

Graph Rewriting Language as a Platform for Quantum Diagrammatic Calculi

PADL2026 @ Rennes January 12, 2026

Kayo Tei, Haruto Mishina, Naoki Yamamoto, Kazunori Ueda

Waseda University, Tokyo, Japan **(Extended version available at arXiv.org)**

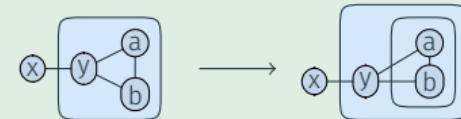
Overview

Overview

Graph Rewriting

✓ Powerful formalism for representing & transforming **structured data**.

- Applied in various domains:
chemistry, math, **quantum physics**, etc.



ZX-calculus ¹

- Diagrammatic and rule-based framework for **quantum circuits**.
- Specialized graphical tools for optimization and proof assistance.

★ **Designing & verifying rewriting strategies is challenging.**

LMNtal 2

- **Concrete declarative language** for hierarchical graph rewriting.
- ✓ **State space exploration** tool
- ✓ **Model checking** tool
- ✓ **Quantifiers** for expressive pattern matching (**QLM_Ntal**)

Research Question and Contributions

(RQ) How can we bridge declarative programming and quantum computing?

Challenges in the ZX-calculus

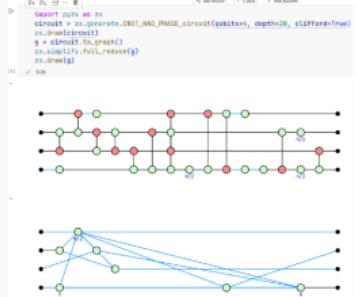
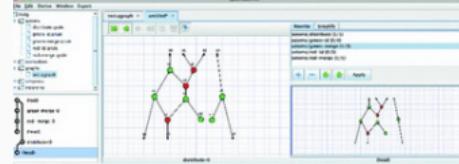
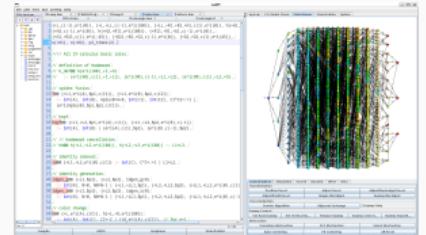
1. **Systematic exploration** of optimization strategies
2. **Analyzing properties** of strategies (confluence, termination, etc.)
3. **Gap** between **diagrammatic rules** and **implementations**

... for which QLMNtal provides a language and a complementary platform

- Each graphical ZX-rule can be directly encoded as a single QLMNtal rule.
- New strategies can be **modeled and verified in our platform** to confirm their effectiveness, and **then can be implemented in existing tools**.

Existing tools vs. LMNtal

- Major optimization/verification tools for ZX-calculus & our **LMNtal ecosystem**:

	PyZX ³	Quantomatic ⁴	LMNtal / QLMNtal
Goal	Optimization	Verification	General graph rewriting
Approach	automatic simplification via built-in heuristics	step-by-step proofs via user-defined rules	non-deterministic execution of user-defined rulesets
Syntax	graphical	graphical	textual (PL-standard)
UI	  		

3

Aleks Kissinger et al. **“PyZX: Large Scale Automated Diagrammatic Reasoning”**. In: *16th International Conference on Quantum Physics and Logic (QPL 2019)*. Vol. 318. EPTCS. 2020

4

Aleks Kissinger et al. **“Quantomatic: A Proof Assistant for Diagrammatic Reasoning”**. In: *Automated Deduction - CADE-25*. Vol. 9195. LNCS. 2015

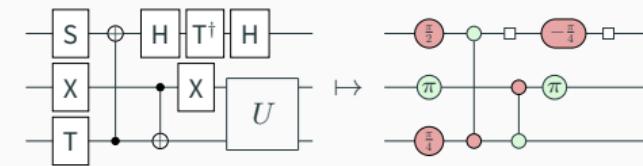
ZX-calculus, a graphical formalism for quantum circuits

From Quantum Circuits to ZX-calculus

- Operations on quantum circuits are complex due to diverse gates and fixed wiring ...

→ **ZX-calculus**⁵ born from **String Diagrams**⁶

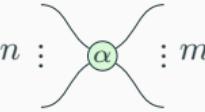
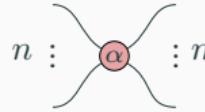
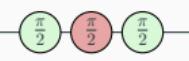
- ▶ All kinds of circuits can be represented by **only two types of nodes & wires!**
- ▶ Can be bent and stretched freely.
- ▶ Only a small number of universal rewrite rules are needed.



- While **String Diagrams** are more oriented to **category theory**, **ZX-calculus** has more flexibility and **affinity with graph rewriting**

ZX-diagrams

- ZX-diagrams consist of Z- and X-spiders connected by wires.
 - ▶ $n, m \in \mathbb{N}$
 - ▶ $\alpha \in \mathbb{R}$: phase

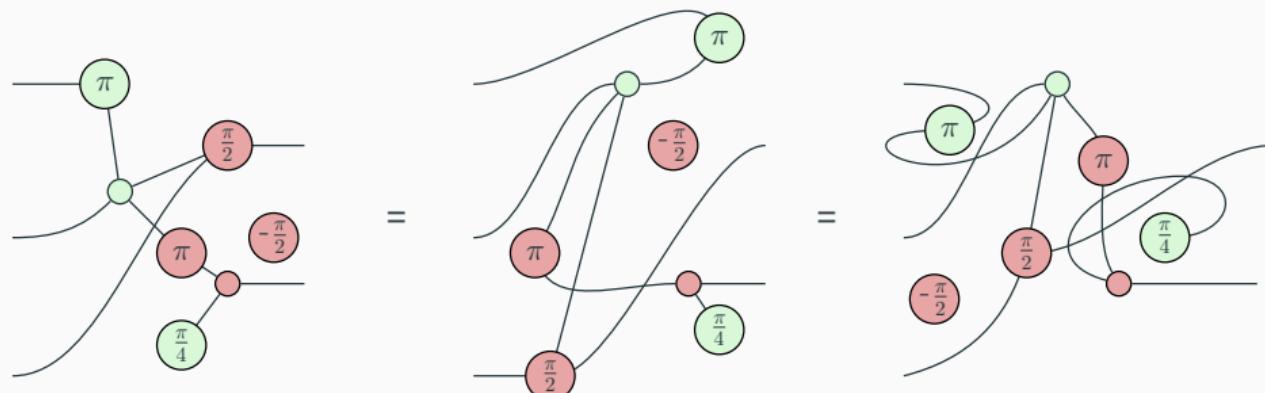
Z-spider	X-spider	Hadamard gate
$n : \text{Z-spider} : m$ 	$n : \text{X-spider} : m$ 	= 

