
ICOT Technical Report TR-209

Introduction to Guarded Horn Clauses

By Kazunori UEDA*

October 1986
Last modification: November 1986

ABSTRACT
This paper informally introduces a programming language Guarded
Horn Clauses (GHC) through program examples. GHC is a paral-

lel programming language devised from investigation of the basic framework and
practice of logic programming. It has introduced the guard construct with sim-
ple semantics into logic programming to express interacting processes. A GHC
program naturally expresses parallelism inherent in the original problem. The
simple and uniform framework of GHC should be far easier to understand than
the constructs of conventional parallel programming languages. We explain GHC
in comparison with Prolog, the best-known logic programming language. The
readers are assumed to be familiar with programming in Prolog.

KEYWORDS Parallel programming language, Logic programming, Guard, Uni-
fication, Processes, Communication, Synchronization

1. INTRODUCTION

It is often claimed that parallel programming is difficult. There seem to be
two reasons why people think so; one is that we are so inexperienced in grasping
and describing parallel activities with interaction. The other reason is that the
existing parallel programming languages are generally complex and awkward in
describing parallelism. There have been many proposals of language constructs
for describing processes, communication and synchronization [1]. However, most
of those constructs were designed as additional features for conventional sequential
languages. Although the resulting languages might be advantageous for implemen-
tation on parallel computers in the near future, we are more interested in designing
independently of conventional languages a higher-level language that is suitable
for programming parallelism.

Logic programming (or more specifically, programming in a subset of first-
order logic called Horn-clause logic) is said to be a good framework for parallelism
[2]. Execution of a logic program means finding the instances of a given goal
that are logical consequences of the program. Since a logic program is a logical

* Institute for New Generation Computer Technology, 4-28, Mita 1-Chome, Minato-ku, Tokyo
108 Japan

– 1 –

formula and expresses nothing on control, the proof procedure can take any strat-
egy in finding those instances. Prolog [3][4], the first and the best-known logic
programming language, chose sequential execution, but this choice is inessential
unless extralogical features such as side effects are involved. There has been much
research on parallel execution of logic programs.

However, parallelism in implementation and parallelism in a programming
language are different and even independent. The purpose of the former is to
enhance performance, and an implementation may exploit parallelism even from
a sequential program for this purpose. Our concern, on the other hand, is to de-
sign language constructs in which to describe parallel processes and interaction
among them. How to implement them is a separate issue; even without parallel
computers, we should support language constructs for parallel programming and
their implementation on sequential computers as long as they are useful for natural
description of the problem. The original framework of logic programming lacks
the concept of control, so it is not as it is suitable for a general parallel program-
ming language, though it may be suitable for a database query language in which
control issues are not up to the programmers. We need appropriate notations for
expressing control.

Guarded Horn Clauses (GHC) has introduced the concept of guard into
the original framework of logic programming to fulfill the above requirements.
Introduction of guard into the logic programming framework itself is not an orig-
inal idea; GHC is unique in that guard is essentially the only additional syntactic
construct and that the semantics associated with the guard is quite simple. While
the sequentiality of Prolog introduces total orders on the goals in a clause and on
the clauses constituting each predicate, the guard mechanism of GHC introduces
a partial order on the events of binding variables to terms. The execution mecha-
nism of GHC is best understood in terms of bindings observed and generated by
goals.

Programming in GHC is easy at least for simple programs; actually, many sim-
ple GHC programs are almost the same as their Prolog counterparts. Furthermore,
GHC has the important advantage of allowing declarative reading of a program
containing input and output, while Prolog handles them by side effects. On
the other hand, GHC is less advantageous than Prolog for programming search
problems, since GHC has no automatic backtracking or its parallel counterpart.
However, it is quite possible to program search problems in GHC, and furthermore,
a pure Prolog program for exhaustive search can be automatically compiled into
an efficient GHC program [6]. This indicates that GHC is at a lower level than
pure Prolog and that pure Prolog can be regarded as a higher-level user language
for GHC.

In the subsequent sections, we introduce GHC through program examples.
The programs have been tested on the GHC system on top of DEC-10 Prolog

– 2 –

[7]. We omit the systematic description of GHC which can be found in other
documents: [8] is the original, [9] is the most detailed, and [10] is the latest and the
most rigorous. Comparison between GHC and other parallel/logic programming
languages is made in [8] and [9]. The readers are assumed to be familiar with Prolog
and its standard syntax first adopted in DEC-10 Prolog [5]. GHC follows that
syntax since it is well established as the de facto standard of the logic programming
community.

