
The Exciting Time and Hard-Won Lessons
of the Fifth Generation Computer Project

Logic/Constraint Programming
and Concurrency

Kazunori Ueda, Waseda University

(Formerly with ICOT and NEC (1983-1993))

FLOPS 2016, March 4, 2016

Overview of the FGCS Project

Overview of the FGCS Project
Kernel Language

Constraint-Based Concurrency
Demos

Perspectives

3

The FGCS Project (1982–1993)

 Fifth Generation Computer Systems project (54BJPY)

 The Challenge: Bridging Knowledge Information
Processing and Parallel Processing

Large-scale Parallel Processing

Knowledge Information Processing

???

cf. Computer architecture as the
hardware/software interface

4

The FGCS Project (1982–1993)

 Fifth Generation Computer Systems project (54BJPY)

 The Challenge: Bridging Knowledge Information
Processing and Parallel Processing

Large-scale Parallel Processing

Knowledge Information Processing

???
Big gap,

Vast design space

cf. Computer architecture as the
hardware/software interface

5

The FGCS Project (1982–1993)

 Fifth Generation Computer Systems project (54BJPY)

 The Challenge: Bridging Knowledge Information
Processing and Parallel Processing

Large-scale Parallel Processing

Knowledge Information Processing

???
Big gap,

Vast design space

cf. Computer architecture as the
hardware/software interface

Much freedom,
High responsibility

6

The FGCS Project (1982–1993)

 Many hypes and myths, but its theme was:

“to develop a methodology and a computer system
that bridges Knowledge Information Processing and
Parallel Processing”

Large-scale Parallel Processing

Knowledge Information Processing

??? (= “Kernel Language”)

M
id

d
le

-o
u
t

a
p
p
ro

a
c
h

Who conducted R&D, and where
7

ICOT Colleagues reunion in Jan. 2014

ICOT Research Center
21st floor (+ machine rooms etc.)

8

Starting with a Working Hypothesis

 Logic Programming (in a broad sense) chosen
as the working hypothesis

 for two reasons

Large-scale Parallel Processing

Knowledge Information Processing

Logic Programming

Research question here

9

Kernel Languages

 Kernel Languages as the core of the project

 KL0: Sequential kernel language for startup

 KL1: Parallel kernel language for systems and apps

 (KL2: Knowledge representation language)

Large-scale Parallel Processing

Knowledge Information Processing

Logic-based Kernel Language

M
id

d
le

-o
u
t

a
p
p
ro

a
c
h

10

Outcome of the Project as of 1993

 Basic structure:

Large-scale Parallel Processing

Knowledge Information Processing

Concurrent Logic Programming

Logic Programming

Outcome of the Project as of 1993
11

12

Outcome of the Project as of 1993

 Some key outcomes:
 Kernel Language (GHC/KL1)
 Parallel OS (PIMOS) totally written in KL1
 Parallel Inference Machine (PIM with 512 & 256PEs)
 Model Generation Theorem Prover (MGTP)

Large-scale Parallel Processing

Knowledge Information Processing

Concurrent Logic Programming

Logic Programming

M
id

d
le

-o
u
t

a
p
p
ro

a
c
h

Hardware built and heavily used
13

PSI-I (Dec. 25, 1983)
35KLIPS for KL0

80MB, 100 copies
SIMPOS in ESP
+ many apps

PSI-II (Dec. 1986)
330 (400) KLIPS for KL0

with 6.67MHz, WAM, 300 copies

D.H.D. Warren

Kazuhiro Fuchi

Hardware built and heavily used
14

Multi-PSI (Mar. 1988)
64 PSI-II’s in 2D mesh

5MLIPS for KL1, 6copies
PIMOS (standalone,
multi-user OS in KL1,
44KLOC in 0.5years)

PIM/m (1992)
256 PEs in 2D mesh (256 PEs)

200 MLIPS, PIMOS (200KLOC) in KL1

Shunichi Uchida

Kernel Language [CACM March 1993 issue]

Overview of the FGCS Project
Kernel Language

Constraint-Based Concurrency
Demos

Perspectives

KL1 Design Task Group (April 1983-)

