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The ability to handle evolving graph structures is important both for programming languages and
modeling languages. Of various languages that adopt graphs as primary data structures, a graph
rewriting language LMNtal provides features of both (concurrent) programming languages and mod-
eling languages, and its implementation unifies ordinary program execution and model checking
functionalities. Unlike pointer manipulation in imperative languages, LMNtal allows us to manip-
ulate graph structures in such a way that the well-formedness of graphs is an invariant guaranteed
by the language itself. However, since the shapes of graphs can be complex and diverse compared
to algebraic data structures such as lists and trees, it is a non-obvious important task to formulate
types of graphs to verify individual programs. With this motivation, this paper discusses LMNtal
ShapeType, a type checking framework that applies the basic idea of Structured Gamma to a con-
crete graph rewriting language. Types are defined as generative grammars written as LMNtal rules,
and type checking of LMNtal programs can be done by exploiting the model checking features of
LMNtal itself. We gave a full implementation of type checking using the features of the LMNtal
meta-interpreter.

1 Introduction

The ability to handle dynamically evolving graph structures is important both for programming languages 
and modeling languages. In programming, graphs appear both as data structures supporting efficient 
algorithms and as process structures exchanging messages through channels. In modeling, network 
structures can be found in many fields from the Internet to transportation, which can be modeled as 
graphs. Of various languages that adopt graphs as primary data structures, including GP 2 [1] and 
GROOVE [7], a graph rewriting language LMNtal [16] provides features of programming languages 
(including I/O and various other APIs) and those of modeling languages (including state space search). 
Its implementation, SLIM [8] (available from GitHub), provides ordinary program execution and parallel 
model checking (with 109 states) in a single framework. LMNtal allows us to handle data structures that 
cannot be succinctly modeled in functional languages. An example is a skip list [10] in Fig. 1(a), a 
linked list with additional edges skipping some nodes, which can be encoded into an LMNtal graph as 
in Fig. 1(b). Although LMNtal has simple syntax and semantics consisting of atoms, links and rewrite 
rules, it is Turing-complete and allow the encoding of various process calculi and the strong reduction of 
the λ -expressions in which both term structures and bound variables are represented as graphs [15].

Although LMNtal programs are pointer-safe in the sense that phenomena corresponding to dangling 
pointers and unintended aliasing in imperative languages never happen, it is possible that a graph with 
an unexpected shape is generated as a result of rewriting or computation gets stuck. For instance, see the 
two rewrite rules in Fig. 2. While the correct rule preserves the structure of a skip list, the incorrect one 
destroys the structure. Appropriate static type checking would detect such errors at compile time.
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Figure 1: An example of skip list: (a) with pointers, (b) as an LMNtal graph. An arrowhead of each
non-unary atom indicates the first argument and the ordering of arguments.

n2 n1 n2 n2:- n2 n1 n2 n2:-
correct incorrect

Figure 2: Example rules for skip list.

LMNtal ShapeType [19] is a type checking framework for LMNtal inspired by Shape types [5] which
in turn is based on Structured Gamma [6]. Types are defined as generative grammars represented by
rewrite rules of LMNtal. This makes it possible to do type checking by the non-deterministic execution
of SLIM. Positioning a type description language as a sublanguage of the host language and making full
use of the functionalities of the latter’s implementation is a major strength of the present approach.

LMNtal ShapeType provides two basic type checking algorithms. One is graph type checking to
check that a given graph is of the specified type. The other is rule type checking to check that a given
rule will not destroy the structure of typed graphs.

The main contributions of this paper are threefold. First, we formalize LMNtal ShapeType addressing
various subtleties. In previous studies, rule type checking had no explicit algorithm or correctness proof.
Second, we expand the expressive power of the type checking. In order to handle constraints such as
the balancing of trees and the number of elements an “express” link of a skip list can skip, we propose
extensive types and indexed types1 as new classes of graph types which are broader than context-free
grammars. Finally, we propose a unified approach to check the type safety of functional atoms, i.e., atoms
corresponding to functions (as opposed to data constructors) in other languages. In existing methods,
type safety meant that each rewriting step would not destroy the structure of typed graphs. However, we
often need to perform multi-step operations which may result in graphs of different types. We introduce
a design pattern called functional atoms to check the type safety of such operations.

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 introduces
Flat LMNtal, the base language of the present work. Section 4 introduces LMNtal ShapeType and
describes its type checking algorithms. Section 5 describes notable properties of LMNtal ShapeType.
Section 6 introduces functional atoms and shows how to check their type safety. Section 7 discusses
implementation.

1A variety of graph type definitions including the ones introduced in this paper can be found in http://bit.ly/

LMNtalShapeTypeEx.

94

GCM 2021 Pre-Proceedings

http://bit.ly/LMNtalShapeTypeEx
http://bit.ly/LMNtalShapeTypeEx


N. Yamamoto & K. Ueda

2 Related Work

There are several typing frameworks for graphs. Graph types [9] are a framework based on regular
expressions. Structured Gamma [6] is a framework for graphs in which types are defined by production
rules in context-free grammar. Shape types [5] are a subset of Structured Gamma and handle types which
make the type checking algorithm complete. These methods ensure that graph structures expressed using
pointers in C-like languages are consistent with the type definitions and that one-step operations on the
graph structures will not affect the types of the structure. An algorithm proposed in [2] is able to handle
shape-changing computation by specifying intermediate shapes, whereas our approach achieves the same
objective using functional atoms. Besides, these methods are based on networks of pointers, and express
graph edges by names (such as ‘next’) and graph nodes by variables. This style is dual of our approach
in which edges are expressed by α-convertible variables and nodes are expressed by atom names (such
as ‘cons’). Although various formalisms of graph grammars [13] are well studied for decades, our
technique, formulated in the framework of a practical concrete language, differs from those in many
respects including the formulation of graphs and rewriting.

For our base language LMNtal, the method of [17] deals with ‘microscopic’ properties by giving
capability types, which represent both polarities and sharing of (hyper)links, to local connection between
nodes, while LMNtal ShapeType handles ‘macroscopic’ graph structures, i.e., shapes.

Separation logic [11] is well studied for reasoning about pointer structures, but the approach is dif-
ferent from ours in several respects: it deals with low-level languages and properties, while we consider
graph structures formed by higher-level languages, abstracting pointers and heaps. Reasoning with sep-
aration logic uses proof assistants except for certain properties, while our objective is to pursue what
properties can be established automatically using rather simple typing framework.

There are a lot of studies on handling quantitative properties in type systems [3][12]. Most of them
enhance type systems with dependent types and employ decision procedures such as constraint solvers.
While we pursue a somewhat close approach (Section 5.4), we also pursue an approach that does not
employ numerical types for broader applications in mind (Section 5.1).

3 LMNtal: Graph Rewriting Language

In order to focus on the shape properties of graph rewriting in a concrete setting but without unnecessary
complication, we consider a subset of LMNtal, called Flat LMNtal, which omits another structuring
mechanism called membranes. This results in a significantly simpler fragment compared to the original
setting [16]. We do not handle guards (for operations on built-in data types) or hyperlinks (for multi-point
connectivity) either, but this core language still provides a powerful structuring mechanism. Hereinafter
we simply call this subset LMNtal.