2. A SIMPLE EXAMPLE—CONCATENATING LISTS

Let us begin with a program for concatenating two lists:

concat([A|X1],Y,Z) :- true | Z=[A|Z1], concat(X1,Y,Z1). (2–1)
concat([], Y,Z) :- true | Z=Y. (2–2)

This program concatenates two input lists given to the first and the second argu-
ments and returns the result through the third argument. Its Prolog counterpart
should look like the following:

concat([A|X1],Y,[A|Z1]) :- concat(X1,Y,Z1). (2–3)
concat([], Y,Y). (2–4)

The major syntactic differences are that each clause of the GHC program has a
commitment operator ‘|’ and that unification for constructing the result is specified
in the right-hand side of ‘|’ using the predicate ‘=’.

The commitment operator denotes conjunction in declarative reading. The
left-hand side of the commitment operator is called a guard, and the right-hand
side is called a body. Note that the guard includes the head of the clause.

We have used two predefined predicates. The goal true is used for denoting
an empty set of goals and always succeeds immediately. The goal t1=t2 denotes
equality and is used for unifying two terms. Now it should be clear that the above
two programs are equivalent as logical formulae.

In GHC, the order of program clauses and the order of goals in a clause are
both insignificant, except that we cannot move a goal across the commitment
operator. Unlike in Prolog, conjunctive goals are solved in (pseudo-) parallel,
and candidate clauses for a goal are tried in (pseudo-) parallel. However, these
activities must obey the following two semantic rules associated with the new
syntactic constructs. Firstly, the guard of a clause must be solved passively, that
is, without instantiating its caller. We will explain this in more detail below.

To solve the guard of a clause C, we must unify the head of C with the goal
G that called C and solve the guard goals in C. This may generally instantiate
G; that is, it may bind a variable in G with another variable in G or a non-
variable term. However, the above rule states that the guard of C must be solved

– 3 –

without instantiating G. Instantiation of G would be caused by some unification
invoked directly or indirectly in the guard, and such unification is suspended until
G is sufficiently instantiated (by some other goal running in conjunction) to let it
succeed without instantiating G. Consider the following goal clauses:

:- concat([1,2,3],[4,5],W). (2–5)
:- concat([1,2,3],V, W). (2–6)
:- concat(U, [4,5],W). (2–7)

The guard of Clause (2–1) succeeds for the goal concat([1,2,3], [4,5], W); that
is, the clause head concat([A|X1], Y, Z) can be unified with the goal without
instantiating the goal. Likewise, the guard of Clause (2–1) succeeds for con-

cat([1,2,3], V, W). However, it does not succeed for concat(U, [4,5], W)

because it would instantiate the variable U to [A|X1]. The guard of Clause (2–2)
does not succeed for that goal either. Therefore, Clause (2–7) is suspended forever.
Consider the following goal clause next:

:- concat(U,[4,5],W), U=[1,2,3]. (2–8)

The first goal concat(U, [4,5], W) is suspended until the second goal instantiates
U. However, concat(U, [4,5], W) is finally instantiated to concat([1,2,3],

[4,5], W), and the guard of Clause (2–1) succeeds for it. Thus, the guard of
a clause is used for making the computation suspended until sufficient binding
information is supplied by the caller.

The second semantic rule is on the body of a clause: A clause can instantiate
its caller by solving its body goals, but only one of the program clauses for each
goal is allowed to do so. The commitment operation is used for selecting the
clause: Each goal commits the subsequent execution of itself to arbitrary one
of those clauses whose guards have succeeded. Once committed, the execution
never considers other clauses. The body of an unselected clause can be solved in
principle, but it must not instantiate the caller nor the guard of the clause.

For instance, the execution of the goal concat([1,2,3], [4,5], W) performs
four commitment operations, three to Clause (2–1) and one to Clause (2–2), for
the top-level and the three recursive goals, and instantiates W to [1,2,3,4,5].

Any unification for generating bindings back to the caller must be specified
in the body of a clause. This is why we need the predicate ‘=’. Consider what
happens if we move the unification in the bodies of Clauses (2–1) and (2–2) back
to the clause heads:

concat([A|X1],Y,[A|Z1]) :- true | concat(X1,Y,Z1). (2–9)
concat([], Y,Y) :- true | true. (2–10)

Clause (2–9) states that the term of the form [t1|t2] must be given to the third
argument by the caller. Clause (2–10) states that the second and the third ar-
guments must be made identical by the caller; it never makes them identical by

– 4 –

itself. Hence, the above program can be used for checking if a given list is the
concatenation of two other lists, but cannot be used for generating a concatenated
list.

To sum up, each program clause waits for input bindings in the guard, and
after it is selected for commitment, it generates output bindings in the body.
Each clause thus specifies the direction of computation as well as logical contents.
For this reason, a GHC program cannot be used in more than one direction; for
instance, we cannot use Clauses (2–1) and (2–2) to divide a list into two. They
simply suspend the goal concat(U, V, [1,2,3,4,5]). Even if Clauses (2–1) and
(2–2) are rewritten as follows, they return only one of the six possible solutions
that is arbitrarily chosen by the commitment mechanism:

concat(X,Y,[A|Z1]) :- true | X=[A|X1], concat(X1,Y,Z1). (2–11)
concat(X,Y,Z) :- true | X=[], Y=Z. (2–12)

To compute all the possible ways to divide a list into two, we must write a
program (say decompose) that returns a list of all solutions as a first-order re-
lation. The predicate decompose should return a list [p([], [1,2,3,4,5]),

p([1], [2,3,4,5]), . . ., p([1,2,3,4,5], [])] for the input list [1,2,3,4,5].
A method for deriving decompose from concat written in pure Prolog (Clauses
(2–3) and (2–4)) is described in [6], but the readers are encouraged to try to define
decompose by hand for better understanding of exhaustive search.

3. DIFFERENCE LISTS—QUICKSORT

The next example is a quicksort program. Here we introduce the concept
of a difference list and also we discuss parallelism.

quicksort(Xs,Ys) :- true | qsort(Xs,Ys-[]). (3–1)

qsort([X|Xs],Ys0-Ys3) :- true |

part(Xs,X,S,L),

qsort(S,Ys0-Ys1), Ys1=[X|Ys2], qsort(L,Ys2-Ys3). (3–2)
qsort([], Ys0-Ys1) :- true | Ys0=Ys1. (3–3)

part([X|Xs],A,S, L0) :- A < X |

L0=[X|L1], part(Xs,A,S, L1). (3–4)
part([X|Xs],A,S0,L) :- A >= X |

S0=[X|S1], part(Xs,A,S1,L). (3–5)
part([], -,S, L) :- true | S=[], L=[]. (3–6)

The goal quicksort(u, s) sorts the list u of integers and return the result
to s. This program makes effective use of difference lists. A difference list is a
difference h−t of two lists such that t (for tail) appears as a sublist of h (for head).
If h = t, h− t denotes an empty difference list. When we handle a difference list

– 5 –

h − t, we are interested in the part of h before t but not usually in the value of
t. Conveniently enough, logic programming enables us to handle a difference list
with an undefined tail. Determining the value of t can be left to other goals, and
when t is instantiated to a complete list, so is h. Thus the difference list h− t can
be considered as a part of a complete list. This technique enables us to exploit
parallelism in constructing a complete list.

In the above program, difference lists are used for the results returned by
the predicate qsort. The top-level clause (3–1) just converts the difference list
returned by qsort into a complete list by terminating its tail by []. Clause
(3–2) is the most important clause in the program: It partitions an input list
[X|Xs] into a list S of small integers and a list L of large integers, using X as
the threshold. The lists S and L are then sorted recursively, and here we can use
parallelism. Since neither of the goals qsort(S, Ys0-Ys1) and qsort(L, Ys2-

Ys3) needs to wait for the data returned from the other, they can run in parallel
and generate two difference lists Ys0-Ys1 and Ys2-Ys3 simultaneously. The goal
Ys1=[X|Ys2] relates Ys1 and Ys2 by sandwiching X between them. It effectively
creates a difference list Ys1-Ys2 with a single element X. These three difference
lists finally make up a longer difference list Ys0-Ys3, the result of Clause (3–2).

The fact that there is no order on the four body goals of Clause (3–2) indicates
another source of parallelism. The goal part(Xs, X, S, L) can generate S and
L incrementally from their heads, so the two recursive goals can start their jobs
before the partition has completed. However, parallelism between part and the
two qsort’s is somewhat different from parallelism between two qsort’s. The two
qsort’s must be suspended if they hit upon the yet undetermined parts of S and
L while inspecting them. This kind of parallelism is called pipelining; it is more
complex than the parallel execution of independent tasks because we have to care
about synchronization.

Clauses (3–4) and (3–5) perform arithmetic comparison in their guards. The
goal A<X is like its Prolog counterpart, but it never causes an error when A or X is
uninstantiated. Instead, it waits until both A and X are instantiated and performs
comparison. In other words, the goal A<X succeeds if and when A is known to be
less than X.

Note that one cannot replace the guard goal of Clause (3–5) by true. The
order of Clauses (3–4) and (3–5) is insignificant, so Clause (3–5) must not assume
that Clause (3–4) has failed to be selected. Any condition for commitment must
always be specified explicitly.

4. PROCESSES AND STREAMS—GENERATING PRIMES

This section introduces process interpretation of a GHC program and inter-
process communication using the concept of streams. The method for output is

– 6 –

also introduced. The example program is the generator of a sequence of prime
numbers. This is the first complete program in this paper in that it specifies out-
put operations explicitly. Most implementations of logic programming languages
display binding information after solving each top-level goal, but we cannot rely
on these facilities when we must have full control over what to output and how.

We first show the top-level predicate:

go(Max) :- true |

primes(Max,Ps), outterms(Ps,Os), outstream(Os). (4–1)

The predicate go receives an integer Max, and generates and prints all the
primes up to Max. The goal primes(Max, Ps) instantiates Ps to a list of primes [2,
3, 5, . . .], and the remaining two goals inspect and display the primes in Ps. The
method of input/output may vary from implementation to implementation, but
here we follow the method of the GHC system on top of Prolog [7]. The predicate
outstream is a system predicate for output; it accepts a list of commands and
executes them in order. Each command has the same meaning as the goal of the
same form of the underlying Prolog system. For example, the display

2

3

5

· · ·

can be obtained by instantiating Os to [write(2), nl, write(3), nl, write(5),

nl, . . .]. In the above program, the goal outterms(Ps, Os) generates the value
of Os. It generates two elements write(p) and nl for each p in Ps.

To sum up, the goal primes(Max, Ps) generates Ps, outterms(Ps, Os) trans-
forms Ps to Os, and outstream(Os) consumes Os to perform output operations.
We may execute these goals sequentially from left to right, but alternatively, we
can exploit pipeline parallelism. That is, the goal outterms(Ps, Os) can start
determining the initial elements of Os as soon as primes(Max, Ps) determines
the initial elements of Ps. Similarly, the goal outstream(Os) can start output
operations as soon as outterms(Ps, Os) determines the initial elements of Os.

We may view these three goals as parallel processes communicating via shared
variables Ps and Os. In general, a GHC goal can be regarded as a process that
observes input bindings and generates appropriate output bindings depending on
them*. Two goals communicate by instantiating and observing a shared variable
appearing in common as their arguments. Such a shared variable is usually in-
stantiated to a list of data or commands gradually from the head as computation
goes on, and a list used in this manner is often called a stream.

* Although every goal can be called a process in principle, our pragmatics usually regards
only long-lived (and possibly perpetual) ones as processes. The three body goals in Clause
(4–1) are all long-lived, and this is why we introduce process interpretation in this section.

– 7 –

Parallel execution of conjunctive goals improves space efficiency also. Suppose
we are to compute primes up to 1,000,000. Sequential computation would create a
huge list of primes, convert it to a list of output commands, and then display the
result. On the other hand, (pseudo-) parallel computation lets outterms consume
the elements of Ps incrementally. The part of Ps once inspected by outterms to
instantiate Os is no longer accessed in the program and becomes garbage. At any
moment, only those elements of Ps that have been created by primes and not yet
consumed by outterms need be maintained in the system. A similar argument
applies to Os also. Therefore, (pseudo-) parallel execution will require less storage
than sequential execution.

The goal outstream(Os) can be viewed as a process modeling the output
device and its interface with the GHC system. It is quite natural to view peripheral
devices as processes; they generally work in parallel with a program and form
integral parts of the computational system. It is an important feature of GHC
that interprocess communication and communication with peripheral devices are
described using the same mechanism.