 Led by Koichi Furukawa

 Requirements included:

 General-Purpose

 Parallel algorithms

 Operating systems

 Meta-programming

 Invited Keith Clark, Steve Gregory (PARLOG) and
Ehud Shapiro (Concurrent Prolog) in October 1983

 Had many meetings and exciting discussions

16

Keith Clark Ehud Shapiro

Concurrent Logic Languages

 Syntax: Guarded clauses (cf. Guarded Commands)

 Semantics:

 Dataflow synchronization (cf. sequentiality)

 Commitment (don’t-care nondeterminism)

 Communicating Parallel Processes

Processes ↔ (AND-parallel) Goals
(actors, agents, objects, …)

Channels ↔ Logical variables used as streams

17

18

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC *

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCNCHR

Single Idea:

Dataflow

Synchronization

* Not to be confused with
Glasgow Haskell Compiler

19

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCNCHR

20

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCNCHR

CCS (Process Algebra)

ACP (Process Algebra)
SOS

(Theoretical) CSP

ABCL

Linear Logic Natural Semantics

MultiLisp

Id Nouveau Erlang

Constraint LP

Pi-Calculus

LO

Some useful discussions (1983)

 Norihisa Suzuki (Univ. Tokyo, working on Smalltalk):
“Building the entire system without resort to side effects
is the FGCS project’s right way to go.”

 Shunichi Uchida (ICOT):
“The computational model of KL1 should not assume
any particular granularity of underlying parallel
hardware.”
(= Kernel Language should embrace as fine-grained
concurrency as possible.)

21

Some useful discussions (1983)

 Ehud Shapiro (Weizmann Inst., in response to the first
requirement specification of KL1)
“Too many good features.”

 The TG’s basic research question then became:

“What’s the minimum set of language constructs that
turn Logic Programming into an expressive concurrent
language?” (Occam’s Razor, cf. CSP/Occam)

 Concurrent Prolog chosen in February 1984 as the
“refined working hypothesis” of KL1

– with some uneasiness

22

23

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCN

CCS (Process Algebra)

(Theoretical) CSP

Linear Logic

Pi-Calculus

CHR

ABCL

MultiLisp

LO

SOS

Natural Semantics

Erlang
Constraint LP

Addressing the research question

Three approaches to dataflow synchronization

 PARLOG: I/O modes (polarities) to goal arguments

 Concurrent Prolog: Read-only annotation given to
logical variables (cf. capabilities), which allowed

 Incomplete messages (messages with reply boxes)

 Channel mobility

Highly expressive (cf. -calculus in late 1980’s),
but efficient distributed implementation seemed rather
difficult (after intensive implementation effort).

24

Addressing the research question

 Guarded Horn Clauses (GHC) (Dec. 1984) [LNCS 221]:

Guards are suspended if they attempt to export
bindings

 Incomplete messages and channel mobility retained
with no additional syntactic constructs

 Quickly adopted as the new working hypothesis of KL1
(early 1985)

 welcomed by the hardware group

 Lesson: simplicity was the key to the consensus.

25

GHC put in another way:

 Parallel execution of logic programs requires the
management of multiple binding environments.

Q: “What’s the minimal mechanism that enables
parallel execution of logic programs in a single binding
environment?”

A: “Just suspend computation which would otherwise
publish bindings!”

Q: “Then, when can a process publish bindings?”

A: “When it’s the only one to do so.”

26

Guarded Horn Clauses [LNCS 221]
27

 Working prototype implementation (in DEC-10 Prolog)
in 1.5 days

Adapted from Concurrent Prolog compiler on top of
Prolog [SLP 1985]

www.ueda.info.waseda.ac.jp/~ueda/software/ghcsystem-swi.tgz

Another prototype implementation in CAML by
Gerard Huet (INRIA) in a few days (1988)

 Quickly subsetted to Flat GHC (mid 1985)

 Encoding of search (findall) devised [ICLP 1986]