3.1 Syntax

The syntax of LMNtal is shown in Fig. 3. An LMNtal program is represented as a pair of a graph G (a
multiset of atoms) and a ruleset R (a multiset of rewrite rules). This pair is called a process. An atom
consists of an m-ary atom name p followed by m totally ordered link names X1, . . . ,Xm. Names starting
with capital letters are interpreted as link names, and others as atom names. The pair of the name and the
arity of an atom are referred to as the functor of the atom and written as p/m. Atoms and links correspond
to nodes and edges in graph theory, respectively. Unlike many other graph rewriting formalisms, graphs
of LMNtal are defined in a syntax-directed manner and each atom has its own arity.
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� �
Process ::= G,R

Graph G ::= 0 (null)
| p(X1, . . .,Xm) (atom, m≥ 0)
| G,G (molecule)

Ruleset R ::= 0 (null)
| [RuleName@@ ] G:- G (rule)
| R,R (molecule)� �
Figure 3: Syntax of LMNtal.

In LMNtal, a multiset of atoms stands for an undirected multigraph, i.e., a graph that al-
lows multi-edges and self-loops. For instance, a multiset of atoms a(L1,F),b(L1,L2,L3,L4),

c(L2,L5,L6,L6),d(L5,L3,L4) stands for the undirected graph shown in Fig. 4.

a b

c

d

F

Figure 4: Pictorial representa-
tion of an LMNtal graph:
a(L1,F),b(L1,L2,L3,L4),

c(L2,L5,L6,L6),d(L5,L3,L4)

A link name occurs at most twice in a graph. Link names occur-
ring twice in a graph are called local links and those occurring once
are called free links (a.k.a. half-edges) one of whose ends remains un-
connected (or connected to the outside of the graph). Graphs without
free links are closed. When we compose two graphs with a comma, we
regard them to be α-converted as necessary to avoid collisions among
local link names.

The following two abbreviations are allowed.

1. An atom written as another atom’s argument is regarded
as connected to the last argument of the outer atom,
that is, p(X1, . . .,Xk−1,q(Y1, . . .,Yn),Xk+1, . . .,Xm)

(1 ≤ k ≤ m,1 ≤ n) is interpreted as
p(X1, . . .,Xk−1,L,Xk+1, . . .,Xm),q(Y1, . . .,Yn,L) where L is a fresh link name. For in-
stance, a(b(c),d) means a(B,D),b(C,B),c(C),d(D).

2. An atom p() with no arguments may be written as p.

A rule (with an optional RuleName) describes rewriting of a subgraph to a subgraph. For instance,
a rule to(X,Y):- from(Y,X) rewrites a binary atom ‘to’ to a binary atom ‘from’ with its arguments
swapped. For readability, rules may be written in a period-terminated form as well as in a comma-
separated form. Because free links must not appear or disappear by rewriting, a link name in a rule must
occur exactly twice.

3.2 Semantics

The semantics of LMNtal consists of structural congruence and reduction relation. We will introduce
them in detail.

3.2.1 Structural Congruence

The syntax defined above does not (yet) characterize LMNtal graphs because the figure depicted in
Fig. 4 corresponds to other syntactic representations of LMNtal graphs as well. We need to define
an equivalence relation “≡”, called structural congruence, to absorb syntactic variations. Structural
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� �
(E1) 0,P ≡ P
(E2) P,Q ≡ Q,P
(E3) P,(Q,R) ≡ (P,Q),R
(E4) P ≡ P[Y/X ] (if X is a local link of P)
(E5) P≡ P′ ⇒ P,Q≡ P′,Q
(E7) X=X ≡ 0
(E8) X=Y ≡ Y=X
(E9) X=Y,P ≡ P[Y/X ] (if P is an atom and X is a free link of P)� �

Figure 5: Structural congruence on LMNtal graphs.� �
(R1)

G1
T :-U−−−−→ G′1

G1,G2
T :-U−−−−→ G′1,G2

(R3)
G2 ≡ G1 G1

T :-U−−−−→ G′1 G′1 ≡ G′2
G2

T :-U−−−−→ G′2
(R6) T T :-U−−−−→U

� �
Figure 6: Reduction relation on LMNtal graphs.

congruence is defined as the minimum equivalence relation satisfying the rules in Fig. 5. Structurally
congruent LMNtal graphs are considered indistinguishable from each other. P[Y/X ] in (E4) and (E9)
means to replace the link name X occurring in the graph P with the link name Y . Note that (E6) and
(E10) in the original definition [16] are omitted because these are rules for membranes.

(E1)–(E3) characterize graph nodes as multisets. (E5) is a structural rule to make ≡ a congruence.
Both of them are standard rules found also in process algebra. (E4) is α-conversion of local link names2.
Rules (E7) to (E9) are about the special binary atom = called a connector. An atom =(X ,Y ), also written
as X =Y , fuses two links X and Y . (E7) says that a self-closed link is regarded as a null graph, (E8) says
that a connector is symmetric, and (E9) says that a connector may be absorbed or emitted by an atom.
Connectors play an important role in writing rewrite rules such as

append(X,Y,Z), nil(X) :- Y=Z.

They play an important role in LMNtal ShapeType also.

3.2.2 Reduction Relation

“ T :-U−−−−→”, called a reduction relation by the rule T :-U , is a binary relation between two graphs, which
describes the principal computation step in LMNtal. It is defined as the minimum binary relation sat-
isfying the rules in Fig. 6. Note that (R2), (R4) and (R5) in [16] are omitted because these are for
membranes.

The most important rule is (R6) which states that if there is a subgraph that matches the LHS of a
rule, the subgraph can be rewritten into the RHS3. This definition can be naturally extended for rulesets,
i.e., we say “G can transition (in one step) to G′ by the ruleset R,” written G R−→ G′, if ∃r ∈ R. G r−→ G′.

2The new link name Y must be “fresh” here; otherwise the graph P[Y/X ] violates the prerequisite that each link name can
occur at most twice.

3For simplicity, we intentionally allow the case where T is null, which readily introduces divergence, though a legitimate
implementation need not compile such rules.
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In order to facilitate the formulation of our type checking method, the syntax and semantics described
above separate graphs and rulesets, while in the standard definition they conjunctively form a process that
may evolve autonomously.

3.3 Reverse Execution in LMNtal

Before we move on to the definition of LMNtal ShapeType, we introduce reverse execution in LMNtal.
First we define the inversion of rules and rulesets.

Definition 1. The inversion rinv of an LMNtal rule r = T :-U is defined by rinv =U :- T . Likewise, the
inversion Rinv of an LMNtal ruleset R is defined by ∀r. r ∈ R⇔ rinv ∈ Rinv.

It is important to note that an inverted rule is also a well-formed rule in LMNtal, and this plays a key
role in our type checking method. Actually, reduction using an inverted rule is equivalent to following
the reduction relation of the original rule in an opposite direction4.

Proposition 1. For an LMNtal rule r = T :-U , G′ r−→ G⇔ G rinv

−−→ G′.

Hence the reduction relation can be followed backward by executing the inversion of the LMNtal
rule. This is called reverse execution.

4 LMNtal ShapeType

A typed language comes with a type description (sub)language, which is called LMNtal ShapeType in
our setting. This section defines LMNtal ShapeType and describes its basic type checking algorithms.
First, we give a formal definition. Following the terminology of formal language theory, LMNtal functors
are hereinafter referred to as symbols also.

