
Grammar-based
Pattern Matching and Type Checking

for Difference Data Structures

Naoki Yamamoto, Kazunori Ueda
Waseda University, Tokyo, Japan

PPDP 2024 @ Milan, Italy
(co-located with FM 2024)

September 10th, 2024

1

Difference List： List that supports constant-time append
 Common in Prolog

 a.k.a. list segment in Separation Logic

 Can be regarded as a list with a hole

Background: Difference Lists

2

(hole)

1 32

c cc

[1,2,3|X]-X
Prolog

unbounded variable

Q. Can we generalize this idea to structures with holes?
→ Difference Data Structures (DDSs)

X : list

1 32

c cc X : list− =

Overview
Background: Difference Data Structures (DDSs)

Useful for uniformly discussing important concepts
 e.g., (linear) functions, continuations, evaluation contexts

Problem:
The formulation of types for DDSs is not obvious

Contributions:
We propose LMNtalGG and Difference Types,
a typing framework for DDSs based on graph grammars
 Implemented on a graph rewriting language LMNtal
 Applications: Pattern matching and Static type checking of rules

3

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

4

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

5

LMNtal†1: Graph Rewriting Language
LMNtal comes with two aspects:
 Programming language & Modeling language

Its implementation SLIM†2 provides:
 Ordinary program execution & Parallel model checking features

6

†1 K. Ueda: LMNtal as a hierarchical logic programming language.
Theoretical Computer Science 410(46), 2009.

†2 M. Gocho et al.: Evolution of the LMNtal Runtime to a Parallel Model
Checker. Computer Software 28(4), 2011.

Tools are available from GitHub
https://github.com/lmntal

State space of
the water jug problem

We can handle non-algebraic data types without dangling pointers

LMNtal: Expressive Data Structures

7

General Graph Structures

Skip list†

Algebraic Data Types

Linear list

Tree

Ring

Grid graph

42 3 651

Difference list
(d-list)

λ

λ

@
@

Lambda term
λfx.f(fx)

Balanced red-black tree

† W. Pugh: Skip lists: A probabilistic alternative to balanced trees, C. ACM, 33(6), 1990.

b

r

b

r

l
b

l lr
l l

b
l l

b
r

l l
r

l l

LMNtal: Syntax

8

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ::= 𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺 , 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅

𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺 ::= 𝟎𝟎 | 𝐺𝐺(𝑋𝑋1, … ,𝑋𝑋𝑚𝑚) | 𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺 , 𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺

𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 ::= 𝟎𝟎 | 𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺 :- 𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺 | 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 , 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅

Link Condition: Each link name must occur at most twice in a term

Null Rewrite Rule

Atom

𝐺𝐺

𝑋𝑋1 𝑋𝑋2 … 𝑋𝑋𝑚𝑚

a(L1,F),b(L1,L2,L3,L4),
c(L2,L5,L6,L6),d(L5,L3,L4)

Example

a b

c

d

L1

F L2

L3

L4

L5

L6

Composition

Free link

Local link
(name not
important)

Self loop

Multiple
edges

Links are totally ordered
(= port graph)

* We consider a subset of LMNtal (Flat LMNtal) which omits membranes (hierarchy)

Functor 𝐺𝐺/𝑚𝑚 (𝑚𝑚-ary 𝐺𝐺 atom)

LMNtal: Semantics (1) Structural Congruence

9

Gives the interpretation of LMNtal terms as graphs
 Plays the role of isomorphism between graphs

Connector: A binary infix atom
𝑋𝑋 = 𝑌𝑌 fuses two links

Examples

bL1

X

a

Y

L2
L b L1

X

a

Y

L2
L

a(L1,L2,L,L,X),b(L1,L2,Y)

≡
b(L1,L2,Y),a(L1,L2,L,L,X)

(E2)

X aL

L=X,a(L)

≡
a(X)

(E9)

= X a

* (E6) & (E10) are omitted because these are rules for membranes

LMNtal: Semantics (2) Reduction Relation

10

Describes the small-step semantics of the language (1-step rule application)