Guarded Horn Clauses (end of 1984)
28

GHC syntax

::= set of R’s

::= A :- | B

::= multiset of G’s

::= T1=T2 | A

::= p(T1, ..., Tn), p  ‘=’

::= (as in first-order logic)

::= :- B

P

R

B

G

A

T

Q

(program)

(program clause)

(body)

(goal)

(non-unif. atom)

(term)

(goal clause)

29

GHC syntax

::= set of R’s

::= A :- | B

::= multiset of G’s

::= T1=T2 | A

::= p(T1, ..., Tn), p  ‘=’

::= (as in first-order logic)

::= :- B

P

R

B

G

A

T

Q

(program)

(program clause)

(body)

(goal)

(non-unif. atom)

(term)

(goal clause)

rewrite rule with
ask, choice,
reduction & hiding

tell

parallel

composition

30

From GHC to KL1

 GHC = concurrent language model

 KL1 = parallel language with

 mapping

 protection

 Lesson: separation of concerns

 concurrency vs. parallelism

 concurrency vs. search (cf. multiparadigm langs)

 reduction vs. communication
(atomic vs. eventual tell controversy, cf. -calculus)

31

Constraint-Based Concurrency
— what we developed in mid 1980s, in retrospect

Overview of the FGCS Project
Kernel Language

Constraint-Based Concurrency
Demos

Perspectives

33

Marriage of CLP and CLP

 Concurrent Constraint Programming (late 1980’s)

 Formalization of Concurrent Logic Programming
inspired by Constraint Logic Programming

 Logical view of communication (Ask / Tell)

 Abstraction and generalization of data domains

 Constraint Based Concurrency based on

 single-assignment (write-once) channels and

 constructors

(cf. Name-Based Concurrency, i.e., CCS, CSP, , etc.)

Single-Assignment Channels

 Also known as logical variables

 Can be written at most once

 by tell ing a constraint (= partial information) on the
value of the channel (unification)

 e.g., tell S=[read(X)|S’]

 Reading is non-destructive

 by ask ing if a certain constraint is entailed
(term matching)

 e.g., ask A S’(S=[A|S’])

 covers both input and match in the -calculus

34

Single-Assignment Channels

 The set of all published constraints (tells) forms a
constraint store.

 Since reading is non-destructive, constraint store is
monotonic.

 Still, it’s amenable to garbage collection because of
its highly local nature.

35

Constraint-Based Communication

 Asynchronous

 tell is an independent process (as in the
asynchronous -calculus)

 Polyadic (“many-place”)

 constructors provide built-in structuring and
encoding mechanisms

 essential in the single-assignment setting

 Mobile

 Non-strict

36

Constraint-Based Communication

 Asynchronous

 Polyadic

 Mobile – channel mobility in the sense of the -calculus

 Channels

 can be passed using another channel

 can be fused with another channel

 are first-class (processes aren’t)
 available since 1983 (Concurrent Prolog)

 Non-strict

37

Constraint-Based Communication

 Asynchronous

 Polyadic

 Mobile

 Non-strict

 “Constraint-based” means computing with partial
information

 Yielded many programming idioms, including

 (streams of)* streams

 difference lists

 messages with reply boxes

38

Channels in CBC Are Local Names

 Fallacy: constraint store is global, shared, single-
assignment memory

 Channels are created as fresh local names that cannot
be forged by the third party and can be transmitted only
by using an existing channel

 e.g., p([create(S)|X’]) :- | server(S), p(X’).

 Thus, constraint store allow us to model secure, mobile,
peer-to-peer communication network.

39

Demos

Overview of the FGCS Project
Kernel Language

Constraint-Based Concurrency
Demos

Perspectives

KLIC (KL1-to-C translator)

 Developed in the Two-Year Follow-up project
(1993-1994, 2.8BJPY)

 Still runs (made to run!) in parallel on shared-memory
Linux machines with many cores

 Single-core execution is 10x faster than 10 core
execution of 20 years ago.

 Lesson: Old software is lightweight and fast. Why not
keep it alive?

 ... though C applications require maintenance.