Now we will show the implementation of primes and outterms.

primes(Max,Ps) :- true | gen(2,Max,Ns), sift(Ns,Ps). (4–2)

gen(N0,Max,Ns0) :- N0=<Max |

Ns0=[N0|Ns1], N1:=N0+1, gen(N1,Max,Ns1). (4–3)
gen(N0,Max,Ns0) :- N0 >Max | Ns0=[]. (4–4)

sift([P|Xs1],Zs0) :- true |

Zs0=[P|Zs1], filter(P,Xs1,Ys), sift(Ys,Zs1). (4–5)
sift([], Zs0) :- true | Zs0=[]. (4–6)

filter(P,[X|Xs1],Ys0) :- X mod P=\=0 |

Ys0=[X|Ys1], filter(P,Xs1,Ys1). (4–7)
filter(P,[X|Xs1],Ys0) :- X mod P=:=0 |

filter(P,Xs1,Ys0). (4–8)
filter(P,[], Ys0) :- true | Ys0=[]. (4–9)

outterms([X|Xs1],Os0) :- true |

Os0=[write(X),nl|Os1], outterms(Xs1,Os1). (4–10)
outterms([], Os0) :- true | Os0=[]. (4–11)

The stream Ps of primes is generated by removing multiples of primes from
a stream of successive integers beginning with 2. The goal gen(2, Max, Ns)

instantiates Ns to a stream of integers, and sift(Ns, Ps) creates Ps from Ns.
For the predicate gen, we only note that the goal N1:=N0+1 waits until N0 is
instantiated, computes N0+1, and unifies the result with N1.

The predicate sift will require much more detailed explanation. It assumes
that the first argument receives a null list or an ascending list [n1, . . .] of those

– 8 –

integers which are not multiples of any prime p less than n1. Note that a list of
successive integers beginning with 2 satisfies the above assumption. The predicate
sift then returns a list of primes beginning with n1 through the second argument.
Clause (4–5) handles the recursive case: Since the first element P(= n1) of the
input list is a prime by the assumption and the definition of a prime number, we
let it be the first element of Zs0. We want to process the rest Xs1 of the input
list recursively, but it cannot be fed to the predicate sift as it is, because it may
contain the multiples of n1. So we filter out multiples of n1 from Xs1 and let
Ys be the result. Then Ys is a null list or an ascending list [n′

1, . . .] of those
integers which are not multiples of any prime p less than or equal to n1. We want
to rewrite the above condition p ≤ n1 on p to p < n′

1 to establish that Ys satisfies
the input assumption of sift, and this rewriting is justified by the fact that any
prime larger than n1 should remain in the list [n′

1, . . .], that is, n1 is the largest
prime less than n′

1. Therefore, we can call sift(Ys, Zs1) to generate the rest of
the list Zs0 of primes.

We conclude this section with remarks on the characteristics of GHC as a
process description language. Firstly, unlike in conventional parallel programming
languages, a GHC process is not a sequential process. A process is defined using
other processes and these subprocesses may run in parallel. Unification is consid-
ered as a system-defined process that observes and generates bindings. Secondly,
a GHC process allows declarative reading. It states (the relationship among) the
values of its arguments like a Prolog goal. Thirdly, GHC allows dynamic process
creation. For example, the above program generates a filtering process for each
prime it has found.

5. DEMAND-DRIVEN COMPUTATION—FIBONACCI NUMBERS

The prime generator program in the last section performs data-driven com-
putation; that is, the process gen(2, Max, Ns) autonomously generates a stream
of integers, and the other processes such as sift(Ns, Ps) and outterms(Ps, Os)

can consume input data as soon as the previous stage has generated them.

However, sometimes we may want to generate a stream on demand rather
than autonomously. Consider the following program for generating a stream of
Fibonacci numbers:

go :- true |

fibonacci(Fs), outterms(Fs,Os), outstream(Os). (5–1)

fibonacci(Ns) :- true | fib(1,0,Ns). (5–2)
fib(N1,N2,Ns0) :- true |

N3:=N1+N2, Ns0=[N3|Ns1], fib(N2,N3,Ns1). (5–3)

The goal fibonacci(Fs) autonomously generates a stream Fs of Fibonacci num-
bers [1,1,2,3,5,8,13, . . .]. The auxiliary predicate fib is used for maintaining

– 9 –

the last two numbers, and they are initialized to 1 and 0 in Clause (5–2) to start
the stream with two 1’s.