Equivalence of ZX-diagrams

- **“Only connectivity matters”**

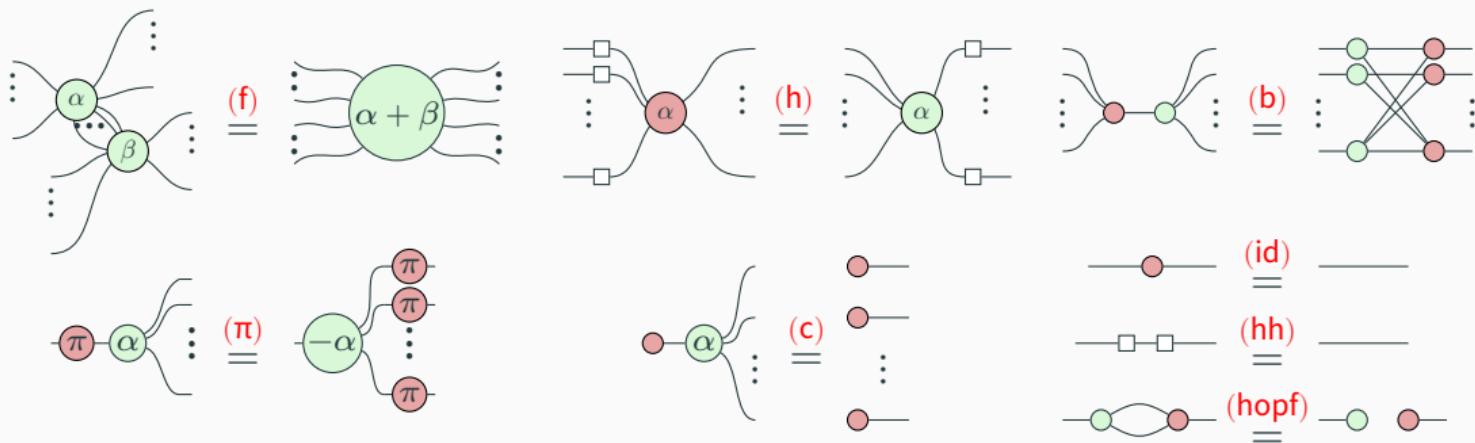
As long as the connectivity is preserved,

- ★ diagrams are equivalent under deformation, and
- ★ diagrams don't care about input/output order.



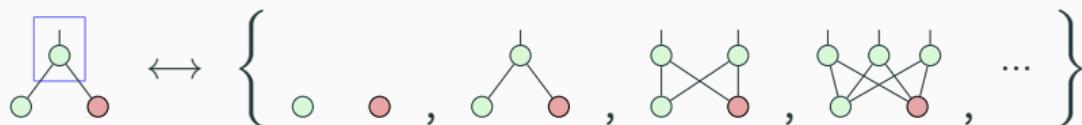
Rewrite Rules in ZX-calculus

- Rewrite rules preserve the equivalence of ZX-diagrams.
- Also, rules enjoy **color symmetry**: can swap Z- (green) and X- (red) spiders

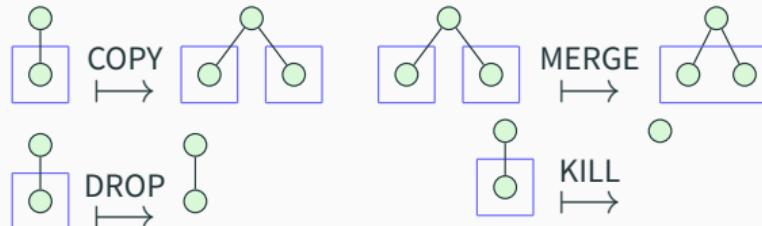


!-boxes (bang-boxes)

- In ZX-calculus, “...” means “any number”.
 - Informal and can be ambiguous. see (b) (bialgebra rule):
 - We can use **!-boxes**⁷ instead!



- Subgraphs surrounded by a !-box can be **instantiated** any number of times.
- Four instantiation operations: **COPY**, **KILL**, **DROP**, and **MERGE**.

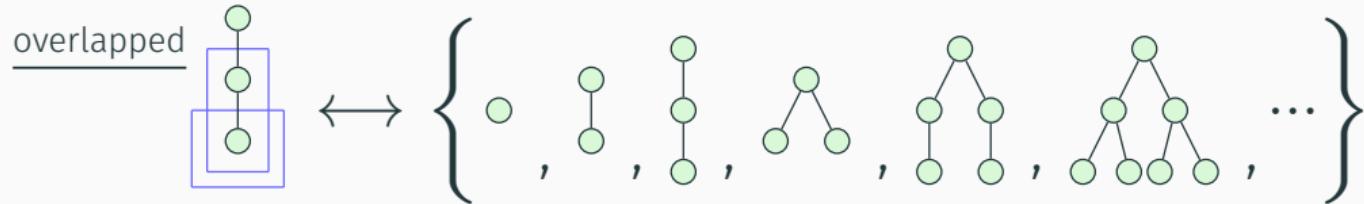


7

Aleks Kissinger et al. “**Pattern graph rewrite systems**”. In: *Developments in Computational Models 2012 (DCM 2012)*. Vol. 143. EPTCS. 2014
 A. Kissinger et al. “**Tensors, !-graphs, and Non-commutative Quantum Structures**”. In: *New Gener. Comput.* 34 (2016)
 Lucas Dixon et al. “**Graphical Reasoning in Compact Closed Categories for Quantum Computation**”. In: *Ann. Math. Artif. Intell.* 56 (2009)

Overlapped !-boxes

- !-boxes can be **overlapped**.



Rules written with !-boxes

- !-graphs (graphs with !-boxes) can be placed on both sides to represent rewrite rules.