41

MGTP/G

 Model-Generation Theorem Prover

 Won IJCAI’93 award by solving open problems in
group theory

 Apps: Disjunctive Databases, Abductive Inference,
Legal Inference (HELIC-II), Constraint Satisfaction, …

 Handles clauses of the form
C1: p(X), s(X)  false.
C2: q(X), s(Y)  false.
C3: q(X)  s(f(X)).
C4: r(X)  s(X).
C5: p(X)  q(X); r(X).
C6: true  q(a); q(b).

42

MGTP/G

 Handles of the form
C1: p(X), s(X)  false.
C2: q(X), s(Y)  false.
C3: q(X)  s(f(X)).
C4: r(X)  s(X).
C5: p(X)  q(X); r(X).
C6: true  p(a); q(b).

 Compiled into KL1,
translating OR-parallelism
into controlled AND-paralleism

43

p(a) q(b)

r(a)q(a) s(f(b))

s(f(a)) s(a)

 



C6



C5 C5 C3

C3 C4 C2

C2 C1

Perspectives

Overview of the FGCS Project
Kernel Language

Constraint-Based Concurrency
Demos

Perspectives

45

Offspring of Concurrent LP

 Concurrent Constraint Programming (late 1980’s)

 Inspired by Constraint Logic Programming

 Logical view of communication (Ask / Tell)

 Generalization of data domains (esp. multisets)

 CHR (Constraint Handling Rules) (early 1990’s)

 Allows multisets of goals in rule heads

 An expressive multiset rewriting language

 Many applications (esp. constraint solvers)

 Timed / Hybrid CCP (early-mid 1990’s)

 Introduced time, defaults, and continuous change

 High-level language for timed and hybrid systems

46

Offspring of Concurrent LP

 Languages for High-Performance Parallel Computing
and Grids (early 1990’s and on)

 PCN, CC++, HPC++, swift-lang

Dear Ueda-san:
The wonders of Google Scholar citation alerts led me to your
recent paper on FGCS, which I enjoyed reading.
…
While PCN and CC++ are long gone, we continue to work with
Swift (swift-lang.org), which is really CLP in another guise.
My best wishes from Chicago.

 X10 (mid 2000’s)

 IBM’s solution to HPC languages

from Ian Foster @ ANL

47

Offspring of Concurrent LP

 LMNtal (2002)

 Integration of processes and data, single name
category

 (FP) functions vs. constructors

 (LP) predicates vs. functions

Multiset (many-to-many) rewriting (a la CHR) with
zero-assignment logical variables
(= graph rewriting language)

 Allows encoding of various calculi including strong 

 State-space search is now back with LTL model
checking

http://www.ueda.info.waseda.ac.jp/lmntal/

Lessons learned [ALP Newsletter 2006]

(iv) different concerns should be separated to understand
things analytically; only after that they could be integrated.

(v) A good way to understand and examine a language
definition is to implement it; it forces us to consider every
detail of the language.

(vii) The small-step semantics of a language construct does not
necessarily express the real atomic operations of the
construct.

(xx) Logic programming today embraces diverse interesting
technologies beyond computation logic as well as those
within computational logic.

48

49

Further Readings

 The Fifth Generation Project: Personal Perspectives

- CACM, 36(3), 1993 (D.H.D. Warren & E. Shapiro, eds.)

 Kazuhiro Fuchi (ICOT Director) pp.49-54

 Robert Kowalski pp.54-60

 Koichi Furukawa pp.60-65

 Kazunori Ueda pp.65-76

 Ken Kahn pp.77-82

 Takashi Chikayama (principal implementor of
KL1/PIMOS) pp.82-90

 Evan Tick pp.90-100

50

Further Readings

 Concurrent Logic/Constraint Programming: The Next
10 Years
- In The Logic Programming Paradigm: A 25-Year Perspective,
Springer, 1999, pp. 53-71.

 Logic Programming and Concurrency: a Personal
Perspective
- The ALP NewsLetter, 19(2), 2006 (6 pages).

 Fifth-Generation Computer Systems Museum
- AITEC-ICOT Archives DVD, 2005

Thank you for your attention.

Questions and off-line discussions welcome.

52

Computing paradigms must change . . .

20th century

von Neumann architecture
+ sequential computation

Turing Machines
(computability)

RAM model (complexity)

-calculus (programming
languages)

Floating point arithmetic
(numerical analysis)

21st century

multi-core / clusters /
Grid / distributed /
embedded / molecular / ...

53

Computing paradigms must change . . .

20th century

von Neumann architecture
+ sequential computation

Turing Machines
(computability)

RAM model (complexity)

-calculus (programming
languages)

Floating point arithmetic
(numerical analysis)

21st century

multi-core / clusters /
Grid / distributed /
embedded / molecular / ...

What to teach at

Universities?

Concurrency

Everywhere!

54

Concurrent Logic/Constraint
Programming:

The Next 10 Years

Kazunori Ueda

Waseda University

Shakertown Meeting, April 1998

55

Grand Challenges

A “-calculus” in concurrency field

cf. X-calculus (calculus of X)

X: , action, join, gamma, ambient, ...

Common platform for non-conventional
computing (parallel, distributed,
embedded, real-time, mobile, ...)

Type systems (in the broadest sense) and
frameworks of analysis for both logical and
physical properties

56

Two Approaches to
Addressing Novel Applications

Synthetic

– More expressive power

– Integration of features

Analytic

– Identifying smaller fragments of LP with
nice and useful properties

cf. Turing machines vs. pushdown
automata

– Separation prior to integration

57

LP vs. Concurrent LP

Concurrent LP = LP + choice

= LP – completeness

???
Choice is essential for specifying arbitration,
changes denotational semantics drastically,
but otherwise . . .

58

Concurrent LP

= LP + directionality (of dataflow)

= Logic

+ embedded concurrency control

Moded Concurrent LP / CCP:

ask + tell + strong moding

can/should share more interest with (I)LP

LP vs. Concurrent LP

Guarded Horn Clauses and KL1

Weakest Concurrent Constraint Language

– ask + eventual tell (asynchronous)

– parallel composition

– hiding

– nondeterministic choice

A realistic language as well as a model

– value passing

– data structures (cf. CCS, CSP, . . .)

59

60

Data- and demand-driven communication

Messages with reply boxes

First-class channels (encoded as lists or
difference lists)

Replicable read-only data

 Implicit redirection across sites

Logical Variables as
Communication Channels

I/O Modes: Motivations

 Our experience with concurrent logic languages (Flat
GHC) shows that logical variables are used mostly as
cooperative communication channels with statically
established protocols (point-to-point, multicasting)

 Non-cooperative use may cause collapse of the
constraint store

 e.g., X=1  X=2  12 entails anything!

61

The Mode System of Moded Flat GHC

 Assigns polarity (+/–) structures to the arguments of
processes so that the write capability of each part of
data structures is held by exactly one process

 Unlike standard types in that modes are resource-
sensitive

 Moding rules are given in terms of mode constraints (cf.
inference rules)

 Can be solved (mostly) as unification over mode graphs
(feature graphs with cycles)

62

An Electric Device Metaphor

 Signal cables may have
various structures (arrays of
wires and pins), but

 the two ends of a cable,
viewed from outside,
should have opposite
polarity structures, and

 a plug and a socket
should have opposite
polarity structures when
viewed from outside. goal = device

variable = cable

63

Moding: Implications and Experiences

 A process can pass a (variable containing) write
capability to somebody else, but cannot duplicate or
discard it.

 Two write capabilities cannot be compared

 Read capabilities can be copied, discarded and
compared

 cf. Linearity system

 Extremely useful for debugging – pinpointing errors
and automated correction (!)

 Encourages resource-conscious programming

64

Moding: Implications and Experiences

 Encourages resource-conscious programming by
giving weaker mode constraints to variables with
exactly two occurrences
 A singleton variable constrains the mode of its

position to fully input or fully output.

 A variable with three or more occurrences constrain
the modes of more positions.

Weaker constraints lead to more generic (=
more polymorphic) programs

well-moded ill-moded
(well-typed) (ill-typed)

65

