
1

Concurrent Logic/Constraint Concurrent Logic/Constraint
Programming: Programming:

The Next 10 Years The Next 10 Years

Kazunori Ueda
Waseda University

ueda@ueda.info.waseda.ac.jp
Copyright (C) 1998 by Kazunori Ueda

Grand ChallengesGrand Challenges

�A “λ-calculus” in concurrency field
cf. X-calculus (calculus of X)
X: CS, pi, action, join, gamma, ambient, . . .

�Common platform for non-conventional
computations (parallel, distributed,
embedded, real-time, mobile, . . .)

�Type systems (in the broadest sense) and
frameworks of analysis for both logical and
physical properties

Two Approaches to Addressing Two Approaches to Addressing
Novel Applications Novel Applications

�Synthetic
– More expressive power
– Integration of features

�Analytic
– Identifying smaller fragments of LP with

nice and useful properties
cf. Turing machines vs. pushdown automata

– Separation prior to integration

LP vs. Concurrent LPLP vs. Concurrent LP

�Concurrent LP = LP + committed choice
= LP – completeness

???
Choice is essential for specifying
arbitration, changes denotational semantics
drastically, but otherwise . . .

2

LP vs. Concurrent LPLP vs. Concurrent LP

�Concurrent LP
= LP + directionality (of dataflow)
= Logic + embedded concurrency control

�Moded Concurrent LP / CCP:

ask + tell + strong moding
�Can/should share more interest with (I)LP

Example:Example:
Parallel/Network ProgrammingParallel/Network Programming

�Still done with “classical” constructs
– mutex, serialization, monitors, . . .
– cf. Obliq, Java, . . .

� . . . or with APIs (cf. MPI)
�Suffering from low-level details

– e.g., Unix sockets
�Far from being “provably correct”

Example:Example:
Parallel/Network ProgrammingParallel/Network Programming

�Parallel and distributed computing are the
difficult areas where we need good models
and methodologies to build large
applications quickly.

�A good chance for us to demonstrate the
power of simple and “usable” languages
with an appropriate level of abstraction.
– should be simple and accessible to network

programmers; otherwise Java will do!

Example: Network Applications Example: Network Applications
Need to Deal with:Need to Deal with:

�Physical locations (nodes, sites)
�Resources

– space (heap usage)
– time and stack usage

�Security
– high-level: safety of comm. protocols etc.
– low-level: leave to Java’s bytecode verifier?

�Transmission of various entities
�Various patterns of communication

3

GHC and KL1: Brief HistoryGHC and KL1: Brief History
(cf. CACM March 1993 issue)(cf. CACM March 1993 issue)

�1983 Concurrent Prolog, PARLOG
�1983-84 big controversy (in ICOT) on LP

vs. concurrent LP for parallel KIP systems
�1984 Guarded Horn Clauses designed
�1985 first paper (ICOT TR103, LNCS 221)
�1985 GHC-to-Prolog compiler (SLP’85)
�1985-86 subsetting to Flat GHC
�1986 Prolog-to-GHC compiler (ICLP’86)

Brief History (contBrief History (cont’’d)d)

�1987 MRB (1-bit RC) scheme (ICLP’87)
�1987 // impl. of Flat GHC on Multi-PSI v1

(6 PEs, ICLP’87)
�1987 book on GHC (in Japanese)
�1987 ALPS (Maher, ICLP’87)
�1987-1988 KL1 (with shoen, vectors, MRB)
�1988 // impl. of KL1 on Multi-PSI v2

(64 PEs, FGCS’88, ICLP’89)

Brief History (contBrief History (cont’’d)d)

�1988 Strand (PCN CC++)
�1988(?) PIMOS operating system
�1988 unfold/fold transformation and

transaction-based semantics (FGCS’88)
�1989 Concurrent Constraint Programming

(Saraswat)
�1989 atomic vs. eventual tell discussed
�1989 message-oriented impl. (LPC’89)

Brief History (contBrief History (cont’’d)d)

�1990 Moded Flat GHC and constraint-based
analysis (ICLP’90)

�1990(?) MGTP-on-KL1 project started
�1990 first structural OS (InfoJapan’90)
�1990 Janus (NACLP’90)
�1990 Computer J. paper on GHC + KL1
�1991 denotational semantics of CCP

(POPL’91)

4

Brief History (contBrief History (cont’’d)d)

�1991 AKL (Oz Oz2 Oz3) (ILPS’91)
�1992 // impl. of KL1 on PIM/m and PIM/p

(FGCS’92)
�1992 various parallel applications written in

KL1 including OS, biology, CAD, NL, law,
automated deduction, . . .

