Graph Rewriting Language as a Platform for
Quantum Diagrammatic Calculi

PADL2026 @ Rennes January 12, 2026

Kayo Tei, Haruto Mishina, Naoki Yamamoto, Kazunori Ueda

Waseda University, Tokyo, Japan (Extended version available at arXiv.org)

Overview

Overview ZX- aphical formalism for quantum circuits
0e00 OO0

Overview

Graph Rewriting
v Powerful formalism for representing & transforming structured data.

e Applied in various domains: !l
chemistry, math, quantum physics, etc. © PO

ZX-calculus ' LMNtal ?

e Diagrammatic and rule-based e Concrete declarative language for
framework for quantum circuts. hierarchical graph rewriting.

e Specialized graphical tools for t state space exploration tool
optimization and proof assistance. v Model checking tool

* Designing & verifying rewriting v Quantifiers for expressive pattern
strategies is challenging. matching (QLMNtal)

Kazunori Ueda. “LMNtal as a hierarchical logic programming language”. In: Theoretical Computer Science 410.46 (2009)
Bob Coecke et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. 2017

Overview 7
00®0 5

Research Question and Contributions

(RQ) How can we bridge declarative programming and quantum computing?

Challenges in the ZX-calculus

1. Systematic exploration of optimization strategies

2. Analyzing properties of strategies (confluence, termination, etc.)
3. Gap between diagrammatic rules and implementations

... for which QLMNtal provides a language and a comlementary platform
— Each graphical ZX-rule can be directly encoded as a single QLMNtal rule.

— New strategies can be modeled and verified in our platform to confirm
their effectiveness, and then can be implemented in existing tools.

Overview 7

lusion and Futu
feelel) o

Existing tools vs. LMNtal

e Major optimization/verification tools for ZX-calculus & our LMNtal ecosystem:

PyzX 3 Quantomatic “ LMNtal / QLMNtal
Goal Optimization Verification General graph rewriting
TR automatic simplification step-by-step proofs non-deterministic execution of
via built-in heuristics via user-defined rules user-defined rulesets
Syntax graphical graphical textual (PL-standard)

UI -—0 = O SO

Aleks Kissinger et al. “PyZX: Large Scale Automated Diagrammatic Reasoning”. In: 16th International Conference on Quantum Physics and Logic (QPL 2019)
Vol. 318. EPTCS. 2020

Aleks Kissinger et al. “Quantomatic: A Proof Assistant for Diagrammatic Reasoning”. In: Automated Dedl

on - CADE-25. Vol. 9195. LNCS. 2015

ZX-calculus, a graphical formalism for
quantum circuits

ZX-calculus, a graphical formalism for quantum circuits
0®0000000

From Quantum Circuits to ZX-calculus

e Operations on quantum circuits are complex due to diverse gates and
fixed wiring ...
— ZX-calculus > born from String Diagrams °

P All kinds of circuits can be represented by only two types of nodes & wires!
P Can be bent and stretched freely.
» Only a small number of universal rewrite rules @

are needed. E

e While String Diagrams are more oriented to category theory,
ZX-calculus has more flexibility and affinity with graph rewriting

Bob Coecke et al. “Interacting quantum observables: categorical algebra and diagrammatics”. In: New J. Phys. 134 (2011)
Bob Coecke et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. 2017

ZX-calculus, a graphical formalism for quantum circuits LI
00®000000

ZX-diagrams

e 7X-diagrams consist of Z- and X-spiders connected by wires.

» n,meN
» o c R: phase

Z-spider X-spider Hadamard gate

ZX-calculus, a graphical formalism for quantum circuits LMNtal and C

[e]o]e] le]ele]ele]

Equivalence of ZX-diagrams

e “Only connectivity matters”

As long as the connectivity is preserved,

% diagrams are equivalent under deformation, and
% diagrams don't care about input/output order.