The problem with this goal is that there is no way to stop the generation
of Fs. A termination mechanism can be easily incorporated if either the upper
bound of the Fibonacci numbers to be generated or the number of elements is
given beforehand. However, the termination condition may not always be given
beforehand in such a simple form. In such cases, it is best to let the consumer
of the stream have full control over its generation. Let us examine the following
predicate:

fibonaccilazy(Ns) :- true | fiblazy(1,0,Ns). (5–4)
fiblazy(N1,N2,Ns0) :- Ns0=[N3|Ns1] |

N3:=N1+N2, fiblazy(N2,N3,Ns1). (5–5)
fiblazy(-, -, []) :- true | true. (5–6)

Unlike fibonacci(Fs), the goal fibonaccilazy(Fs) generates the stream Fs on
demand. The difference comes from the difference between Clause (5–3) and
Clause (5–5): Clause (5–3) unifies the third argument Ns0 with the list struc-
ture [N3|Ns1] in the body, while Clause (5–5) unifies them in the guard. Clause
(5–5) does not create a list structure by itself but waits until it comes from outside.
The list structure must be created by a goal (say g(Fs)) that runs in conjunction
with fibonaccilazy(Fs), consuming the Fibonacci numbers. The structure cre-
ated by g(Fs) should be a list of uninstantiated variables, which are to be unified
with Fibonacci numbers by fibonaccilazy(Fs).

For instance, when g(Fs) needs the first Fibonacci number, it instantiates
Fs to a structure [F0|Fs1]. Then fibonaccilazy(Fs) compute the first num-
ber and unifies the result with F0 using Clause (5–5). The second number is
computed when g(Fs) further instantiates the rest of the structure Fs1 to, say,
[F1|Fs2]. If g(Fs) does not need the second or the subsequent Fibonacci num-
bers, it should instantiate Fs1 to []. In this case, Clause (5–6) is selected and the
goal fibonaccilazy(Fs) terminates. Instantiating Fs or its sublist to a structure
[Variable|Rest] can be interpreted as a demand for a new element; and instanti-
ating it to [] can be interpreted as a command for terminating fibonaccilazy.

Note that Clause (5–5) is equivalent to the following, more usual form:

fiblazy(N1,N2,[N3|Ns1]) :- true |

N3:=N1+N2, fiblazy(N2,N3,Ns1). (5–5′)

Now we show a complete program using fibonaccilazy. It accepts the com-
mands more and done from the terminal, and displays the next Fibonacci number
for more and terminates for done.

golazy :- true |

fibonaccilazy(Fs), driver(Fs,IOs), instream(IOs). (5–7)

– 10 –

driver(Fs,IOs0) :- true |

IOs0=[read(X)|IOs1], checkinput(Fs,IOs1,X). (5–8)
checkinput(Fs0,IOs0,more) :- true |

Fs0=[N|Fs1], IOs0=[write(N),nl|IOs1],

driver(Fs1,IOs1). (5–9)
checkinput(Fs, IOs, done) :- true | Fs=[], IOs=[]. (5–10)

The predicate golazy creates three processes fibonaccilazy(Fs), driver(Fs,
IOs), and instream(IOs). The predicate instream is a system predicate for
input operations. The goal instream(IOs) accepts a list of commands which
in fact are Prolog input goals such as read(X). Suppose IOs is instantiated to
[read(X)|IOs1] and after a while the command read(X) is recognized by in-

stream. Then instream reads a term from the terminal, and unifies it with X.
Notice that a variable is sent with the command to get back a result. Such bi-
directional use of IOs is just like the use of Fs as a demand-driven stream; actually,
instream(IOs) can be regarded as a process that reads data on demand.

Another point to note on instream is that the goal instream(IOs) ac-
cepts output commands as well as input commands for the following reason. In
non-interactive programs, input and output operations may be performed asyn-
chronously; so we may get input data by instream and write output data by
outstream. In interactive programs, however, we often need to guarantee the
precise order of input operations from the keyboard and output operations to the
display. For example, a prompting message must appear before the correspond-
ing input command is executed. We cannot use separate streams for input and
output in such a case, because two commands in different streams are not ordered
and may be executed in any order. Therefore, we decided to let instream(IOs)
accept output commands also. Now the goal instream(IOs) can be regarded as
modeling the terminal with a keyboard.