�1992 message-oriented // impl. of Moded
Flat GHC on SMP (FGCS’92)

Brief History (contBrief History (cont’’d)d)

�1992 KLIC (KL1-to-C compiler) desinged
(KL1 without shoen or MRB)

�1992 MGTP solved an open problem
(IJCAI’93 award)

�1994 proof system for CCP (POPL’94)
�1994 KLIC paper (PLILP’94)
�1994 Moded Flat GHC in detail (NGC)
�1994 Toontalk (ICLP’95)

Brief History (contBrief History (cont’’d)d)

�1995 constraint-based mode systems in
practice (ICLP’95, PSLS’95)

�1996 klint v1 (mode analyzer for/in KL1)
�1996 constraint-based error diagnosis,

theory and practice (JICSLP’96)
�1997 kima v1 (diagnoser) based on klint
�1997 constraint-based error correction

Brief History (contBrief History (cont’’d)d)

�1998 klint v2 with linearity (static MRB) &
type analysis

�1998 NSTO analysis for Moded Flat GHC

5

Guarded Horn Clauses and KL1Guarded Horn Clauses and KL1
�Weakest Concurrent Constraint Language

– ask + eventual tell (asynchronous)
– parallel composition
– hiding
– nondeterministic choice

�A realistic language as well as a model
– value passing
– data structures (cf. CCS, CSP, . . .)

Guarded Horn Clauses and KL1Guarded Horn Clauses and KL1

�Evolving process structures (since 1985)
�Physical locations (KL1)
�Object identity (by logical variables)
� I/O completely within the basic framework
�Read/write capabilities (with strong moding)
�Resource-conscious programming (with

linearity)
�Scope extrusion (“method calls” encoded as

messages)

�Data- and demand-driven communication
�Messages with reply boxes
�First-class channels (encoded as lists or

difference lists
�Replicable read-only data
� Implicit redirection across sites

Logical VariablesLogical Variables
as Communication Channelsas Communication Channels

Guarded Horn Clauses as CCPGuarded Horn Clauses as CCP
�“. . . it is quite natural to view a GHC

program in terms of binding information and
the agents that observe and generate it.”

�“In general, a goal can be viewed as a
process that observes input bindings and
generates output bindings according to them.
Observation and generation of bindings are
the basis of computation and communication
in our model.” — ICOT TR-208 (1986)

6

GHC after 13 yearsGHC after 13 years

�The simplest fragment of CCP turned out to
be surprisingly versatile, after heated
discussions and programming experiences.

�As conjectured in 1985 (LNCS 221), GHC
as the weakest fragment of CCP has been
(d)evolving by featuring static constructs.
– static constructs added: mode systems
– operational constructs added: @node()

and priorities

GHC after 13 yearsGHC after 13 years

�Strong moding (1990, ICLP) ensures some
aspects of security by assigning a capability/
polarity to each variable occurrence and each
position of data structures.
– write capability can’t be duplicated or discarded
– read, non-linear capability can be duplicated
– linearity avoids distributed GC
– unification (constraint solving) degenerates to

assignment

GHC after 13 yearsGHC after 13 years

�Yet to see what additional features are
really necessary, and why
– Example: higher-order constructs

• “design pattern” programming
• object encoding

�Pure CCP or impure CCP?
– cf. Oz approach (ports, cells, higher-order,

etc.)

Working ExampleWorking Example
of Network Applicationsof Network Applications

�1996 KLIC Programming Contest
– KLIC = KL1 (GHC) implementation on

Unix (http://www.icot.or.jp)
– Submitted programs included

• Web server totally written in KL1, and
• Web browser with most features.