Structural Rules

* (R2), (R4) & (R5) are omitted because these are rules for membranes

:-

Rewrite rule

Initial graph

Example

 𝑟𝑟

Non-deterministic
rule application

𝑃𝑃

Main reduction rule

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

11

LMNtalGG: Graph Grammar on LMNtal

12

 Inductively defines a set of graphs
by a context-free graph grammar

Example: Production rules of skip lists

S S S S S:- :- :-
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3

SWhen we repeatedly apply the rules above on

S , then the resulting graph is a skip list.and get a graph without

Formal Language
Theory

LMNtal

Production rules Rewrite rules

Symbols Functors*

* Pairs of name and arity of atoms

non-terminal atom terminal atom

written as
LMNtal rules

LMNtalGG: Context-freeness Assumption

13

We assume all production rules are context-free
 i.e., the LHS must consist of a single (non-terminal) atom

and refer to a set of production rules as a grammar
 Every non-terminal atom can be the start symbol
 The sets of non-terminal/terminal symbols are automatically

determined by the grammar (Def. 3.2)

Non-terminal
symbols

Terminal
symbols

Types with the concept of difference based on LMNtalGG
 Generalizes the idea of difference lists to general data structures

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

LMNtalGG: Difference Types (Def. 3.3)

14

The graph 𝐺𝐺 has the type 𝛼𝛼 − 𝛽𝛽 with the grammar 𝑃𝑃

* We may omit 𝑃𝑃 if it's clear from the context

where
𝛼𝛼 consists of a single non-terminal atom
𝛽𝛽 consists only of non-terminal atoms
𝐺𝐺 doesn't include non-terminal atoms

LMNtalGG: Example

15

Production rules of skip lists

Start Symbol

Applying the production rules on the start symbol

S S S S S

S

:- :- :-
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

In this case, is the only non-terminal symbol

and all the other atoms are terminal

S

LMNtalGG: Example

16

Production rules of skip lists

Start Symbol

Applying the production rules on the start symbol

S S S S S

S S

:- :- :-

 𝑝𝑝3

𝐺𝐺1 𝐺𝐺2 𝐺𝐺3

 𝑃𝑃
*

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

LMNtalGG: Example

17

Production rules of skip lists

Start Symbol

Applying the production rules on the start symbol

S S S S S

S S S

:- :- :-

 𝑝𝑝3 𝑝𝑝2

𝐺𝐺1 𝐺𝐺2 𝐺𝐺3

 𝑃𝑃
*

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

LMNtalGG: Example

18

Production rules of skip lists

Start Symbol

Applying the production rules on the start symbol

S S S S S

S S S

:- :- :-

 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1

𝐺𝐺1 𝐺𝐺2 𝐺𝐺3

 𝑃𝑃
*

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

LMNtalGG: Example

19

Start Symbol

Resulting in a graph without non-terminal symbols

S S S

It's a skiplist!

 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1

 𝑃𝑃
*

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

S: (− 𝟎𝟎) The graph on the left
is a skip list

S:H1
H2

T1
T2

SH1
H2

T1
T2

−

Difference Types

20

Start Symbol

Difference data structures can also be typed

S S S
 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1

 𝑃𝑃
*

𝐺𝐺 ∶𝑃𝑃 𝛼𝛼 − 𝛽𝛽
 def

𝛼𝛼
 𝑃𝑃 ∗ (𝐺𝐺,𝛽𝛽)

The graph on the left is
a difference skip list

H1
H2

H1

H2

H1

H2

T1

T2

It's a skiplist!