ZX-calculus, a graphical formalism for quantum circuits LMNtal and QLMNtal ~ Ence

0O000@0000

Rewrite Rules in ZX-calculus

e Rewrite rules preserve the equivalence of ZX-diagrams.
® Also, rules enjoy color symmetry: can swap Z- (green) and X- (red) spiders

il
1
0 @ 9<>;>@C£ Mus %
1
o o (id)
™ &@{@% —oo—
e —o e (P o o

ZX-calculus, a graphical formalism for quantum circuits

[e]o]e]e]e] lelele]

I-boxes (bang-boxes)

e |n ZX-calculus, “... " means “any number”.
» Informal and can be ambiguous. see (b) (bialgebra rule): M (b)

P We can use !-boxes ’ instead!

Ao lo o, AN B

e Subgraphs surrounded by a !-box can be instantiated any number of times.
e Four instantiation operations: COPY, KILL, DROP, and MERGE.

okdclolciokdrey
—> —s
o
DROP i KILL
@ —> L

Aleks Kissinger et al. “Pattern graph rewrite systems”. In: Developments in Computational Models 2012 (DCM 2072). Vol. 143. EPTCS. 2014
A. Kissinger et al. “Tensors, !-graphs, and Non-commutative Quantum Structures”. In: New Gener. Comput. 34 (2016)
Lucas Dixon et al. “Graphical Reasoning in Compact Closed Categories for Quantum Computation”. In: Ann. Math. Artif. Intell. 56 (2009)

7

ZX-calculus, a graphical formalism for quantum circuits LMNtal and
000000®00

Overlapped !-boxes

e |-boxes can be overlapped.

overlapped
<0 T A ﬁ ;gf
’ ’ ’ ? ? ?

ZX-calculus, a graphical formalism for quantum circuits L.

000000080

Rules written with !-boxes

e I-graphs (graphs with I-boxes) can be placed on both sides to represent

rewrite rules.
(©) =f F — _ =
c0E]2[e] o {e0-1 s@ -0 e@T-T -}

o (b)-rule with !-boxes:
N oo ;%;

M

et o foon 1] wom o - 3(- I)

ZX-calculus, a graphical formalism for quantum circuits LI

O0000000e

Representing ZX-rules with !-boxes

ZX-rules with “...” ZX-rules with !-boxes

_2

ED

@] ¥ @@ |
=
X

B
N

N @ | v

5

LMNtal and QLMNtal

LMNtal and QLMNtal
0®0000

LMNtal https://bit.ly/lmntal-portal

e LMNtal: a hierarchical graph rewriting language born from
concurrent constraint programming + Constraint Handling Rules (CHR) .
~ graph node = atom = formula atom with 2 links

- graph edge = link = logical variable @)
| ~ = x, vy, {a(b, ©)}
- hierarchy = membrane = context ® |6 © : 1 Y ’
membrane
e Toolkit provides various features including
visualizer, state space explorer, model checker.

e QLMNtal ® extends LMNtal with quantifiers:
cardinality, negation, and universal.

(<)

o
")
o
State Space visualized by

LMNtal StateViewer (state space explorer)

S Thom Friwirth. “Theory and practice of Constraint Handling Rules”. In: J. Logic Programming 371 (1998)
Haruto Mishina et al. “Introducing Quantification into a Hierarchical Graph Rewriting Language”. In: 34th International Symposium on Logic-Based Progana
Synthesis and Transformation (LOPSTR 2024). Vol. 14919. LNCS. Extended version available at https://arxiv.org/abs/241114802. 2024

https://bit.ly/lmntal-portal

LMNtal and QLMNtal
00000

Syntax of LMNtal

Process P:=0|p(Xy,..,X,)|P,P|m{P}|T:-T
Process template T:=0|p(X,, .., X)) |T,T|m{T}|T:-T|$p

process context (wildcard)

6 5ol — |@3p] @g
OL®
©F® (L), {x(L),$pt :- 1y, $p} O5€
o(L), {x(L),a(A),b(B)},g(A),g(B) {y,a(A),b(B)},g(A),g(B)

rewrite rule
e |MNtal graphs are port graphs: a(X,Y) # a(Y, X).
e Rules are applied repeatedly and non-deterministically.

e Membranes can contain other membranes.