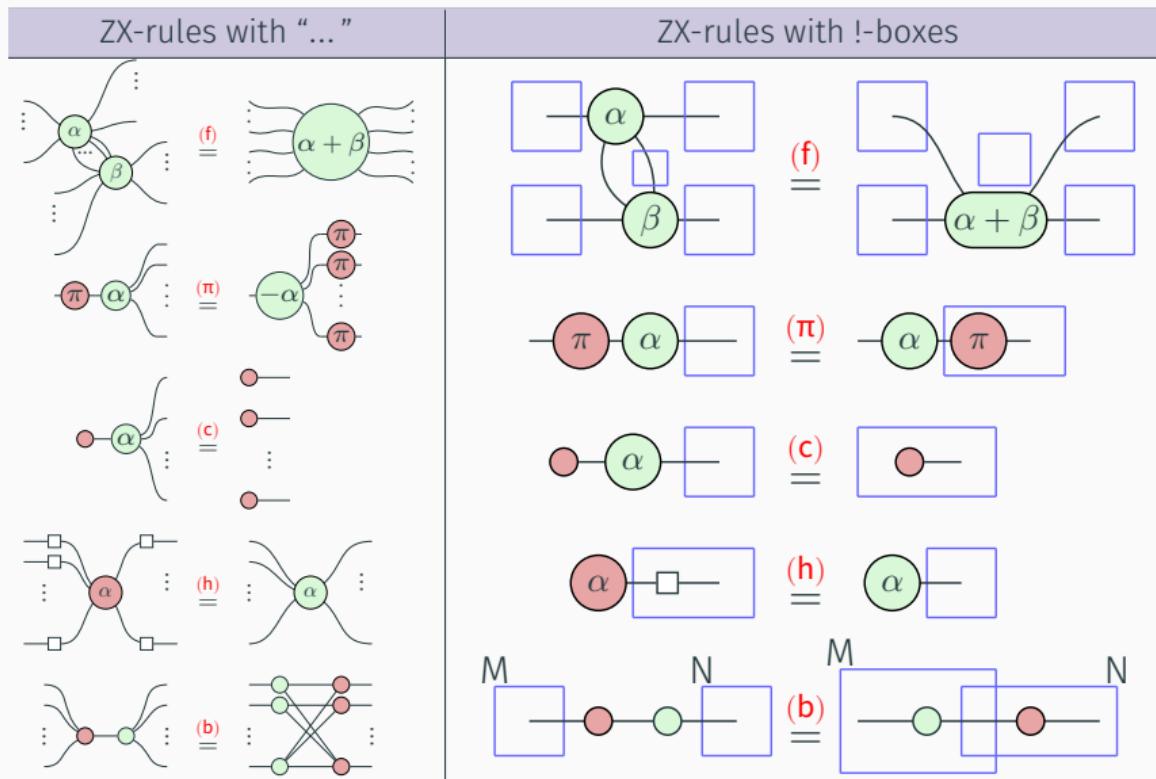
$$\text{Diagram: } \text{---} \circ \text{---} \alpha \text{---} \boxed{\text{---}} \text{---} \stackrel{(c)}{=} \text{---} \circ \text{---} \quad \leftrightarrow \quad \left\{ \text{---} \circ \text{---} \alpha = \boxed{\text{---}} , \text{---} \circ \text{---} \alpha = \text{---} , \text{---} \circ \text{---} \alpha = \text{---} \text{---} , \dots \right\}$$

- (b)-rule with !-boxes:

$$\text{Diagram: } \text{---} \circ \text{---} \alpha \text{---} \circ \text{---} \stackrel{(b)}{=} \text{---} \circ \text{---} \alpha \text{---} \circ \text{---}$$

$$\text{Diagram: } \text{---} \stackrel{M}{\boxed{\text{---}}} \circ \text{---} \stackrel{N}{\boxed{\text{---}}} \stackrel{(b)}{=} \text{---} \stackrel{M}{\boxed{\text{---}}} \circ \text{---} \stackrel{N}{\boxed{\text{---}}} \quad \leftrightarrow \quad \left\{ \text{---} \circ \text{---} = \boxed{\text{---}} , \text{---} \circ \text{---} = \text{---} \circ \text{---} , \dots , \text{---} \circ \text{---} \alpha \text{---} \circ \text{---} = \text{---} \circ \text{---} \alpha \text{---} \circ \text{---} , \dots \right\}$$

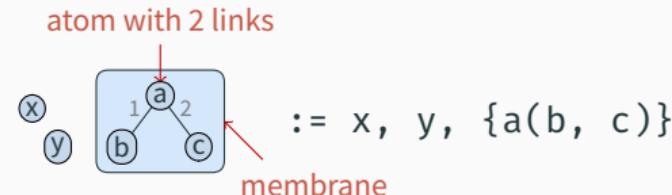
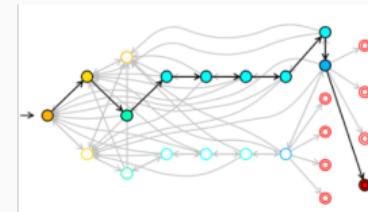
Representing ZX-rules with !-boxes



LMNtal and QLMNtal

LMNtal <https://bit.ly/lmnatal-portal>

- **LMNtal**: a hierarchical graph rewriting language born from **concurrent constraint programming + Constraint Handling Rules (CHR)**⁸.
 - graph node = **atom** = formula
 - graph edge = **link** = logical variable
 - hierarchy = **membrane** = context
- Toolkit provides various features including **visualizer, state space explorer, model checker**.
- **QLMNtal**⁹ extends LMNtal with **quantifiers: cardinality, negation, and universal**.



State Space visualized by
LMNtal StateViewer (state space explorer)

⁸

Thom Früwirth. "Theory and practice of Constraint Handling Rules". In: *J. Logic Programming* 37:1 (1998)

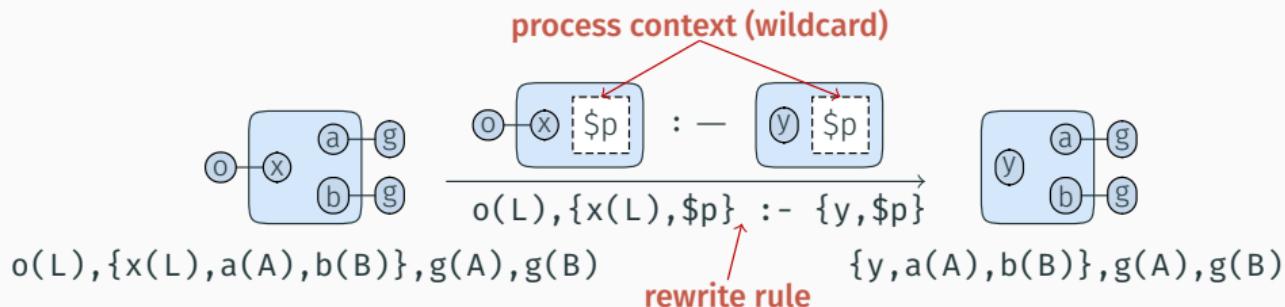
⁹

Haruto Mishina et al. "Introducing Quantification into a Hierarchical Graph Rewriting Language". In: *34th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2024)*. Vol. 14919. LNCS. Extended version available at <https://arxiv.org/abs/2411.14802>. 2024

Syntax of LMNtal

Process $P ::= \mathbf{0} \mid p(X_1, \dots, X_n) \mid P, P \mid m\{P\} \mid T :- T$

Process template $T ::= \mathbf{0} \mid p(X_1, \dots, X_n) \mid T, T \mid m\{T\} \mid T :- T \mid \p



- LMNtal graphs are **port graphs**: $a(X, Y) \neq a(Y, X)$.
- Rules are applied **repeatedly** and **non-deterministically**.
- Membranes can contain other membranes.