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

21

Classifying LMNtalGGs
We provide two useful classes of LMNtalGGs

22More examples can be found in our webpage： https://lmntal.github.io/lmntalgg-examples/

Disjoint LMNtalGGs (§4.1)

Skip List

Indexed LMNtalGGs (§4.2)

Binary Search
Tree

Red-black
Tree

Linear List

Binary TreeAlgebraic
Data Types

4

2

1 3

5

7

6 Threaded Tree

b

r

b

r

l

b
l lr

l l

b
l l

b
r

l l

r
l l

https://lmntal.github.io/lmntalgg-examples/

Basic Class: Disjoint LMNtalGG

 Called inversion property in standard type theory
 The types of subterms can be inferred from the top-level constructor

 Example: The grammar of skip lists is disjoint

23

A grammar 𝑃𝑃 is disjoint
 the RHS of each rule contains exactly one terminal symbol

 that never appears in the RHSs of other production rules

S S S S S:- :- :-

 def

For disjoint LMNtalGGs, we can derive types of graphs uniquely

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

24

S :- H1

H2

H1

H2

S S:-H1

H2

H1

H2

T1

T2

S S:-H1

H2

H1

H2

T

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

25

S :- H1

H2

H1

H2

S S:-H1

H2

H1

H2

T1

T2

S S:-H1

H2

H1

H2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

26

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

We use these typings as axioms of typing

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

27

:H1
H2

T1
T2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

How can we get
the type here?

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

28

:

T

H2

T1

T2

::H1 T

H1
H2

T1
T2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

？ ？

Decompose!

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

29

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1
H2

T1
T2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

* We rename link names as needed （α-conversion, Prop. 3.5）

We know these types!

？

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

30

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1
H2

T1
T2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

These are the same!

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

31

:

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1
H2

T1
T2

T

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

？

Cancel them

Type Derivation from Graphs (Section 3.2)
With disjoint LMNtalGG, types of graphs can be constructed:

1. Obtain typings of all terminal symbols from production rules (Lemma 3.6)

2. Construct the type of graph from subgraphs' typings (Theorem 3.7)

32

: −

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1
H2

T1
T2

T
S

T1

T2

S
H1

H2

S
H1

H2

H1

H2

: H1

H2

T1

T2

: S
H1

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

Goal!

Remarks: Type Derivation from Graphs
Costs linear time w.r.t. # of atoms

Similar to the cut rule in the Sequent Calculus
 Analogy:

33

: −

T

H2

T1

T2

: S
T

H2

S
T1

T2

−: S
H1

H2

S
T

H2

−H1 T

H1
H2

T1
T2

T
S

T1

T2

S
H1

H2

Goal!

difference types sequents,
type composition cut rule

Broader Class of LMNtalGG
Indexed LMNtalGGs: inspired by indexed grammars†

34† A. V. Aho: Indexed Grammars―An Extension of Context-Free Grammars, J. ACM, 15(4), 1968.

Balanced
red-black treeb

r

b

r

l

b
l lr

l l

b
l l

b

r
l l

r
l l

Non-terminal symbols can be equipped with integers as indices

1. The root and leaves are

2. 's children are

3. # of on the path from the root to a leaf

(black height) is a constant

r b

b

Requirements for red-black trees

b

✔ Shapes with numeric constraints (e.g., balanced red-black trees)

numeric constraint

Red-black Trees with Indexed LMNtalGGs

35

This grammar can be
considered disjoint

(when the indices are ignored)

1. The root and leaves are

2. 's children are

3. # of on a path from the root to a leaf

(black height) is a constant

r b

b

Requirements for red-black trees

b

T
b

T T
:-

(k, n+1)

(1, n) (1, n)

T l:-
(k, 0)

T
r

T T
:-

(1, n)

(0, n) (0, n)

Indices:
1. Color of the root (0: black, 1: red or black)

2. Black height

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

36

Dynamic Extension Static Extension

Application (1) Pattern Matching
Disjoint LMNtalGG supports tree-shaped (difference) structures

37

Example: binary trees consisting of add nodes (addtree)

add:-A
i

int
A A

:-A

i i

add
i

3 5

4
add

Grammar

: A

Example
Typings

R R

add
i

4

: A

R R

H
A

H

−

Application (1) Pattern Matching
We can describe pattern matching on DDSs with LMNtalGGs