LMNtal and QLMNtal
000000

Introducing Quantifiers'™

Process P:=0|p(Xy,..,X,) | P,P|m{P}|T:-T
Process template T:=0|p(X,,..,X,) |QT|T,T|m{T}t|T:- T|$p
Quantifier Q == Uz, z2) | ")

e ()T: Newly introduced quantified process template
* () : Quantifier. Can represent either cardinality (/(z, z)) or negation (/(")).

e label [is an identifier for the quantifier.

10" Haruto Mishina et al. “Introducing Quantification into a Hierarchical Graph Rewriting Language”. In: 34th International Symposium on Logic-Based Programn

Synthesis and Transformation (LOPSTR 2024). Vol. 14919. LNCS. Extended version available at https://arxiv.org/abs/2411.14802. 2024

LMNtal and QLMNtal
000000

Universal Quantifier in QLMNtal

¢ Universal quantifier [{x) = cardinality quantifier + negation quantifier.

- 1{0,00)T': There are arbitrarily many instances of pattern T
- {™T’: No instance of pattern 7" (a variant of T
- and they are associated by label L.

1{(+)T := 1{0, 00)T, ™M T'

e Negation quantifier ensures that all instances of T'is matched by the
cardinality quantifier.

iphical formalis r quantur its LMNtal and QLMNtal Ence g ZX-calcull
00000@

Universal Quantifiers in QLMNtal

e Matching all a’s with 2 links

©, <x>a(X,Y) :- <x>b(X,Y) (b)
— m‘o

e An example motivated from (b) (bialgebra) rule

olo Mo)
® &1
@+® O+Hd {<*>+L1,+L2}, {+L2,N<#>+L3} :- %&
OHO GOHO M<x>{+L1,N<x>+L2,}, N<x>{M<x>+L2,+L3} @H®
&ﬁ s 5
® &+®
Oo+® L®
_ O

¢ Quantifiers with the same label are associated with each other.
e Quantifiers can be nested.

Encoding ZX-calculus in LMNtal

Encoding ZX-calculus in LMNtal
0®00000

ZX-diagram in LMNtal

e “Only connectivity matters” corresponds nicely to LMNtal graphs

©O(xD) (i@

—0— — "0 180) (¥

e Can treat Z- and X-spiders uniformly: {e"i(alpha), c(color), $ports}

® o (phase) is represented in degrees
® Have abbreviation for Hadamard gates: h{e”1(180), $ports}
P that can be easily extended to ZH-calculus ™

Miriam Backens et al. “ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity”. In: 75th International Conference
on Quantum Physics and Logic (QPL 2018). Vol. 287. EPTCS. 2019
Kayo Tei et al. Graph Rewriting Language as a Platform for Quantum Diagrammatic Calculi. 2025

ind QLMNtal Encoding ZX-calculus in LMNtal Exar

00e0000

ZX-rules in LMNtal

e Some of the rules ((f), (id), (hh), (hopf) below) can be written in a single
LMNtal rule

e Others need multiple LMNtal rules to handle the “..."

1 graphical formalism for quantum circuits i: | OLMNtal Encoding ZX-calculus in LMNtal Exam|

000@000

Implementation of the rule in plain LMNtal

e The (b) (bialgebra) rule can be represented in plain LMNtal
but involves multiple rewriting steps

e and only for left-to-right rewriting

1 graphical fo 3 r quantum c its ind QLMNtal Encoding ZX-calculus in LMNtal Examj Conclusion and Fut
(0000800 000G) 000

Using QLMNtal for ZX-rules

¢ Using QLMNtal's univeral quantifiers, all ZX-rules can be represented

straightforwardly

e Furthermore, the reverse direction is achieved just by swapping head and
bOdyl (with a bit of care for guard conditions)

Bidirectional (b) (bialgebra) rule in QLMNtal
Left-to-right:

{M<*>+L1,+L2,e”i(0),c(1)}, {+L2,N<*>+L3,e"i(0),c(-1)}
t- M<x>{+L1,N<*>+12,e”1(0),c(-1)}, N<#>{M<*>+L2,+L3,e"i(0),c(1)}.