Introducing Quantifiers¹⁰

Process $P ::= \mathbf{0} \mid p(X_1, \dots, X_n) \mid P, P \mid m\{P\} \mid T :- T$

Process template $T ::= \mathbf{0} \mid p(X_1, \dots, X_n) \mid \textcolor{red}{QT} \mid T, T \mid m\{T\} \mid T :- T \mid \p

Quantifier $Q ::= l\langle z, z \rangle \mid l\langle \wedge \rangle$

- $\textcolor{red}{QT}$: Newly introduced **quantified process template**
- Q : **Quantifier**. Can represent either **cardinality** ($l\langle z, z \rangle$) or **negation** ($l\langle \wedge \rangle$).
- **label** l is an identifier for the quantifier.

Universal Quantifier in QLMNtal

- **Universal quantifier** $l\langle *\rangle = \text{cardinality quantifier} + \text{negation quantifier}$.
 - $l\langle 0, \infty \rangle T$: There are **arbitrarily many** instances of pattern T
 - $l\langle ^\wedge \rangle T'$: **No instance** of pattern T' (a variant of T)
 - and they are **associated** by label l .

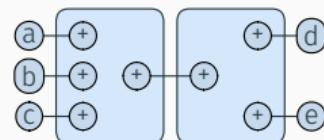
$$l\langle *\rangle T := l\langle 0, \infty \rangle T, l\langle ^\wedge \rangle T'$$

- Negation quantifier ensures that all instances of T is matched by the cardinality quantifier.

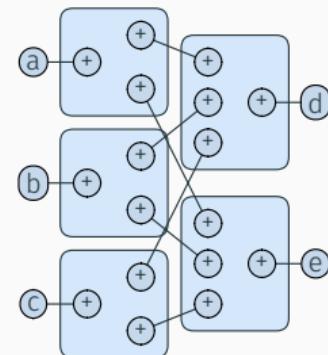
Universal Quantifiers in QLMNtal

- Matching **all** a's with 2 links

- An example motivated from (b) (bialgebra) rule



$\{<*>+L1, +L2\}, \{+L2, N<*>+L3\} :-$
 $M<*>\{+L1, N<*>+L2, \}, N<*>\{M<*>+L2, +L3\}$
 \rightarrow

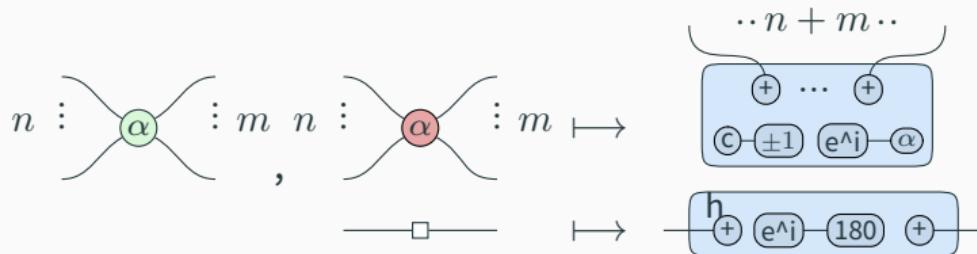


- **Quantifiers with the same label** are **associated** with each other.
- Quantifiers can be **nested**.

Encoding ZX-calculus in LMNtal

ZX-diagram in LMNtal

- “Only connectivity matters” corresponds nicely to **LMNtal graphs**



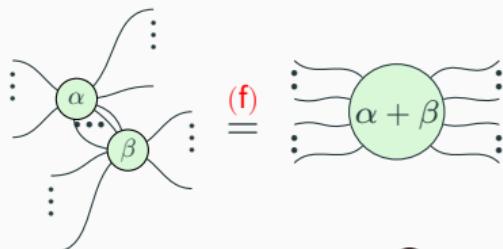
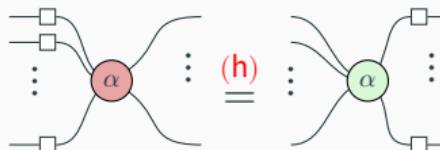
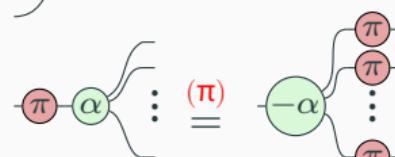
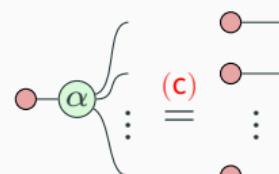
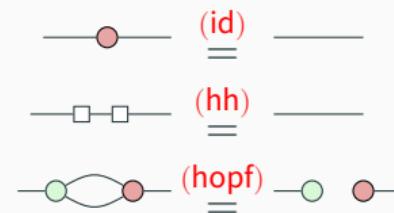
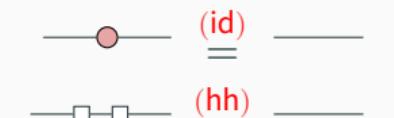
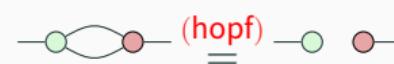
- Can treat Z- and X-spiders uniformly: $\{e^i(\alpha), c(\text{color}), \$ports\}$
- α (phase) is represented in degrees
- Have abbreviation for Hadamard gates: $h\{e^i(180), \$ports\}$
 - that can be easily extended to ZH-calculus¹¹

1

Miriam Backens et al. “ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity”. In: 15th International Conference on Quantum Physics and Logic (QPL 2018). Vol. 287. EPTCS. 2019
Kayo Tei et al. *Graph Rewriting Language as a Platform for Quantum Diagrammatic Calculi*. 2025