38

Rewrite rule

eval

add

i i

eval

Example of application

add

i

3 5

4

add

i i

8 4

 𝑒𝑒𝑒𝑒

eval

$p

add

i i

$x $y

:-

eval

$p

i

$z

𝑃𝑃𝑣𝑣

$p $p

where
$p : A

R

A

H

−
R

H

$x + $y = $z This simulates evaluation contexts

∀𝐺𝐺,𝐺𝐺′. 𝐺𝐺 ∶ 𝜏𝜏 ∧ 𝐺𝐺
𝑅𝑅
𝐺𝐺′ ⟹ 𝐺𝐺′ ∶ 𝜏𝜏

Application (2) Type Checking of Rules
Checks if the application of a rule preserves types of graphs

39

✘
:- :-

Applying this rule on a skip list
always results in a skip list

Applying this rule on a skip list
may result in not a skip list

To confirm that a given rule preserves types of graphs,

check the types of both sides are the same (Theorem 6.2)

 i.e., simply perform type derivation for both sides (linear time w.r.t. # of atoms)

 Intuition: The type of the whole graph will not change
 because it just rewrites a difference skip list to a difference skip list

:-H1
H2

T1
T2

H1
H2

T1
T2

Application (2) Type Checking of Rules

40

− S
T1

T2

S
H1

H2

− S
T1

T2

S
H1

H2same

types

Outline
1. Target Language: LMNtal

2. LMNtalGG and Difference Types

3. Classifying LMNtalGGs: Disjoint & Indexed

4. Applications: Pattern Matching & Static Type Checking

5. Type Checking of Functional Atoms

41

Multi-step/shape-changing operations
In most of the existing typing frameworks for graphs,
 Type Safety: “Rewrite rules will never destroy the shape of graphs”

→ Operations that may result in other types were out of scope

42

✘

Binary Tree Binary Tree

Binary Tree Difference List

 𝑅𝑅

 𝑅𝑅
*

43

Functional Atoms: Example

4

t2l

2

1 3

5

6

4

t2l

2

1 3

5

6

t2l

…54

2

1 3

6

t2l t2l t2l

42 3 61 5

54

2

1 3

6

t2l t2l

:-
H T

N

L R

t2l
H T

NL

t2l

R

t2l

H Tt2l
:-

H T

Rewrite rules of t2l (tree-to-list)

 Graph nodes that behave like functions (in functional languages)

 Common design pattern (LMNtal has no functions a-priori)
Example

𝑓𝑓 is a functional atom that takes types 𝑅𝑅1, … , 𝑅𝑅𝑛𝑛 and returns type 𝑇𝑇

Expected Property of Functional Atoms
We expect satisfies ...
 If it receives a binary tree, it eventually returns a difference list

 In general, this property can be formalized as:

44

Binary Tree Difference List

 def

t2l
 𝑅𝑅

*

For any graphs 𝐺𝐺𝑡𝑡1 , … ,𝐺𝐺𝑡𝑡𝑛𝑛 having types 𝑅𝑅1, … , 𝑅𝑅𝑛𝑛 (resp.),
if (𝑓𝑓,𝐺𝐺𝑡𝑡1 , … ,𝐺𝐺𝑡𝑡𝑛𝑛) can be reduced to 𝐺𝐺
that includes no 𝑓𝑓 atoms, then 𝐺𝐺 has the type 𝑇𝑇.

𝑓𝑓 𝐺𝐺𝑡𝑡1

𝐺𝐺𝑡𝑡𝑛𝑛

𝐺𝐺…

 𝑅𝑅
*

We write this property as 𝐹𝐹: 𝑅𝑅1;⋯ ; 𝑅𝑅𝑛𝑛 ↣ 𝑇𝑇
e.g., t2l(P,T,H) : tree(P) ↣ list(H)−list(T)

Checking Functional Atoms with LMNtalGG
If the input types include no differences (i.e., of the form 𝜏𝜏 − 𝟎𝟎),

To check that the atom 𝐹𝐹 has the functional property,

we assume the following typing

and confirm that the rules preserve types

For details (esp., correctness), see our previous work†

45

𝐹𝐹: 𝜏𝜏1; … ; 𝜏𝜏𝑛𝑛 ↣ 𝛼𝛼 − 𝛽𝛽

𝐹𝐹: 𝛼𝛼 − (𝛽𝛽, 𝜏𝜏1, … , 𝜏𝜏𝑛𝑛)

𝜏𝜏1, … , 𝜏𝜏𝑛𝑛 are inputs

𝜏𝜏1, … , 𝜏𝜏𝑛𝑛 are holes

† N. Yamamoto et al.: Engineering Grammar-based Type Checking for Graph Rewriting Languages.
IEEE ACCESS, 10, 2022.