Right-to-left:

M<x>{+L1,N<*>+L2,e"i(0),c(-1)}, N<*>{M<+*>+L2,+L3,e"i(0),c(1)}
co {Mcx>+L1,+L2,e%i(0),c(1)}, {+L2,N<*>+L3,e"i(0),c(-1)}.

r quantur its LMN ind OLMNtal Encoding ZX-calculus in LMNtal &
000000 0000000 000000000 O

ZX-rules in QLMNtal

e Other ZX-rules with the “...” can also be written concisely

{+L1,+L2,e"i(180),c(C1)}, {+L2,<*>+L3,e i(A),c(C2)}
®-@ ® e - int(A), AA=-A, int(C1), int(C2), C1xC2=:=-1 |

{+L1,<*>+L2,e"i(AA),c(C2)}, <*>{+L2,+L3,e"i(180),c(C1)}

{+L1,e%i(0),c(C1)}, {+L1,<*>+L2,e"i(A),c(C2)}
:- int(A), int(C1), int(C2), C1*C2=:=-1 | <*>{+L2,e"i(0),c(C1)}

oi
oi
oi
5 - {<*>+L1 e”i(A),c(C)}, <*>h{+L1,+L2,e"i(180)}
I)) - int(A), int(C), CC=-C | {<*>+L2,e"i(A),c(CC)}

{ <x>+L1,+L2,e"1(0),c(1)}, {+L2,N<*>+L3,e"i(0),c(-1)}
- M<x>{+L1,N<*>+L2,e"1(0),c(-1)}, N<x>{M<*>+L2,+L3,e"i(0),c(1)}

Encoding ZX-calculus in LMNtal

000000e

Expressive power of QLMNtal vs. !-boxes

Fe-obje]—ofe=] o foo- 1] o= — - (- -}

{M<*>+L1,+L2,e"1(0),c(1)}, {+L2,N<*>+L3,e"i(0),c(-1)}
t- M<*>{+L1,N<*>+L2,e"1(0),c(-1)}, N<*x>{M<*>+L2,+L3,e"1(0),c(1)}

e !-graphs with overlapping [(1's can be encoded into nested <*>'s of
QLMNtal!

Examples

IDEIES

0O®@0000000

Example 1: Simplification of quantum teleportation circuit '>(1/2)

e When devising a circuit simplification method,
we can verify the procedure using StateViewer and LTL model checker.

e An example simplication of the quantum teleportation circuit:
a,b e {0,1}
O

e What if we know nothing but the final state?
e We can still find out the path!

2 John van de Wetering. “ZX-calculus for the working quantum computer scientist”. In: (2020)

al and QLMNtal Encoding ZX-calcult LMNtal Examples Conclusion and Fu
o 000000C 008000000 000

Example 1: Simplification of quantum teleportation circuit (2/2)

State space with extra rules State space without extra rules

e We may trigger more rules than we need ...
P which happens when we don’t have enough knowledge of the steps.

% We can easily find out the shortest path using model checker.
% We can easily analyze which rules are unneeded.

LMNtal Examples

0O00@00000 00O

e Suppose we want to check a (manual) inductive proof we have devised.

e Eg, let's confirm that\the equation below ‘ 3 holds forn =4

P ..assuming that the cases with n < 3 have already been proved

3 Bob Coecke et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. 2017

IDEIES
000000000

Example 2: Checking inductive proofs (2/4)

e Assign tokens to each rule and control rule application (as in the
derivation below)
» use _rules=[f,id,hh,a,h,k,h,b,h,f,kn].
use_rules=[f|L], head : - use_rules=L, body

by definition

“ Kn+l ‘

LMNtal Examples Conclusion a
000008000 000

Example 2: Checklng |nduct|ve proofs (3/4)

e We proved lemma A in our platform first
e _and then introduced it as a single rule for the main proof.

IDEIES

000000800

Example 2: Checking inductive proofs (4/4)

e These are the full state spaces for each proof.

state space for the lemma A proof state space for the n =3 — 4 proof

e We can manage the rule application to get some determinism by using
tokens.