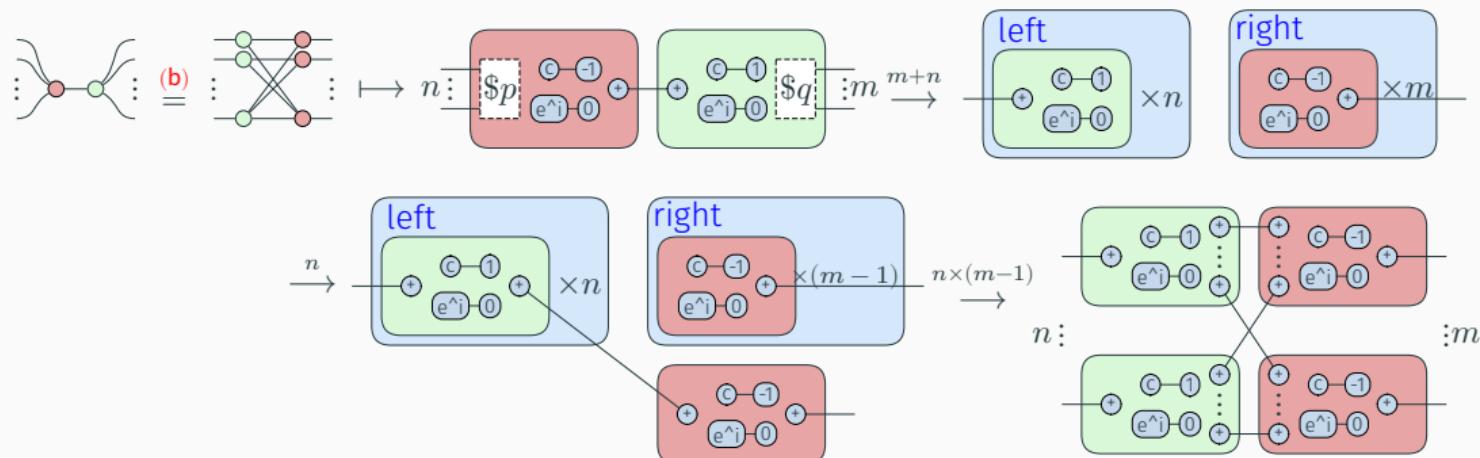
ZX-rules in LMNtal

- Some of the rules ((f), (id), (hh), (hopf) below) can be written in a single LMNtal rule
- Others need multiple LMNtal rules to handle the “...”



Implementation of the (b) rule in plain LMNtal

- The (b) (bialgebra) rule can be represented in plain LMNtal but involves multiple rewriting steps
- and only for left-to-right rewriting



Using QLMNtal for ZX-rules

- Using QLMNtal's universal quantifiers, **all ZX-rules can be represented straightforwardly**
- Furthermore, the reverse direction is achieved **just by swapping head and body!** (with a bit of care for guard conditions)

Bidirectional (b) (bialgebra) rule in QLMNtal

Left-to-right:

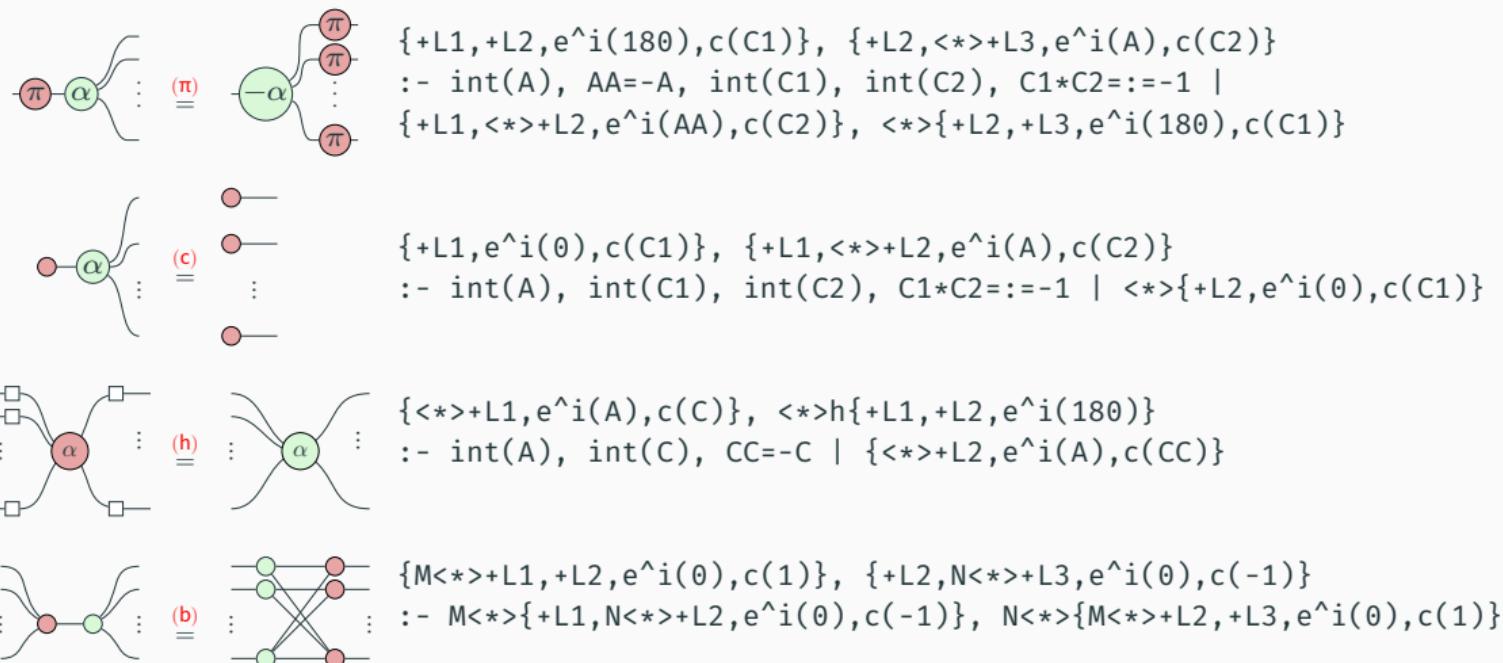
```
{M<*>+L1,+L2,e^i(0),c(1)}, {+L2,N<*>+L3,e^i(0),c(-1)}  
:- M<*>{+L1,N<*>+L2,e^i(0),c(-1)}, N<*>{M<*>+L2,+L3,e^i(0),c(1)}.
```

Right-to-left:

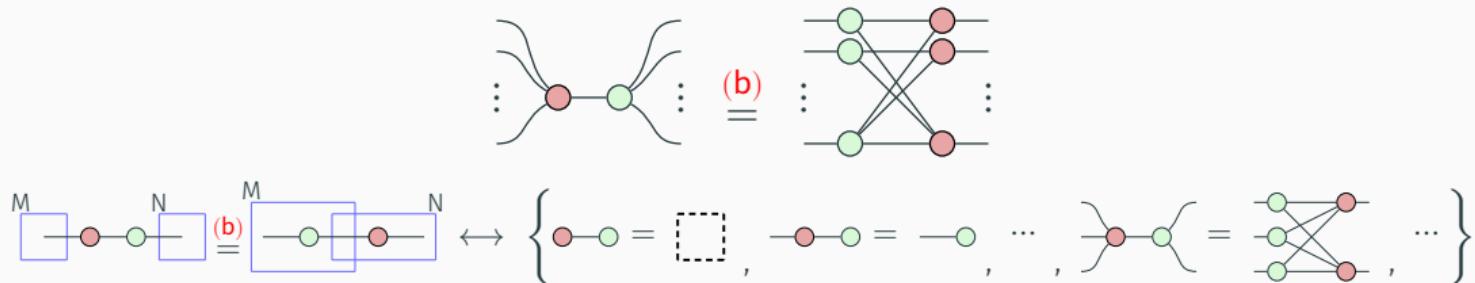
```
M<*>{+L1,N<*>+L2,e^i(0),c(-1)}, N<*>{M<*>+L2,+L3,e^i(0),c(1)}  
:- {M<*>+L1,+L2,e^i(0),c(1)}, {+L2,N<*>+L3,e^i(0),c(-1)}.
```

ZX-rules in QLMNtal

- Other ZX-rules with the “...” can also be written concisely



Expressive power of QLMNtal vs. !-boxes



{M<*>+L1,+L2,e^i(0),c(1)}, {+L2,N<*>+L3,e^i(0),c(-1)}

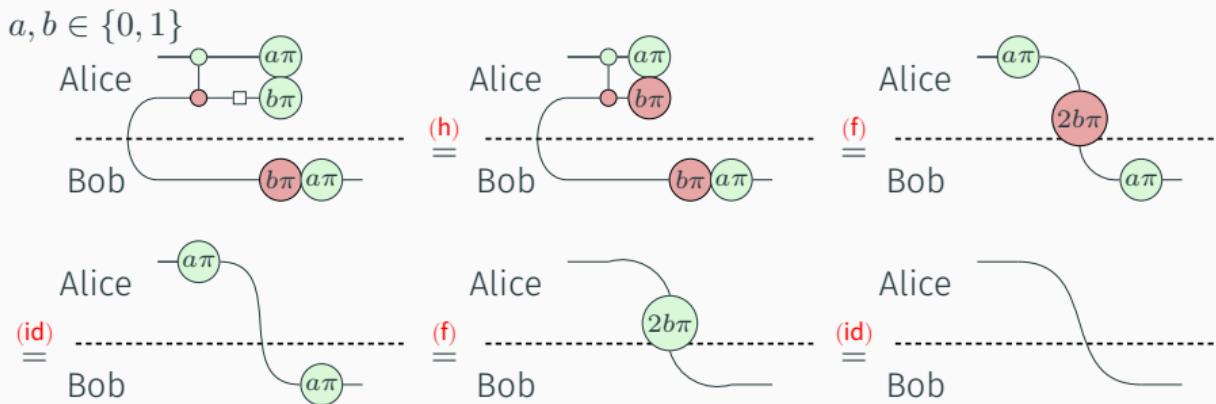
:- M<*>{+L1,N<*>+L2,e^i(0),c(-1)}, N<*>{M<*>+L2,+L3,e^i(0),c(1)}

- **!-graphs with overlapping \square 's can be encoded into nested $<*>$'s of QLMNtal!**

Examples

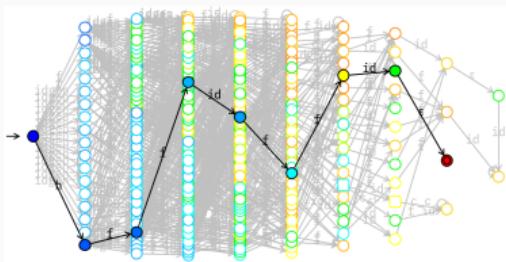
Example 1: Simplification of quantum teleportation circuit¹²(1/2)

- When devising a circuit simplification method,
we can verify the procedure using **StateViewer** and **LTL model checker**.
- An example simplification of the quantum teleportation circuit:

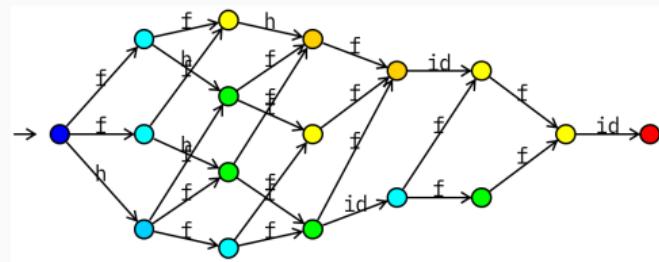


- **What if we know nothing but the final state?**
- **We can still find out the path!**

Example 1: Simplification of quantum teleportation circuit (2/2)



State space with extra rules

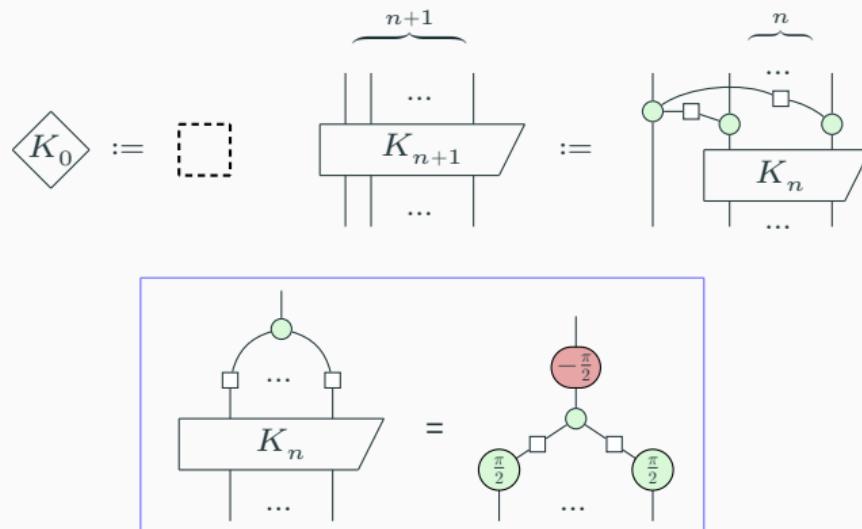


State space without extra rules

- We may trigger more rules than we need ...
 - ▶ which happens when we don't have enough knowledge of the steps.
- ★ We can easily find out the **shortest path** using **model checker**.
- ★ We can easily analyze **which rules are unneeded**.