Related Work
Graph Types†1: Based on regular expressions

Structured Gamma†2 and Shape Types†3

 Based on context-free graph grammars

Refinement Types†4: Types with numeric constraints
 Implemented on Liquid Haskell with type inference†5

Typed Prolog†6: Difference lists are typable
 Types (e.g., list, int) with Modes (direction)

46

†1 P. Fradet et al.: Structured Gamma, Science of Computer Programming, 31(2), 1998.
†2 N. Klarlund et al.: Graph Types, Proc. POPL’93.
†3 P. Fradet et al.: Shape types, Proc. POPL’97.
†4 N. Vazou et al.: Refinement types for Haskell, SIGPLAN Not., 49(9), 2014.
†5 P.M. Rondon et al.: Liquid types, SIGPLAN Not., 43(6), 2008.
†6 T.K. Lakshman et al.: Typed Prolog: A Semantic Reconstruction of the Mycroft-O'Keefe Type System, Proc. ICLP’90.

a subset that satisfies
completeness

Conclusion
1. We proposed:

i. LMNtalGG as graph grammar on LMNtal

ii. Difference Types on LMNtalGG to deal with DDSs

2. Introduced two applications of LMNtalGG:
i. Pattern Matching on DDSs

ii. Static Type Checking of Rules

3. Introduced Functional Atoms
to handle multi-step and/or shape-changing operations

47

Future Work
1. Full implementation for type checking method
 Adding indices and functional atoms to our PoC implementation

2. Expanding the target language
 Adding some useful constructs (e.g., membranes, hyperedges)

3. Exploring connections with other frameworks
 Our framework naturally supports non-terminating computation
 History: LMNtal was made to model concurrency and non-determinism

 We have non-terminating functional atoms in the paper

48

Spare Slides
Grammar-based Pattern Matching and Type Checking
for Difference Data Structures

49

Functional Atom: Not Terminating

Atom s : Outputs a counting-up stream [0, 1, 2, ...]

Atom m : Receives two streams & Merges them

50

Deque of Links as Index: Examples

51

Grid graph
Lambda term

λfx.f(fx)

λ

λ

@

@

52

l

4

t2l

n
2 n

1 n
l l

3 n
l

5 n

l

6 n
l

l

42

c
3

c
65

c cc
1

c

Functional Atom: t2l (tree-to-list)

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

……

Functional Atom: t2l (tree-to-list)

53

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

l

4

t2l

n
2 n

1 n
l l

3 n
l

5 n

l

6 n
l

l

54

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

l

4

t2l

n
2 n

1 n
l l

3 n
l

5 n

l

6 n
l

l

Functional Atom: t2l (tree-to-list)

Functional Atom: t2l (tree-to-list)

55

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

2 n
1 n

l l

3 n
l

5 n

l

6 n
l

l

t2l c

Functional Atom: t2l (tree-to-list)

56

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

2 n
1 n

l l

3 n
l

5 n

l

6 n
l

l

t2l c

Functional Atom: t2l (tree-to-list)

57

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l l

3 n
l 5 n

l

6 n
l

l

t2l c
2

t2l c

Functional Atom: t2l (tree-to-list)

58

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l l

3 n
l 5 n

l

6 n
l

l

t2l c
2

t2l c LMNtal is non-deteministic =
We can rewrite from either way

We choose this redex!