® Proof steps are now visually easy to understand.

r quantur it ;‘) g ZX-calcu LMNtal Examples Fu\uuw\fm
0C 000000080 OC

Example 3; Analyzmg efficient S|mpl|ﬁcat|on strategies (1 /2)

° 2-qubit QFT circuit simpliﬁcation“‘ Examples # of states | # of final states
. Pauli pushing 533 7

o (m)x2, (f), (id), (¢), (h) are used. 2-qubit QFT (0 8
° 8 different final states Detecting Entanglement 436,711 60

» How to reach a better one?

e We can analyze which rule applications lead to better results using
StateViewer.

* “Better final state” = “fewer spiders” in this case.

1
D
=R
o
MD
>
—t

©

QD
—t
=
~

I

—o0

L John van de Wetering. “ZX-calculus for the working quantum computer scientist”. In: (2020)

IDEIES
00000000

Example 3: Analyzing efficient simplification strategies (2/2)

% Applying (id) early leads to undesired final states (dead ends) quickly.
% Applying () in the middle stage tends to lead to better results.

search (id) in the state space search () in the state space

Temporarily increasing spiders by () led to more effective simplification!

Conclusion and Future Work

Conclusion and Future Work
O 080

We presented a flexible and customizable platform based on
LMNtal with quantifiers to design and verify rewrite strategies
in ZX-calculus, a diagrammatic framework for quantum computing.

Benefits for ZX-calculus

QLMNtal Approach
« Quantified atterrl?l:r’natching e A concise & direct encoding of
. p. complex rules (e.g., generalized
handling arbitrary numbers of SN bialgebra)
links. alebra

e A Laboratory for verifying
optimization strategies and
heuristics

e Model Checking with state-space
exploration.

o Bridging declarative programming and quantum computing.

Conclusion and Future Work
ooe

Future Work

1. Extending the platform:
» Extend Quantifier in QLMNtal to express nested !-boxes.
P Extend the platform to other diagrammatic calculi related to ZX-calculus, such
as ZW-calculus.

2. Deeper analysis:
Systematically analyze existing optimization techniques using our approach to
uncover new insights.

3. Improving usability:
Support importing/exporting from/to widely used quantum circuit formats like
OpenQASM.

Thank you for listening! Questions?

Appendix

Quantum Circuit

Quantum Gates and Circuits

Example: 3-qubit circuit
e Quantum bits (qubits): Unlike classical bits (0 or 1),

qubits can be in superposition \O>E ¢
P State: «|0) + 3[1) where |a|? + |32 =1 \0>@ @ =

e Common quantum gates: |0>{ o U |
» Hadamard (H): Creates superposition

» Pauli gates (X, Y, Z): Bit-flip and phase-flip Wires represent qubits
P Phase gates (S, T): Apply phase rotations (r/2, w/4) Gates applied left-to-right
P CNOT: Two-qubit controlled operation

I Fixed wire topology: Qubits cannot cross freely

I Critical for quantum computers: Shorter circuits = less decoherence & errors

I Complex interactions: Exponential growth of possible transformations

ulus, a graphical formalism for quantum circuits LI 1d QLMNtal Encoding ZX-calculus in LMNtal ~ Examy

String Diagram

From Category Theory to Quantum Computing Sl e et
° Strln.g.dlagra.\ms: Gréphlcal notf';ltlon from category theory Category Theory
P Originated in monoidal categories f:A> B
P Objects — wires g:B—>C

gof:A—C

» Morphisms — nodes/boxes

e Key properties:
P Topological: Only connectivity matters
P Compositional: Diagrams compose naturally
» Equational reasoning: Diagram equivalence = morphism
equality

ZX-Calculus
e Why String Diagrams for Quantum Computing? %ﬁ
! vs. Quantum Circuits: Not fixed topology
! ZX-calculus: Specialized string diagrams with only 2 node types + simple rules
! Enables graphical proofs: See Eg. 1

Overlapped and nested !-boxes

e I-box distinguishes between overlapping and nesting.

» COPY performs differently: everlEas Wﬂm
18] = 131181
nested ? A
COPY
H
overlapped

nested

friAf]
NEIPRE Y.

	Overview
	ZX-calculus, a graphical formalism for quantum circuits
	LMNtal and QLMNtal
	Encoding ZX-calculus in LMNtal
	Examples
	Conclusion and Future Work
	Appendix