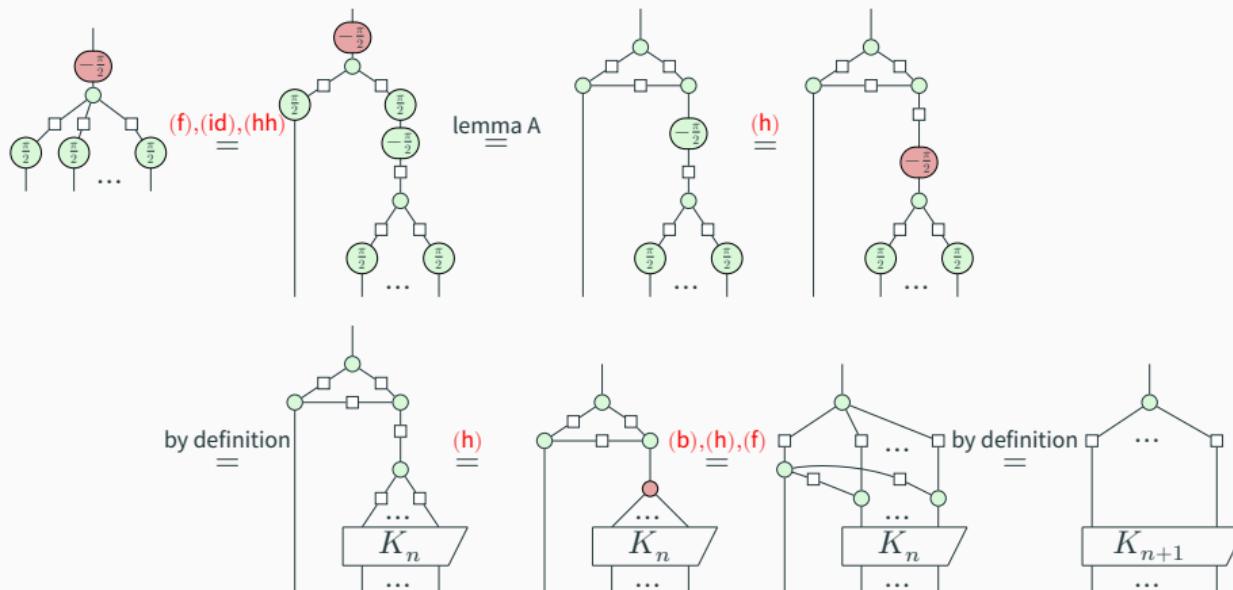
Example 2: Checking inductive proofs (1/4)

- Suppose we want to check a (manual) inductive proof we have devised.
- E.g., let's confirm that the equation below¹³ holds for $n = 4$
 - ▶ ...assuming that the cases with $n \leq 3$ have already been proved

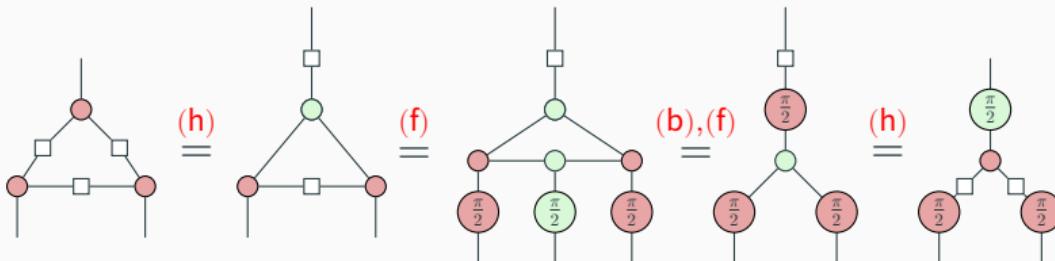
¹³Bob Coecke et al. *Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning*. 2017

Example 2: Checking inductive proofs (2/4)

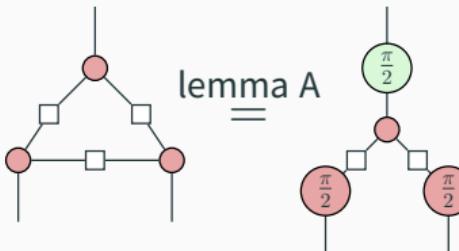
- **Assign tokens to each rule and control rule application** (as in the derivation below)
 - ▶ `use_rules=[f,id, hh,a,h,k,h,b,h,f,kn].`
 - `use_rules=[f|L], head :- use_rules=L, body`



Example 2: Checking inductive proofs (3/4)

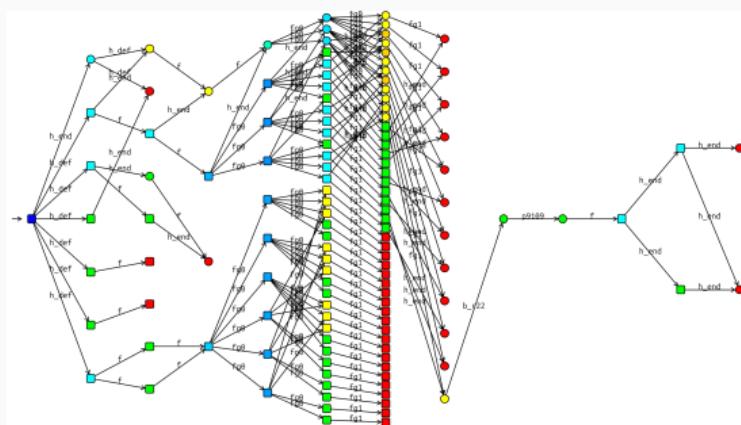


- We proved lemma A in our platform first
- ...and then introduced it as a single rule for the main proof.

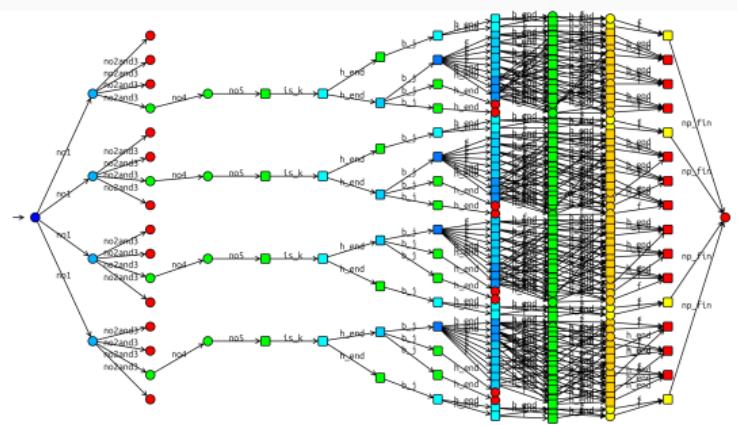


Example 2: Checking inductive proofs (4/4)

- These are the full state spaces for each proof.



state space for the lemma A proof



state space for the $n = 3 \rightarrow 4$ proof

- We can manage the rule application to **get some determinism** by using tokens.
- Proof steps are now visually easy to understand.**

Example 3: Analyzing efficient simplification strategies (1/2)

- **2-qubit QFT circuit simplification**¹⁴

- $(\pi) \times 2$, (f), (id), (c), (h) are used.
- **8** different final states

- **▶ How to reach a better one?**

- We can analyze which rule applications lead to better results using StateViewer.