Functional Atom: t2l (tree-to-list)

59

4

l

t2l

1 n
l 5 n

l

6 n
l

l

t2l c
2

t2l c
3

t2l c

ll

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

Functional Atom: t2l (tree-to-list)

60

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l 5 n

l

6 n
l

l

t2l c
2

t2l c
3

t2l c

ll

Functional Atom: t2l (tree-to-list)

61

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l 5 n

l

6 n
l

l

c
2

t2l c
3

t2l c

l

Functional Atom: t2l (tree-to-list)

62

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l 5 n

l

6 n
l

l

c
2

t2l c
3

t2l c

l

Functional Atom: t2l (tree-to-list)

63

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l 5 n

l

6 n
l

l

c
2

t2l c
3

c

Functional Atom: t2l (tree-to-list)

64

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

t2l

1 n
l 5 n

l

6 n
l

l

c
2

t2l c
3

c

Functional Atom: t2l (tree-to-list)

65

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

ct2l
１

t2l c

ll

Functional Atom: t2l (tree-to-list)

66

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

ct2l
１

t2l c

ll

Functional Atom: t2l (tree-to-list)

67

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

ct2l
１

c

l

Functional Atom: t2l (tree-to-list)

68

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

ct2l
１

c

l

Functional Atom: t2l (tree-to-list)

69

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

c
１

c

Functional Atom: t2l (tree-to-list)

70

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

t2l

5 n

l

6 n
l

l

c
2

c
3

c
１

c

Functional Atom: t2l (tree-to-list)

71

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

6 n
l

c
2

c
3

c
1

c t2l
5

t2l c

l

Functional Atom: t2l (tree-to-list)

72

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

l

6 n
l

c
2

c
3

c
1

c t2l
5

t2l c

l

Functional Atom: t2l (tree-to-list)

73

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

t2l c

l

t2l
6

t2l c

ll

Functional Atom: t2l (tree-to-list)

74

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

t2l c

l

t2l
6

t2l c

ll

Functional Atom: t2l (tree-to-list)

75

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c t2l
6

t2l c

ll

Functional Atom: t2l (tree-to-list)

76

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c t2l
6

t2l c

ll

Functional Atom: t2l (tree-to-list)

77

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c t2l
6

c

l

Functional Atom: t2l (tree-to-list)

78

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c t2l
6

c

l

Functional Atom: t2l (tree-to-list)

79

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c
6

c

Functional Atom: t2l (tree-to-list)

80

:-
H T

N

L R

t2l

n
H T

NL

t2l

R

t2lc H Tt2l

l
:-

H T

4

c
2

c
3

c
1

c
5

c
6

c

	Grammar-based �Pattern Matching and Type Checking �for Difference Data Structures
	Background: Difference Lists
	Overview
	Outline
	Outline
	LMNtal†1: Graph Rewriting Language
	LMNtal: Expressive Data Structures
	LMNtal: Syntax
	LMNtal: Semantics (1) Structural Congruence
	LMNtal: Semantics (2) Reduction Relation
	Outline
	LMNtalGG: Graph Grammar on LMNtal
	LMNtalGG: Context-freeness Assumption
	LMNtalGG: Difference Types (Def. 3.3)
	LMNtalGG: Example
	LMNtalGG: Example
	LMNtalGG: Example
	LMNtalGG: Example
	LMNtalGG: Example
	Difference Types
	Outline
	Classifying LMNtalGGs
	Basic Class: Disjoint LMNtalGG
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Type Derivation from Graphs (Section 3.2)
	Remarks: Type Derivation from Graphs
	Broader Class of LMNtalGG
	Red-black Trees with Indexed LMNtalGGs
	Outline
	Application (1) Pattern Matching
	Application (1) Pattern Matching
	Application (2) Type Checking of Rules
	Application (2) Type Checking of Rules
	Outline
	Multi-step/shape-changing operations
	Functional Atoms: Example
	Expected Property of Functional Atoms
	Checking Functional Atoms with LMNtalGG
	Related Work
	Conclusion
	Future Work
	Spare Slides
	Functional Atom: Not Terminating
	Deque of Links as Index: Examples
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)
	Functional Atom: t2l (tree-to-list)