Definition 2. A type in LMNtal ShapeType (simply called ShapeType) is a triplet (S,P,N), where

• S = t/m is a functor called the start symbol,

• P is a finite set of rules called production rules, and

• N is a finite set of functors called nonterminal symbols.

4.1 Syntax

The triplet of Definition 2 is written by the syntax of Fig. 7, where the start symbol S is given as an atom
p(X1, . . .,Xm)

5, the production rules P as a ruleset R in Fig. 3, and nonterminal symbols N as a graph
G in Fig. 3. The LHS of each production rule must consist only of one or more nonterminal atoms which
must not include connectors. Abbreviations allowed for LMNtal atoms (Section 3.1) are also allowed.� �

ShapeType ::= defshape S { P } [ nonterminal { N } ]� �
Figure 7: Syntax of ShapeType.

4Proofs of all theorems, propositions and lemmas can be found in Appendix.
5We allow the case where m = 0, i.e., graphs with no roots, and non-connected graphs, for which our algorithms described

in this section work as well.
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n2 skip:-
p2

n1 skip:-
p1

:-
p0

nilskip skip skip

Figure 8: Production rules of the skip-list type skip.

By abuse of notation, functors in S and N are written as atoms in which link names are insignificant.
Note also that S is always considered to be included in the set N of nonterminals (including the case
where the definition of N is omitted).

An important feature of LMNtal ShapeType is that a graph to be typed may have two or more roots
(as in skip lists) whose order is significant. Accordingly, when discussing whether a graph is of a specific
type, a type is referred to as t(L1, . . .,Lm) by explicitly mentioning roots. If the link names are not
important, it is called type t/m (or type t if t is a unique start symbol name).

4.2 Semantics

We define the typing relation “:” using an auxiliary relation “�” called the production relation. Here-
inafter, a graph with free links L1, . . . ,Lm is written as G[L1, . . . ,Lm] and the set of all functors used in
graph G is written as Funct(G).

Definition 3 (Production Relation). For a type (t/m,P,N), a graph G[L1, . . . ,Lm] is generated by the type
t(L1, . . .,Lm), written G[L1, . . . ,Lm]� t(L1, . . .,Lm), iff t(L1, . . .,Lm)

P−→* G[L1, . . . ,Lm].

Definition 4 (Typing Relation). For a type (t/m,P,N), a graph G[L1, . . . ,Lm] has the type t(L1, . . .,Lm),
written G[L1, . . . ,Lm] : t(L1, . . .,Lm), iff G[L1, . . . ,Lm]�t(L1, . . .,Lm) ∧ Funct(G[L1, . . . ,Lm])∩N =∅.

Intuitively, only graphs to which the start symbol of type t can transition in zero or more steps by the
production rules are said to be generated by type t, and only graphs with no nonterminal symbols are said
to have the type t. In these definitions, free links of graphs and types are both explicitly written because
their names and ordering are significant. For instance, given a type

defshape t(X,Y) { t(X,Y) :- a(X,Y) },

a(X,Y)�t(X,Y) holds but a(Y,X)�t(X,Y) does not hold.
The type of skip lists shown in Section 1 can be described as follows.� �

defshape skip(List2,List1){

p0@@ skip(L2,L1) :- nil(L2,L1).

p1@@ skip(L2,L1) :- n1(X1,L1), skip(L2,X1).

p2@@ skip(L2,L1) :- n2(X1,X2,L2,L1), skip(X2,X1).

}� �
Note that elements in the skip list are omitted in order to focus on the structure of the graph, though it is
possible to include elements and specify their types. The production rules can be visualized as in Fig. 8.

4.3 Graph Type Checking

Graph type checking is to check if an LMNtal graph X has a type t. The algorithm is shown in Fig. 9.
GCHECK is to check if the graph X has the type (t/m,P,N). To check that X does not include a

nonterminal symbol, we only have to check all the atoms because the number of atoms in X is finite.
Then, it suffices to check that X is generated by (t/m,P,N). GGCHECK checks that X can transition
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� �
// Checks that the LMNtal graph X has the type (t/m,P,N)

1: function GCHECK(X ,(t/m,P,N))
2: if ∃ f ∈ Funct(X). f ∈ N then return false
3: else return GGCHECK(X ,(t/m,P,N),∅)
4: end function

// Checks that the LMNtal graph X can be generated by the type (t/m,P,N)
1: function GGCHECK(X ,(t/m,P,N),G)
2: if X ≡ t(L1, . . .,Lm) then return true
3: for each Y s.t. X Pinv

−−→ Y ∧ @Y ′ ∈ G. Y ≡ Y ′ do
4: G← G∪{Y}
5: if GGCHECK(Y,(t/m,P,N),G∪{X}) then return true
6: end for
7: return false
8: end function� �

Figure 9: Algorithm of graph type checking.

p0inv p2inv p1inv
n1 n2 nilList1

List2

n1 n2 skipList1

List2

n1 skipList1
List2

skipList1

List2

Figure 10: Reverse execution path of a skip list.

back to the start symbol by reverse execution with production rules P. For example, by reverse execution
shown in Fig. 10, we can verify that the leftmost graph in Fig. 10 has the skip type. For a certain
class of types that will be detailed in Section 5, the graph type checking algorithm satisfies soundness,
completeness and termination for any rule.

4.4 Rule Type Checking

First, we define the type preservation property of an LMNtal rule r for the type t.

Definition 5 (Type Preservation). Let r be an LMNtal rule, t be a type, and L1, . . . ,Lm be a sequence of
links. We say that r preserves t iff

∀G : t(L1, . . .,Lm). G r−→ G′ ⇒ G′ : t(L1, . . .,Lm).

Checking the type preservation property is called rule type checking. The algorithm is shown in Fig. 11.
Intuitively, the algorithm checks if each generation path of L can be transformed to a generation path

of R by structural induction on the production rules used last. RCHECK ensures that both sides of the
given rule consist only of the terminal symbols and then calls RCHECKSUB. RCHECKSUB recursively
follows the production rule of t backwards from the LHS L, supplying a ‘deficient’ graph C to both
sides (line 8), until the LHS reaches the start symbol (line 2) or a graph that appeared before (line
5). If it detects an LHS that appeared before, the algorithm backtracks to the point where the LHS
appeared first. Positive return values are used to inform how many times the function should return
by backtracking. Then REDUCE verifies that the resulting graph augmented with the supplied graphs
accumulated in the previous phase can transition to the RHS. REDUCE shows this by reverse execution
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� �
// Checks that the rule L:- R preserves the type (t/m,P,N)

1: function RCHECK(L:- R,(t/m,P,N))
2: return (Funct(L)∪Funct(R))∩N =∅ ∧ RCHECKSUB(L:- R,(t/m,P,N), [ ]) = 0
3: end function

// Traverses the state space generated by reverse execution
// (L:- R): current state, [v1, . . . ,vn]: stack of visited states in depth first search

1: function RCHECKSUB(L:- R,(t/m,P,N), [v1, . . . ,vn])
2: if L consists only of one t/m atom then
3: if REDUCE(R,L,P,∅) then return 0 . Returns 0 if the rule preserves the type
4: else return −1 . Returns −1 if the rule may destroy the type
5: if ∃ i s.t. 1≤ i≤ n ∧ vi = Li :- Ri ∧ Li ≡ L then
6: if REDUCE(Ri,Li,P,∅) then return n− i . Backtracks n− i steps when a cycle is detected
7: else return −1

8: for each (L′,C) s.t. L,C Pinv
−−→ L′ do . Explore all paths

9: S← RCHECKSUB(L′:-(R,C), (t/m,P,N), [v1, . . . ,vn,L:- R])
10: if S > 0 then return S−1 . Continues backtracking
11: if S =−1 then return −1 . The rule may destroy the type if one or more calls return −1
12: return 0
13: end function

// Checks that there exists a reverse execution path from X to Y , i.e., X Pinv
−−→* Y

// G: visited graphs
1: function REDUCE(X ,Y,P,G)
2: if X ≡ Y then return true
3: for each X ′ s.t. X Pinv

−−→ X ′ ∧ @X ′′ ∈ G. X ′′ ≡ X ′ do
4: G← G∪{X ′}
5: if REDUCE(X ′,Y,P,G∪{X}) then return true
6: return false
7: end function� �

Figure 11: Algorithm of rule type checking.

in order to prevent divergence. Finally, RCHECKSUB returns 0 if there is a state L:- R on every path
such that REDUCE(R,L,P,∅) returns true and returns−1 otherwise. Note that each graph C enumerated
in line 8 of RCHECK must be the minimum one that enables matching with the RHS of rules and lets the
reverse execution proceed.

For example, to verify that the rule in Fig. 12 preserves the skip type, we first go back from the
LHS, supplying and accumulating necessary graphs (Fig. 13, upper), and then check if the resulting
graph (skip in this example) can transition to the RHS with the supplied graphs (Fig. 13, lower).

This algorithm is inspired by that of Structured Gamma [6]. While the algorithm of Structured
Gamma generates the entire state space first and the correspondence of free links in the supplied graphs
was recorded and managed separately, our algorithm avoids this inconvenience by rewriting the target
rule itself to generate the state space, using rewrite rules to represent individual states. This idea is similar
to that of the sequent calculus in that it treats the pair of premise and conclusion as a single object.
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n1 n2L1

L2 X2
X1 n2L1

L2 X2
X1:-

Figure 12: An example rule preserving the skip type.

skipL1

L2
p1inv

n1 n2L1

L2 X2
X1

p2inv

X2

X1 skipSupplying

n1 skipL1

L2

n2L1

L2 X2
X1

X2
X1 skip, n2L1

L2

skip≡ skipL1

L2
p2inv

Figure 13: Reverse execution from the LHS (upper) and from the RHS (lower) of Fig. 12.

5 Properties of LMNtal ShapeType

This section describes some important properties of LMNtal ShapeType.

5.1 Extensive Types

The type checking algorithms introduced in [5] and [6] handle types with context-free production rules
to ensure termination of graph type checking. Context-free types in our setting are defined as follows:

Definition 6. A production rule α :- β is context-free iff α consists of a single atom and β contains one
or more atoms other than connectors. A type is context-free iff all of its production rules are context-free.

However, to ensure termination of graph type checking, it is sufficient if there is some measure
for graphs whose values will not decrease by production rules, and this extension opens up versatile
applications. Thus we propose graph weighting as a new measure for graphs.

Definition 7. For a type τ , a weighting function w : Funct(τ)→N\{0}weights each functor occurring in
τ with a positive integer. As an exception, connectors’ weight w(=/2) must be zero because connectors
can be arbitrarily absorbed or emitted by the structural congruence rule (E9).

Definition 8. Let w be a weighting function for a type τ and G be a graph which consists only of atoms
with functors contained in Funct(τ). The weight of the graph G, denoted w(G), is defined by

w(G) = ∑
p(L1,...,Lm)∈G

w(p/m).

Note that graph weighting generalizes the concept of the number of atoms.

Definition 9. A type (t/m,P,N) is extensive iff ∃w. ∀(α :- β ) ∈ P. w(α)≤ w(β ).

Context-free types are obviously extensive. An extensive type corresponds to a length-increasing
grammar in formal language theory, which is equivalent to a context-sensitive grammar. This extension
is motivated by the need to handle a variety of types with non-context-free constraints as explained
below6.

For instance, the type of red-black trees can be defined as in Fig. 14. Here, the nonterminal symbol

6However, since LMNtal ShapeType handles graphs, care must be taken when discussing its expressive power. For instance,
the list version of the typical context-sensitive language {anbncn} can be expressed by a simple context-free type in our setting.
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� �
defshape rbtree(R){

s@@ rbtree(R) :- btree(nat,R).

bz@@ btree(z,R) :- leaf(R).

tz@@ tree(z,R) :- leaf(R).

bs@@ btree(s(N),R) :- b(tree(N1),tree(N2),R), cp(N,N1,N2).

ts@@ tree(s(N),R) :- b(tree(N1),tree(N2),R), cp(N,N1,N2).

r@@ tree(N,R) :- r(btree(N1),btree(N2),R), cp(N,N1,N2).

ns@@ nat(R) :- s(nat,R).

nz@@ nat(R) :- z(R).

cs@@ cp(s(N),N1,N2) :- cp(N,M1,M2), s(M1,N1), s(M2,N2).

cz@@ cp(z,N1,N2) :- z(N1), z(N2).

} nonterminal {

rbtree(R), btree(N,R), tree(N,R),

cp(N,N1,N2), nat(R), s(N,R), z(R)

}� �
Figure 14: Type definition of red-black trees
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Figure 15: An example graph of the
rbtree type (l stands for leaf).

btree/2 stands for a red-black tree with a black root and tree/2 stands for a red-black tree with a
black or red root. In this definition, the black height of a tree to be generated is expressed using z/1
(zero) and s/2 (successor) atoms as X=s(s( . . .s(z) . . .)) (as done in Prolog). The atom cp/3 copies
and distributes the numeral connected to the first argument to the second and third arguments, with the
production rules cs and cz. This definition expresses the balance of red-black trees by constraints on
black heights distributed properly to subtrees. For instance, a graph in Fig. 15 has the rbtree type. This
rbtree type is extensive with a weighting function w(x) which returns 2 if x = leaf/2 and returns 1
otherwise. Note that it is easy to find an appropriate weighting since the constraint of extensive types
(Def. 9) reduces to a system of linear inequalities.

The technique that employs z/1 and s/2 atoms can be used also for defining, e.g., skip lists with
constraints on the number of stops that an “express” link can skip. Also, the type of the graph represen-
tation of λ -terms needs to manage a list (of unbounded length) of free links of subterms, which can be
represented using an additional nonterminal symbol representing a list constructor.

For extensive types, the algorithm of graph type checking (Fig. 9) satisfies soundness, completeness,
and termination.

Theorem 1 (Termination of graph type checking). For any LMNtal graph X and an extensive ShapeType
τ , GCHECK(X ,τ) terminates.

Theorem 2 (Soundness of graph type checking). For any LMNtal graph X and a ShapeType (t/m,P,N),
if GCHECK(X ,(t/m,P,N)) returns true, X : t(L1, . . .,Lm) holds.

Theorem 3 (Completeness of graph type checking). For any LMNtal graph X and an extensive
ShapeType (t/m,P,N), if X : t(L1, . . .,Lm) holds, GCHECK(X ,(t/m,P,N)) returns true.

5.2 Production rules with connectors

The data structure called difference lists (d-lists for short), commonly used in Prolog programming since
1970’s, represents a list with two variables representing the two ends. It enables constant-time concate-
nation by virtue of logic variables. Difference lists are extremely useful also in LMNtal programming
where links are a special use of logic variables.

A type of d-lists can be written as in Fig. 16 (left). Since p1 (for an empty d-list) has no atoms in the
RHS except for a connector, there is no increasing weighting function for this type. The inversion of p1
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� �
defshape dlist(X,Y){

p1@@ dlist(X,Y) :- X=Y.

p2@@ dlist(X,Y) :- c(dlist(X),Y).

}� �
� �

defshape dlist(X,Y){

p1@@ dlist(X,Y) :- X=Y.

p2@@ dlist(X,Y) :- c(dlist(X),Y).

p3@@ dlist(X,Y) :- c(X,Y).

}� �
Figure 16: Type definition of d-lists (left) and its normalized definition (right).

is X=Y :- dlist(X,Y), which matches any link, so reverse execution with this rule will not terminate.
However, we cannot describe an empty d-list without such rules.

Let the target graph to be type-checked be G. If two free links of G are connected to each other, G
cannot be expressed without connectors. A connector connecting two free links of G is called global.
Now, we put a restriction that the inversion of a production rule fires only if all connectors in the RHS of
the original production rule are global in G. With this restriction, a connector in the RHS of a production
rule cannot match an arbitrary link.

Although this seems to decrease the flexibility of the types, the type description with this restriction
retains the same expressiveness as the case where connectors can be freely used in the RHS of production
rules. Actually, non-global connectors can be removed by a procedure like the elimination of ε-rules in
the conversion of a context-free grammar to Chomsky normal form. Figure 16 (right) shows the result of
such normalization.

Although we defined that connectors must have zero weight in Definition 7, global connectors may
be weighted in the same way as ordinary functors. This is because only finitely many global connectors
can appear in a graph and they cannot be absorbed or emitted. Note that a global connector cannot be a
nonterminal symbol.

We go back to the dlist example. When all functors including the global connector are weighted
1, the production rules will not decrease the weight. Furthermore, graph type checking ensures that an
empty d-list has the type dlist since X=Y can make reverse transition to dlist(X,Y) by the rule p1.

5.3 Rule type checking

The algorithm of rule type checking (Fig. 11) is sound in the following sense:

Theorem 4. For an LMNtal rule α :- β , a ShapeType (t/m,P,N), and a sequence of links L1, . . . ,Lm, if
RCHECK(α :- β ,(t/m,P,N)) returns true, the following formula (the type preservation property) holds:

∀G : t(L1, . . .,Lm). G
α :- β−−−−→ G′ ⇒ G′ : t(L1, . . .,Lm)

For context-free types, the rule type checking algorithm terminates for any rule because the state
space of our algorithm is the same as that of Structured Gamma [6] if we focus only on the LHS.
However, it may not terminate for extensive types. For example, we can use the production rule cz of
rbtree type (Fig. 14) backwards to transition from one z atom to cp and z atoms. This causes infinitely
many cp atoms to be generated from a single z atom, so the rule type checking does not terminate.

As with other static type checking methods, completeness of rule type checking may not hold in
general [6]. The proof of soundness assumes that there exists a transition path from the start symbol to a
resulting graph of reverse execution from the LHS7, but if there is no such path, the completeness does
not hold. In this sense the algorithm is conservative.

7which is α0 in the proof in Appendix.
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� �
defshape rbtree3(R){

init@@ rbtree3(R) :- btree3(R).

bb3@@ btree3(R) :- b(tree2,tree2,R).

bb2@@ btree2(R) :- b(tree1,tree1,R).

bb1@@ btree1(R) :- b(tree0,tree0,R).

bl@@ btree0(R) :- leaf(R).

tb2@@ tree2(R) :- b(tree1,tree1,R).

tb1@@ tree1(R) :- b(tree0,tree0,R).

tr2@@ tree2(R) :- r(btree2,btree2,R).

tr1@@ tree1(R) :- r(btree1,btree1,R).

tr0@@ tree0(R) :- r(btree0,btree0,R).

tl@@ tree0(R) :- leaf(R).

} nonterminal {

rbtree3(R), btree3(R), btree2(R),

btree1(R), btree0(R),

tree2(R), tree1(R), tree0(R)

}� �

� �
defshape rbtree(R){

init@@ rbtree(R) :- btree($n,R).

bb@@ btree($n,R) :- $m = $n-1

| b(tree($m),tree($m),R).

bl@@ btree(0,R) :- leaf(R).

tb@@ tree($n,R) :- $m = $n-1

| b(tree($m),tree($m),R).

tr@@ tree($n,R)

:- r(btree($n),btree($n),R).

tl@@ tree(0,R) :- leaf(R).

} nonterminal {

rbtree(R), btree($n,R), tree($n,R)

}� �

Figure 17: Type definition of red-black trees as a context-free type (left) and as an indexed type (right).

5.4 Indexed Types

Types with numerical constraints, such as complete binary trees or (balanced) red-black trees of height
n, or lists of length n, cannot be represented as context-free types. We could use extensive types (Sec-
tion 5.1), for which the graph type checking works well, but the rule type checking for such types may
not terminate.

On the other hand, types with constant numerical constraints, such as red-black trees with a height
of exactly 3, can be represented by a context-free type as in Fig. 17 (left). The meanings of symbols
in this definition are the same as those in Fig. 14 except that the names of nonterminal symbols are
followed by indices representing the black height. In this definition, the production rules bb3–bb1, tb2–
tb1, tr2–tr0 are quite similar, respectively, so we can simplify them as in Fig. 17 (right), where we
introduced a notation like ‘$n’ to represent integer variables. This notation is borrowed from the typed
process context [16], an extension of LMNtal. While the original typed process context is a mechanism
to match any graph that satisfies the constraints specified in the guard (the part between :- and | ), here
we assume that all typed process contexts match only natural numbers8. This extension allows natural
numbers and typed process contexts to appear in the LHS of the production rule in addition to one non-
terminal symbol. Although this goes beyond the context-freeness assumption, the production rules are
still essentially context-free in the sense that this natural number, which originally played the role of an
index of a non-terminal symbol, can be regarded as an index of the non-terminal symbol. This idea of
indexed nonterminal symbols was derived from indexed grammars in formal language theory.

Since these process contexts represent variables that may take any natural numbers, the rule type
checking can cause state space explosion. Therefore, we ignore the difference of the indices of nonter-
minal symbols and consider them as the same state in the state space construction.

In this setting, the algorithm terminates because the state space of an indexed type is isomorphic
to that of the type without indices. Since multiple states are represented by a single state, this may
affect the completeness of type checking compared to the context-free version with a fixed size (Fig. 17,
left). However, introducing indices is important not only for the simplicity of description but also for the

8In LMNtal, a number is represented as a unary atom with the atom name of that number.
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expressiveness of the types since we cannot represent red-black trees of any height as a context-free type
without indices.

6 Functional Atoms

A functional atom is a design pattern commonly used in LMNtal programming, which behaves like a
function in functional languages. For instance, the atom append/3 with the following rules, depicted in
Fig. 18 (upper), appends two lists like an append function in functional languages. The append/3 atom
expects two lists connected to the first and second arguments as input, handles them by the rules, and
returns the concatenated list through the third argument as in Fig. 18 (lower).

a1@@ R=append(c(L1),L2) :- R=c(append(L1,L2)).

a2@@ R=append(n,L) :- R=L.

a c ac
:-

a n
:-

a c c n

c n

a c n

c n

c a n

c n

cc

c n

cc

Figure 18: Rules of the append/3 atom (upper) and progress of computation (lower).

A functional atom may receive and/or return a value of a type with multiple roots. Consider the
following functional atom t2l/3 (for tree-to-list):

t1@@ t2l(n(N,L,R),T,P) :- t2l(L,c(N,t2l(R,T)),P).

t2@@ t2l(l,T,P) :- T=P.

These rules are depicted in Fig. 19 (upper). The atom t2l/3 receives a binary tree, traverses it in-order,
and returns a difference list as in Fig. 19 (lower).

By generalizing them, we formalize functional atoms as follows:
Definition 10 (Functional property). For types t1, . . . , tn and T , a graph F consisting of a single f/m
atom, and a ruleset R consisting of rules each of which has just one f/m atom in the LHS, F is functional
iff for all graphs Gt1 , . . . ,Gtn which have types t1, . . . , tn respectively,

∀G.
(
F,Gt1, . . .,Gtn

R−→* G
)
∧
(

f/m /∈ Funct(G)
)
⇒ G : T.

This property is written9 as t1, . . . , tn `R F : T , where t1, . . . , tn are called the input types, T the output
type, and R the functional ruleset for F . With this notation, the properties of append and t2l are
expressed as:

list(L1),list(L2) `{a1,a2} append(L1,L2,R) : list(R),
tree(T) `{t1,t2} t2l(T,X,Y) : dlist(X,Y).

The functional property states that, when a functional atom F is given graphs with types t1, . . . , tn as
inputs, it returns a graph with type T upon termination.

The functional property is verified with rule type checking. Here, St , Pt , and Nt stand for the start
symbol, the set of production rules, and the set of nonterminal symbols of type t, respectively.

9In this section, we assume that each type is written as an atom with the functor of its start symbol in order to clarify which
argument of the functional atom is connected to which one of the types.
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Figure 19: Rules of the t2l/3 atom (upper) and progress of computation (lower).

Theorem 5. For a set of production rules P = PT ∪ Pt1 ∪ ·· · ∪ Ptn ∪ {T :- F,t1, . . .,tn} and a set of
nonterminal symbols10 N = NT ∪ Nt1 ∪ ·· · ∪ Ntn , if every rule r ∈ R preserves type (ST ,P,N), then
t1, . . . , tn `R F : T holds.

For example, to check the functional property of t2l, we add a production rule dlist(X,Y) :-

t2l(T,X,Y),tree(T) and the production rules of the type tree to the type dlist and and execute the
rule type checking of t1 and t2. Note that the functional property does not ensure that the computation
with functional atoms will not get stuck because it assumes that the computation successfully terminates
and no functional atom remains in the graph.

7 Implementation

While graph type checking can be easily done using the model checking features of SLIM, rule type
checking is much harder to implement. Since the rule type checking algorithm requires special features
to construct a state space in which states are represented as rewrite rules and states with the same LHSs
are considered identical, we implemented this algorithm with the ideas and features of the LMNtal meta-
interpreter [14].

To implement indexed types (Section 5.4), we need to perform operations on graphs containing num-
bers whose concrete values are not necessarily fixed but constrained. Since the current implementation
of LMNtal cannot handle such indefinite numbers symbolically, we extended the data structure used in
the above implementation on the LMNtal meta-interpreter to handle numerical constraints. These con-
straints belong to Presburger arithmetic, in which all formulas are decidable. We used the Z3 solver [4]
as a backend to solve them. We have tested the implementation by typechecking reasonably complex op-
erations on the graph structures exemplified in the paper, including the insertion operation into red-black
trees (formulated using an indexed type) that requires rotation of trees, using functional atoms.

8 Conclusion and Future Work

We studied LMNtal ShapeType, a static type checking framework for a graph rewriting language LMN-
tal, and proposed extensions to enhance its expressiveness. First, we gave a formalization of the types

10Here we assume that there is no duplication among the nonterminal symbols.
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and type checking algorithms for both graphs and rewrite rules, addressing various subtleties including
those arising from connectors representing link fusion, a key construct in graph rewriting. Second, we
proposed extensive types and indexed types as broader classes of graph types, which enabled us to handle
constraints such as the balancing of trees. Third, we proposed a unified approach for checking the type
safety of functional atoms, i.e., atoms interpreted as functions (as opposed to data constructors) in other
languages, so that we could handle multi-step operations which might result in graphs of different types.
The expressive power of our rather simple framework was demonstrated by defining a variety of graph
types including skip lists with and without constraints, red-black trees, λ -terms represented as graphs,
and rectangular grids with arbitrary or specified size, all available from the website given in Section 1.

For future work, it is important to expand the target language. We focused on Flat LMNtal without
membranes or guards or hyperlinks [18], but they proved to be useful in computing with complicated
graph structures. The challenge here is the handling of process contexts (a wildcard construct in graph
matching) and guards (for expressing operations and constraints over built-in types), which is straight-
forward in forward execution but is challenging in backward execution both in theory and practice. Also,
it is interesting to extend the framework to handle infinite graphs as input of functional atoms because
the conception of LMNtal was the unified modeling of data structures and network of concurrent pro-
cesses that evolve by exchanging messages. Functions modeled in LMNtal naturally allow concurrent
and nonterminating execution, cooperating with each other by dataflow synchronization, and a unified
modeling and reasoning framework of graph types with and without base cases is important future work.
Finally, it is necessary to optimize the type checking algorithms. The algorithms worked well as a proof
of concept and are simple enough to implement within the existing framework of LMNtal, but the ex-
haustive search can be too costly when target graphs or rules become complicated. Effective techniques
for pruning search is an important topic of future work.
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Appendix

Hereinafter, for a set of functors F , Graph(F) stands for the set of every graph G s.t. Funct(G)⊆ F .

Proposition 1. For LMNtal rule r = T :-U , G′ r−→ G⇔ G rinv

−−→ G′

Proof. (⇒) We will prove by structural induction on the last-used reduction relation rule.

• Case (R1): We assume that G′ = P,Q, G = P′,Q and P r−→ P′. By the induction hypothesis,

P′ rinv

−−→ P. By (R1), P′,Q rinv

−−→ P,Q. Therefore, G rinv

−−→ G′.

• Case (R3): We assume that G′ ≡ P, P′ ≡ G, P r−→ P′. By the induction hypothesis, P′ rinv

−−→ P. By

(R3) and G′ ≡ P, P′ ≡ G, we obtain G rinv

−−→ G′.

• Case (R6) is self-evident by (R6).

Hence G′ r−→ G⇒ G rinv

−−→ G′.

(⇐) follows from (rinv)
inv

= r and (⇒).

Lemma 1. For an extensive ShapeType τ = (t/m,P,N), its weighting function w, and an LMNtal graph
G,G′ ∈ Graph(Funct(τ)),

G′ P−→ G⇒ w(G)≥ w(G′)

Proof. By G′ P−→ G, let p = α :- β be a rule s.t. G′
p−→ G. We will show w(G) ≥ w(G′) by structural

induction on the last-used reduction relation rule.