One may doubt if outstream is necessary when instream accepts output
commands. Certainly it could be dispensed with, but the existence of outstream
may be convenient when we write non-interactive programs in which input and
output devices are regarded as separate.

The goal driver(Fs, IOs) is a driver of the other two goals. It first sends
a command read(X) to instream(IOs) (Clause (5–8)). If ‘more’ is typed in, it
sends a variable N to fibonaccilazy(Fs) to compute the next Fibonacci num-
ber, writes it, and then accepts the next command (Clause (5–9)). If ‘done’ is
typed in, it closes the streams Fs and IOs to terminate fibonaccilazy(Fs) and
instream(IOs), and terminates itself (Clause (5–10)).

An important feature of GHC is that data-driven and demand-driven compu-
tation can be expressed in the uniform framework of the language. However, we
must be careful not to use demand-driven computation except when it is really nec-
essary. Demand-driven computation involves bi-directional communication, and

– 11 –

this means that the constituent goals should be more tightly coupled to cope with
more complex information flow. For this reason, programs using demand-driven
computation are much harder to optimize than those using data-driven computa-
tion. For example, while the prime generator program in Section 4 runs almost
without process switching on the implementation on top of Prolog, the program
in Section 5 causes intensive process switching, which can be costly in most im-
plementations.

6. CONCLUSION

We have described Guarded Horn Clauses by sample programs. GHC is quite
simple compared with other parallel programming languages, but of course, further
work is necessary to make it a truly practical language. Firstly, we must develop
(very) efficient implementations and sophisticated optimization techniques to ac-
quire a wide range of users. It is already shown that GHC can be implemented as
efficiently as Prolog, but further improvement will be called for. Secondly, we must
prepare a good environment for parallel programming. In particular, debugging
facilities seem to be quite important. Thirdly, when programs and programming
techniques are accumulated, we will have to analyze them and provide appropriate
syntactic supports for terse description of typical programs, for developing large
programs, and for assisting sophisticated optimization.

REFERENCES

[1] Andrews, G. R. and Schneider, F. B., “Concepts and Notations for Concurrent
Programming”, Computing Surveys, Vol. 15, No. 1, pp. 3–43, 1983.

[2] Kowalski, R., “Predicate Logic as Programming Language”, Proc. IFIP ’74,
North-Holland, Amsterdam London, pp. 569-574, 1974.

[3] Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd ed., Springer-
Verlag, Berlin Heidelberg New York Tokyo, 1984.

[4] Sterling, L. and Shapiro, E., The Art of Prolog, MIT Press, Cambridge, 1986.
[5] Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren,

D. H. D., DECsystem-10 Prolog User’s Manual, Dept. of Artificial Intelligence,
Univ. of Edinburgh, 1983.

[6] Ueda, K., Making Exhaustive Search Programs Deterministic, ICOT Tech.
Report TR-145, Institute for New Generation Computer Technology, Tokyo,
1985. Also in Proc. Third Int. Conf. on Logic Programming, Shapiro, E. (ed.),
Lecture Notes in Computer Science 225, Springer-Verlag, Berlin Heidelberg,
pp. 270–282, 1986.

[7] Ueda, K. and Chikayama, T., “Concurrent Prolog Compiler on Top of Prolog”,
Proc. 1985 Symp. on Logic Programming, IEEE Computer Society, pp. 119–
126, 1985.

[8] Ueda, K., Guarded Horn Clauses, ICOT Tech. Report TR-103, Institute for
New Generation Computer Technology, Tokyo, 1985. Also in Proc. Logic

– 12 –

Programming ’85, Wada, E. (ed.), Lecture Notes in Computer Science 221,
Springer-Verlag, Berlin Heidelberg, pp. 168–179, 1986.

[9] Ueda, K., Guarded Horn Clauses, Doctoral thesis, Information Engineering
Course, Faculty of Engineering, Univ. of Tokyo, 1986.

[10] Ueda, K., Guarded Horn Clauses: A Parallel Logic Programming Language
with the Concept of a Guard, ICOT Tech. Report TR-208, Institute for New
Generation Computer Technology, Tokyo, 1986.

– 13 –