* “Better final state” = “fewer spiders” in this case.

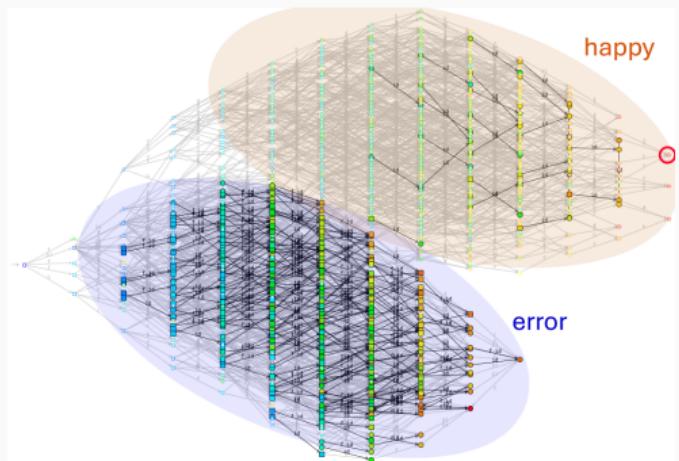
Examples	# of states	# of final states
Pauli pushing	533	7
2-qubit QFT	1186	8
Detecting Entanglement	436,711	60



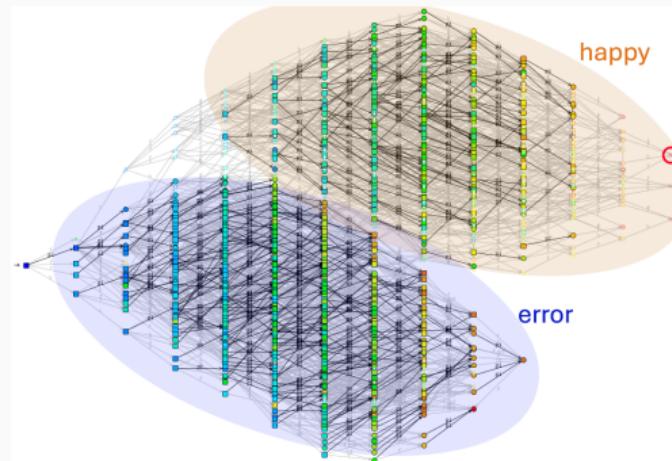
¹⁴ John van de Wetering. “ZX-calculus for the working quantum computer scientist”. In: (2020)

Example 3: Analyzing efficient simplification strategies (2/2)

- ★ Applying (id) early leads to undesired final states (dead ends) quickly.
- ★ Applying (π) in the middle stage tends to lead to better results.



search (id) in the state space



search (π) in the state space

Temporarily increasing spiders by (π) led to more effective simplification!

Conclusion and Future Work

Conclusion

We presented a **flexible and customizable platform** based on **LMNtal with quantifiers** to design and verify rewrite strategies in ZX-calculus, a diagrammatic framework for quantum computing.

QLMNtal Approach

- **Quantified** pattern matching handling arbitrary numbers of links.
- **Model Checking** with state-space exploration.

Benefits for ZX-calculus

- A **concise & direct** encoding of complex rules (e.g., generalized bialgebra)
- A **Laboratory** for verifying optimization strategies and heuristics

- **Bridging declarative programming and quantum computing.**

Future Work

1. Extending the platform:

- ▶ Extend Quantifier in QLMNtal to express nested !-boxes.
- ▶ Extend the platform to other diagrammatic calculi related to ZX-calculus, such as ZW-calculus.

2. Deeper analysis:

Systematically analyze existing optimization techniques using our approach to uncover new insights.

3. Improving usability:

Support importing/exporting from/to widely used quantum circuit formats like OpenQASM.

Thank you for listening! Questions?

Appendix

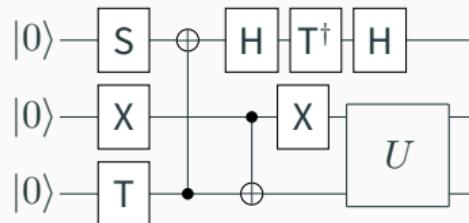
Quantum Circuit

Quantum Gates and Circuits

- **Quantum bits (qubits):** Unlike classical bits (0 or 1), qubits can be in **superposition**
 - ▶ State: $\alpha|0\rangle + \beta|1\rangle$ where $|\alpha|^2 + |\beta|^2 = 1$
- **Common quantum gates:**
 - ▶ **Hadamard (H):** Creates superposition
 - ▶ **Pauli gates (X, Y, Z):** Bit-flip and phase-flip
 - ▶ **Phase gates (S, T):** Apply phase rotations ($\pi/2, \pi/4$)
 - ▶ **CNOT:** Two-qubit controlled operation

- ! **Fixed wire topology:** Qubits cannot cross freely
- ! **Critical for quantum computers:** Shorter circuits \Rightarrow less decoherence & errors
- ! **Complex interactions:** Exponential growth of possible transformations

Example: 3-qubit circuit



Wires represent qubits
Gates applied left-to-right

String Diagram

From Category Theory to Quantum Computing

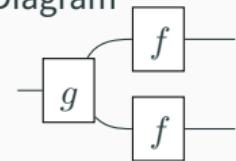
- **String diagrams:** Graphical notation from category theory
 - ▶ Originated in monoidal categories
 - ▶ Objects \rightarrow wires
 - ▶ Morphisms \rightarrow nodes/boxes
- **Key properties:**
 - ▶ **Topological:** Only connectivity matters
 - ▶ **Compositional:** Diagrams compose naturally
 - ▶ **Equational reasoning:** Diagram equivalence = morphism equality
- Why String Diagrams for Quantum Computing?
 - ! **vs. Quantum Circuits:** Not fixed topology
 - ! **ZX-calculus:** Specialized string diagrams with only 2 node types + simple rules
 - ! **Enables graphical proofs:** See E.g. 1

Evolution of notation

Category Theory

$$\begin{aligned}f : A &\rightarrow B \\g : B &\rightarrow C \\g \circ f : A &\rightarrow C\end{aligned}$$

String Diagram



ZX-Calculus

Overlapped and nested !-boxes

- !-box distinguishes between **overlapping and nesting**.

► **COPY** performs differently:

