi(a, R1,L1), {+R1,+L2},
phi(b, L2,R2), {+R2,+L3},
phi(c, L3,R3), {+R3,+L4},
phi(d, L4,R4), {+R4,+L5},
phi(e, L5,R5), {+R5,+L1}.

A_can_eat :=
 {-X,+L},phi(a,L,R),{+R,-Y} :-
B_can_eat :=
 {-X,+L},phi(b,L,R),{+R,-Y} :-
Someone_can_eat :=
 {-X,+L},phi(_,L,R),{+R,-Y} :-

Named dining philosopher's problem in LMNtal

%% grab a left fork
{+X,+L}, phi(N,L,R) :-
 {-X,+L}, phi(N,L,R).

%% grab a right fork
{-X,+L}, phi(N,L,R), {+R,+Y} :-
 {-X,+L}, phi(N,L,R), {+R,-Y}.

%% release forks
{-X,+L}, phi(N,L,R), {+R,-Y} :-
 {+X,+L}, phi(N,L,R), {+R,+Y}.

Specs

Basics of LMNtal UPE
1. Mark removable atoms not appearing in rewrite rules

or specifications
2. Delete removable atoms

3. Terminate dangling links with some atoms (we used '#')

phi(a, R1,L1), {+R1,+L2},
phi(b, L2,R2), {+R2,+L3},
phi(c, L3,R3), {+R3,+L4},
phi(d, L4,R4), {+R4,+L5},
phi(e, L5,R5), {+R5,+L1}.

Named dining philosopher's problem in LMNtal

A_can_eat :=
 {-X,+L},phi(a,L,R),{+R,-Y} :-
B_can_eat :=
 {-X,+L},phi(b,L,R),{+R,-Y} :-
Someone_can_eat :=
 {-X,+L},phi(_,L,R),{+R,-Y} :-

%% grab a left fork
{+X,+L}, phi(N,L,R) :-
 {-X,+L}, phi(N,L,R).

%% grab a right fork
{-X,+L}, phi(N,L,R), {+R,+Y} :-
 {-X,+L}, phi(N,L,R), {+R,-Y}.

%% release forks
{-X,+L}, phi(N,L,R), {+R,-Y} :-
 {+X,+L}, phi(N,L,R), {+R,+Y}.

Specs

Basics of LMNtal UPE
1. Mark removable atoms not appearing in rewrite rules or

specifications

2. Delete removable atoms
3. Terminate dangling links with some atoms (we used '#')

phi(, R1,L1), {+R1,+L2},
phi(, L2,R2), {+R2,+L3},
phi(, L3,R3), {+R3,+L4},
phi(, L4,R4), {+R4,+L5},
phi(, L5,R5), {+R5,+L1}.

Named dining philosopher's problem in LMNtal

A_can_eat :=
 {-X,+L},phi(a,L,R),{+R,-Y} :-
B_can_eat :=
 {-X,+L},phi(b,L,R),{+R,-Y} :-
Someone_can_eat :=
 {-X,+L},phi(_,L,R),{+R,-Y} :-

%% grab a left fork
{+X,+L}, phi(N,L,R) :-
 {-X,+L}, phi(N,L,R).

%% grab a right fork
{-X,+L}, phi(N,L,R), {+R,+Y} :-
 {-X,+L}, phi(N,L,R), {+R,-Y}.

%% release forks
{-X,+L}, phi(N,L,R), {+R,-Y} :-
 {+X,+L}, phi(N,L,R), {+R,+Y}.

Specs

Basics of LMNtal UPE
1. Mark removable atoms not appearing in rewrite rules or

specifications

2. Delete removable atoms

3. Terminate dangling links with some atoms (we used '#')

phi(#, R1,L1), {+R1,+L2},
phi(#, L2,R2), {+R2,+L3},
phi(#, L3,R3), {+R3,+L4},
phi(#, L4,R4), {+R4,+L5},
phi(#, L5,R5), {+R5,+L1}.

Named dining philosopher's problem in LMNtal

A_can_eat :=
 {-X,+L},phi(a,L,R),{+R,-Y} :-
B_can_eat :=
 {-X,+L},phi(b,L,R),{+R,-Y} :-
Someone_can_eat :=
 {-X,+L},phi(_,L,R),{+R,-Y} :-

%% grab a left fork
{+X,+L}, phi(N,L,R) :-
 {-X,+L}, phi(N,L,R).

%% grab a right fork
{-X,+L}, phi(N,L,R), {+R,+Y} :-
 {-X,+L}, phi(N,L,R), {+R,-Y}.

%% release forks
{-X,+L}, phi(N,L,R), {+R,-Y} :-
 {+X,+L}, phi(N,L,R), {+R,+Y}.

Specs

UPE and Membranes

!28

• UPE may add a special nullary atom in order to indicate that
there were some atoms in the membrane.

• Free links crossing a membrane are terminated and not
deleted.

Membranes of LMNtal needs further care in the design of UPE.

#

#
##

delete 3 unused
atoms, but then

an empty cell matches 
a rule "{} :- ..."

so make it non-empty

free link of a cell ... must be kept.delete 2 unused
atoms, but ...

UPE Commutes with state space construction

Theorem: The following two state spaces deduced from a
process P are equal.

• It is practically an important property because applying
UPE to all states of a model is very costly.

!29

State space starting
with UPE(P) and
constructed in a
standard way

State space whose
states are obtained by
applying UPE to each
states of ⟦P⟧

UPE: State space reduction
Theorem: UPE preserves structural congruence.

• The number of varieties of structurally congruent
processes does not increase and may decrease.

• The quotient of a state space by structural congruence
does not become larger after UPE.

!30

UPE: Preservation of rewritablity
• If a process can be rewritten by some rule, the abstracted

process obtained by UPE can be rewritten by the same rule.

Theorem: For state spaces ⟦P⟧=(SP, RP, P) and  
UPE(⟦P⟧)=(SP#, RP#, UPE(P)), 
 
 
holds.

• UPE is a homomorphism between state spaces.

!31

UPE: Soundness of Model Checking
• Because UPE preserves rewritability, it also preserves

labeling functions for model checking.

• These two preservation properties lead to the soundness
in model checking.

!32

Theorem:

For any LTL formula φ, UPE(⟦P⟧) ⊨ φ ⇒ ⟦P⟧ ⊨ φ .

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!33

Topics

Experiments
• Implemented various concurrent algorithms[2] in LMNtal

!34

Problem # of States # of States
(UPE)

Dekker 364 182
Peterson 190 95

Doran-Thomas 576 288
Udding's (3 processes) 7619 1478

Philosophers 16805 3365
Philosophers (no deadlock) 16806 16806

❖ Dekker, Peterson, Doran-Thomas runs in 2 processes

❖ Philosophers (no deadlock) has a philosopher who

picks up an opposite fork first.
[2] Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison- Wesley (2006)

Experiments

!35

Udding's starvation-free algorithm Dining Philosophers Problem

1/N! 1/N

The number of states are reduced depending on the symmetry of models.

Star Ring

• Symmetry Reduction in Model Checking

• LMNtal

• Structural Congruence and Symmetry Reduction

• Process Abstraction

• Experiments

• Conclusion

!36

Topics

Conclusion and Future Work
1. We developed a method for automatically reducing state

space by static model abstraction that works in a concrete
setting.

2. We showed the soundness of abstraction by reducing
equivalence relation induced by the abstraction to
equivalence relation in the source language LMNtal,  
i.e., without introducing additional formalisms.

3. We established a formal connection between

• symmetry reduction grounded by the semantics of

LMNtal and

• standard theory of symmetry reduction based on

symmetric group.

✦ We are interested in applying predicate abstraction to graph

rewriting systems. It will allow us to more powerful
symmetry reduction.

!37

Thank you for the attention!

(Various demos welcome during the conference; contact us.)
!38

state
transition
diagram

of a

simple

sliding

windows

protocol 

in LMNtal