– Call for Participation: 1998 KLIC Pro-
gramming Contest (http://www.icot.or.jp)

7

Some Failures and ProblemsSome Failures and Problems

�Misleading names
– Concurrent LP: Sounds like an incomplete

variant of LP (worse: committed-choice LP)
– CCP: Liable to forget its prehistory (<1987)

Concurrent LP is CCP.
�Can very easily be forgotten by LP,

concurrency and constraint communities

Some Failures and ProblemsSome Failures and Problems

�Shortage of communication with neigh-
boring communities (functional, OO, . . .)
– e.g., declarative arrays, program analysis

�Simple and general, but looks a bit too
abstract — idioms should be encoded
(cf. objects, messages, channels, . . .).

Some Failures and Problems Some Failures and Problems

�Good textbooks and tutorial materials yet to
be published

�Few research groups (except semantics)
– Oz (DFKI + SICS + . . .)
– GHC/KLIC (AITEC = former ICOT)
– many people “graduated” too early

Challenges to share with proponents Challenges to share with proponents
of other declarative paradigmsof other declarative paradigms

�How can we program XXX in our
formalisms?
– Dynamic data structures (e.g., cyclic graphs)
– MUD and virtual reality
– Teleconferencing
– Forms
– Live Access Counters
– . . .

8

LP and Concurrent LP/CCPLP and Concurrent LP/CCP

�Targetted (currently) at different levels:
– LP: KR, reasoning, search, etc.
– Concurrent LP: simple model for

concurrency and communication
– CCP: unified model for reactive systems and

infrastructures for reactive agents
– Should be very carefully ‘integrated’

�However, they still have much in common
and can benefit from each other!

Conclusions (1)Conclusions (1)

�CCP without static systems has been a
simple and elegant formalism of
concurrency, . . .
. . . and at the same time it has been a stable,
full-fledged programming language.
– cf. other formalisms of concurrency

Conclusions (2)Conclusions (2)

�Constraint-based static systems can make
CCP a simple, powerful, and safe language
for
– parallel computing,
– distributed computing,
– real-time computing, and
– high-performance computing,
and give us strong support for programming.
cf. untyped vs. typed λ-calculus

PART IIPART II

Potentialities of Constraint-Based
Program Analysis

9

Can a machine debug your program?Can a machine debug your program?

append([], Y,Z) :- true | Y=Z.
append([A|Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).

�“>90% correct”
�cf. Ill-formed sentences in NL processing

Can a machine debug your programCan a machine debug your program
without specifications?without specifications?

append([], Y,Z) :- true | Y=Z.
append([A|Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
�Non-well-moded, under the assumption of

“cooperative communication.”
�Mode analyzer finds a minimal inconsistent

set of mode constraints, which suspects X in
the recursive call and the first Y in the head.

Can a machine debug your programCan a machine debug your program
without specifications?without specifications?

append([], Y,Z) :- true | Y=Z.
append([A|Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).

�Mode analyzer suspects that X is the reason.
�The problem can be fixed by replacing X or

making X have more occurrences.
�The debugger searches well-moded

mutations. Typing doesn’t help in this case.

Can a machine debug your programCan a machine debug your program
without specifications?without specifications?

append([], Y,Z) :- true | Y=Z.
append([A|Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
�The debugger finds 6 alternatives, but

prefers ‘generic’ programs and propose:
append([A|X],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
�We are happy if the system proposes the

intended program and nothing else . . .

10

Can a machine debug your programCan a machine debug your program
without specifications? without specifications?

append([], Y,Z) :- true | Y=Z.
append([A|Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
. . . but it proposes one more alternative:
append([A|Y],X,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
�Fine, it’s not append but does something

meaningful (unlike many other junks)!

ReferencesReferences

�Cho, K. and Ueda, K.:
 Diagnosing Non-Well-Moded Concurrent

Logic Programs (JICSLP’96).

�Ueda, K., Ajiro, Y. and Cho, K.:
 Error-correcting Source Code (submitted to

CP’98)