• Case (R1): We assume that G′ = G′1,G2, G = G1,G2 and G′1
p−→ G1. Then w(G1) ≥ w(G′1) by

the induction hypothesis. We have w(G′) = w(G′1)+w(G2), w(G) = w(G1)+w(G2), therefore
w(G)≥ w(G′) holds.

• Case (R3): We assume that G′1 ≡ G′, G ≡ G1, G′1
p−→ G1. Then w(G1) ≥ w(G′1) by the induction

hypothesis. We have w(G1) = w(G), w(G′1) = w(G′), therefore w(G)≥ w(G′) holds.

• Case (R6): We assume that G′ = α, G = β . Since the type (t/m,P,N) is extensive, we have
w(α)≤ w(β ) i.e. w(G)≥ w(G′).

Lemma 2. For an extensive ShapeType τ = (t/m,P,N), its weighting function w, a non-negative integer
n, and a finite set of links L, the number of LMNtal graph G satisfying following formula is finite
regarding structurally congruent graphs as the same.

G ∈ Graph(Funct(τ))∧w(G) = n∧FLink(G) = L

Proof. The number of functors occurring in G is finite and also the number of atoms (excluding non-
global connectors) occurring in G is less than n because of w(G) = n. Since the number of graphs
consisting of finite kinds of functors and finite atoms is finite, the number of G is finite.

Lemma 3. For any LMNtal graph X , an extensive ShapeType (t/m,P,N), and a finite set of LMNtal
graphs G, GGCHECK(X ,(t/m,P,N,G)) terminates.
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Proof. Let the weighting function of type (t/m,P,N) be w. Y given to the first argument of recursive call
at line 5 of GGCHECK satisfies Y P−→* X . By Lemma 1, w(X)≥w(Y ). By this and Lemma 2, the number
of possible Y is finite (regarding structurally congruent graphs are the same). Also, it is verified at line 3
of GGCHECK that structurally congruent graphs cannot be given again to the argument of recursive calls,
so that recursive calls occur finite times at most. Therefore GGCHECK(X ,(t/m,P,N),G) terminates.

Theorem 1 (Termination of graph type checking). For any LMNtal graph X and an extensive ShapeType
τ , GCHECK(X ,τ) terminates.

Proof. This follows by Lemma 3 and the fact that Funct(X) and N are finite.

Lemma 4. For any LMNtal graph X , a ShapeType (t/m,P,N), and a finite set of LMNtal graphs G, if
GGCHECK(X ,(t/m,P,N),G) returns true, X � t(L1, . . .,Lm) holds.

Proof. We will show by induction on the maximum number n of times of recursive calls (i.e. the depth
of recursion) of GGCHECK.

• If n = 0, true is returned at line 2. Also, we have X ≡ t(L1, . . .,Lm). Then it is clear by the
definition that X � t(L1, . . .,Lm).

• If n = k + 1 (k ≥ 0), true is returned at line 5 since recursive calls occur one or more times.
We have Y P−→ X by the line 3 and Y � t(L1, . . .,Lm) by the induction hypothesis. Then
t(L1, . . .,Lm)

P−→* Y follows by the definition of production relations. By Y P−→ X , we have
Y P−→ X , so that t(L1, . . .,Lm)

P−→* X . Therefore X � t(L1, . . .,Lm) holds.

Theorem 2 (Soundness of graph type checking). For any LMNtal graph X and a ShapeType (t/m,P,N),
if GCHECK(X ,(t/m,P,N)) returns true, X : t(L1, . . .,Lm) holds.

Proof. GCHECK(X ,(t/m,P,N)) returns true only when ∃ f ∈ Funct(X). f ∈ N does not hold and then it
just returns the returned value from GGCHECK(X ,(t/m,P,N),∅), so that GGCHECK(X ,(t/m,P,N),∅)
returns true. By Lemma 4, we have X � t(L1, . . .,Lm). Since ¬∃ f ∈ Funct(X). f ∈ N holds, we have
∀ f ∈ Funct(X). f /∈ N. Therefore Funct(X)∩N =∅ holds. Hence we have X : t(L1, . . .,Lm).

Lemma 5. For an LMNtal graph X and a ShapeType (t/m,P,N), if X � t(L1, . . .,Lm),
GGCHECK(X ,(t/m,P,N),∅) returns true.

Proof. By X � t(L1, . . .,Lm), for certain X0, . . . ,Xn (n≥ 0), the following holds:

t(L1, . . .,Lm)= Xn
P−→ . . .

P−→ X1
P−→ X0 = X

Note that Xi is not the start symbol for every i (i < n) and i 6= j⇒ Xi 6≡ X j holds (i.e. no loops in the
path). Consider the case when GGCHECK(Yi,(t/m,P,N),Gi) is called for i (i < n), Yi s.t. Yi ≡ Xi, and a
certain Gi. Since Xi is not the start symbol, Yi is also not the start symbol, so that the condition of the if
statement at line 2 does not hold. Then we have Xi+1

P−→ Yi by Xi+1
P−→ Xi and (R3).

• If @Yi+1 ∈ Gi. Xi+1 ≡ Yi+1, the for-loop from the line 3 is executed for Y ← Xi+1, and then
GGCHECK(Xi+1,(t/m,P,N),Gi+1) is called for a certain Gi+1 at line 5.

• If ∃Yi+1 ∈ Gi. Xi+1 ≡ Yi+1, GGCHECK(Yi+1,(t/m,P,N),Gi+1) has been called for a certain Gi+1
elsewhere.
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Therefore GGCHECK(Yi+1,(t/m,P,N),Gi+1) is called for Yi+1 s.t. Yi+1 ≡ Xi+1 and a certain Gi+1 some-
where in the recursive calls.

From the above reasons, when GGCHECK(X ,(t/m,P,N),∅) is called,
GGCHECK(Yn,(t/m,P,N),Gn) is also called for Yn s.t. Yn ≡ Xn and a certain Gn. This call re-
turns true at line 2 because of Yn ≡ Xn = t(L1, . . .,Lm).

Therefore GGCHECK(X ,(t/m,P,N),∅) returns true since GGCHECK returns true if one or more
recursive calls in it return true.

Theorem 3 (Completeness of graph type checking). For any LMNtal graph X and an extensive
ShapeType (t/m,P,N), if X : t(L1, . . .,Lm) holds, GCHECK(X ,(t/m,P,N)) returns true.

Proof. By X : t(L1, . . .,Lm), we have X � t(L1, . . .,Lm) and Funct(X)∩N = ∅. Therefore ∀ f ∈
Funct(X). f /∈ X , so that the condition of the if statement at line 2 of GCHECK does not hold.
Then GCHECK(X ,(t/m,P,N)) just returns the returned value from GGCHECK(X ,(t/m,P,N),∅).
By X � t(L1, . . .,Lm) and Lemma 5, GGCHECK(X ,(t/m,P,N),G) returns true. Therefore
GCHECK(X ,(t/m,P,N)) returns true.

Definition 11. A transition relation T between LMNtal rules α1:- β1 and α2:- β2 is defined as follows:

α1:- β1
T−→ α2:- β2

iff ∃αp:- βp ∈ P. ∃γ,γ ′.

α2
αp :- βp−−−−→ α1,γ ∧ β2 ≡ β1,γ

∧ βp ≡ γ,γ
′ ∧ γ

′ 6≡ 0

Next, we define a labeling function L : W → 2{s,r} as follows, where W is the whole set of LMNtal
rules:

s ∈L (α :- β ) iff α ≡ T

r ∈L (α :- β ) iff α
P−→* β

If r ∈L (α :- β ), we say α :- β is reducible. Then we consider a Kripke structure S = (W ,T ,L )
which represents the state space of the rule type checking algorithm.

Lemma 6. If α :- β is reducible and α :- β
T−→ α ′:- β ′, then α ′:- β ′ is reducible.

Proof. By the assumption, we have α
P−→* β . By the definition of T , we have ∃γ. α ′

P−→ α,γβ ′ ≡ β,γ .
Then we have α ′

P−→ α,γ
P−→* β,γ ≡ β ′, and α ′

P−→* β ′ holds.

Lemma 7. If P,Q≡R,S holds, P≡A1,A2, Q≡A3,A4, R≡A1,A3, S≡A2,A4 holds for certain graphs
A1,A2,A3,A4.

Proof. This follows by the rules of structural congruence.

Lemma 8. If P
α :- β−−−→ Q holds, there exists a graph C that satisfies P≡C,α, Q≡C,β .

Proof. This follows by the rules of structural congruence and reduction relation.

Lemma 9. If X
p−→ Y ≡ α,C (p = αp:- βp ∈ P) holds, one of the followings holds:
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• ∀β . ∃α ′,β ′,C1,C2. α :- β
T−→ α ′:- β ′ ∧ C ≡C1,C2∧X ≡ α ′,C2∧β ′ ≡ β,C1

• ∃C′. X ≡ α,C′∧C′
p−→C

Proof. By X
p−→Y and Lemma 8, there exists Cp s.t. X ≡αp,Cp, Y ≡ βp,Cp. Then we have Y ≡ βp,Cp≡

α,C and, by Lemma 7, there exist C1,C2,C3,C4 s.t. C ≡C1,C2, α ≡C3,C4, βp ≡C1,C3, Cp ≡C2,C4.

Case 1: C3 6≡ 0
Let α ′ = αp,C4, β ′ = β,C1. Then we have α ′ ≡ αp,C4

p−→ βp,C4 ≡C1,C3,C4 ≡ α,C1. Here we

consider C1,C3 as γ,γ ′ in the definition T respectively, and we have α :- β
T−→ α ′:- β ′. Also,

we have X ≡ αp,Cp ≡ αp,C2,C4 ≡ α ′,C2.

Case 2: C3 ≡ 0
By C1 ≡ βp, we have C ≡ βp,C2. Therefore αp,C2

p−→ C holds. Here we consider C′ s.t. C′ ≡
αp,C2, then C′

p−→C holds. Besides, by α ≡C4, we have Cp ≡C2,α . Then we have X ≡ αp,Cp ≡
αp,C2,α ≡ α,C′.

Lemma 10. If S ,r |= ¬sWr holds, r preserves the type T .

Proof. We assume G�T , G r−→ G′, and S ,r |= ¬sWr, and we will prove G′�T .
By G�T , we have ∀i < n. Xi+1

pi−→ Xi for a certain non-negative integer n, graphs X0, . . . ,Xn (X0 =
G, Xn = T ), and p0, . . . , pn−1 ∈ P. By G r−→G′, there exists C ∈ G (N∪Σ) s.t. G≡ α,C, G′ ≡ β,C where
r = α :- β .

Next, we will show that, if Xi ≡ αi,Ci holds, there exist αi+1,βi+1,Ci+1 such that:

αi:- βi
T−→* αi+1:- βi+1 ∧ Xi+1 ≡ αi+1,Ci+1 ∧ βi+1,Ci+1

P−→* βi,Ci

By Xi+1
pi−→ Xi and Lemma 9, one of the following holds:

1. ∃αi+1,βi+1,C′i ,Ci+1. αi:- βi
T−→ αi+1:- βi+1∧Ci ≡C′i,Ci+1∧Xi+1 ≡ αi+1,Ci+1∧βi+1 ≡ βi,C′i

2. ∃Ci+1. Xi+1 ≡ αi,Ci+1∧Ci+1
pi−→Ci

If 1. holds, it is obvious since we have βi+1,Ci+1 ≡ βi,C′i,Ci+1 ≡ βi,Ci. On the other hand, if 2. holds,
it is obvious when we consider αi+1 = αi, βi+1 = βi.

Thus, there exist αn,βn,Cn s.t. α :- β
T−→* αn:- βn, T ≡ αn,Cn, and βn,Cn

P−→* β,C. Since T
consists only of one atom of the start symbol (with no self loops), we have T ≡αn. Then s∈L (αn:- βn)
holds.

By r T−→* αn:- βn, S ,r |= ¬sWr, and Lemma 6, we also have r ∈L (αn:- βn). Therefore we
have αn

P−→* βn. Thus we have T ≡ αn
P−→* βn

P−→* β,C ≡ G′, that is, G′�T .

Theorem 4 (Soundness of rule type checking). For an LMNtal rule α :- β , a ShapeType (t/m,P,N),
and a sequence of links L1, . . . ,Lm, if RCHECK(α :- β ,(t/m,P,N)) returns true, the following formula
(the rule preserving property) holds:

∀G : t(L1, . . .,Lm). G
α :- β−−−−→ G′⇒ G′ : t(L1, . . .,Lm)

Proof. Since RCHECK(α :- β ,(t/m,P,N)) returns true, on all the paths from the target rule to the
start symbol, there exists a state L:- R such that REDUCE(R,L,P,∅) returns true. Therefore we have
S ,r |= ¬sWr, and the rule preserving property holds by Lemma 10.
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Theorem 5. For a set of production rules P = PT ∪Pt1 ∪ ·· · ∪ Ptn ∪ {T :- F,t1, . . .,tn}, and a set of
nonterminal symbols N = NT ∪Nt1 ∪ ·· · ∪Ntn , if every rule r ∈ R preserves type (ST ,P,N), t1, . . . , tn `R

F : T holds.

Proof. F,Gt1, . . .,Gtn has the type (ST ,P,N) because P includes the production rule T :- F,t1, . . .,tn
and T is the start symbol. Let G be a graph s.t. F,Gt1, . . .,Gtn

R−→* G. Then G has the type (ST ,P,N)
because every rule r ∈ R preserves the type. Here we assume that G contains no f/m atoms. By G :
(ST ,P,N), there exists a production path s.t. ST

P−→* G. Since G contains no f/m atoms, the production
rule T :- F,t1, . . .,tn has not been applied in the production path. Also the nonterminal symbols of the
types t1, . . . , tn do not appear in the production path because they can appear only after the production
rule T :- F,t1, . . .,tn is applied. Therefore the production rules of the types t1, . . . , tn have not been
applied in the production path, so that the nonterminal symbols Nt1 , . . . ,Ntn and the production rules
Pt1 , . . . ,Ptn are redundant in the production path. Hence we have G : (ST ,PT ,NT ) = T . By Definition 10,
t1, . . . , tn `R F : T holds.
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