
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

An Interval-based SAT Modulo ODE Solver
for Model Checking Nonlinear Hybrid Systems

Daisuke Ishii1, Kazunori Ueda1,2, Hiroshi Hosobe2

1 Dept. of Computer Science, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
e-mail: {ishii, ueda}@ueda.info.waseda.ac.jp

2 National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: hosobe@nii.ac.jp

The date of receipt and acceptance will be inserted by the editor

Abstract. This paper presents a bounded model check-
ing (BMC) tool called hydlogic for hybrid systems. It
translates a reachability problem of a nonlinear hybrid
system into a predicate logic formula involving arith-
metic constraints, and checks the satisfiability of the
formula based on a satisfiability modulo theories (SMT)
method. We tightly integrate (i) an incremental SAT
solver to enumerate the possible sets of constraints and
(ii) an interval-based solver for hybrid constraint sys-
tems (HCSs) to solve the constraints described in the
formulas. The HCS solver verifies the occurrence of a
discrete change by enclosing continuous states that may
cause the discrete change by a set of boxes. We adopt the
existence property of a unique solution in the boxes com-
puted by the HCS solver as (i) a proof of the reachability
of a model, and (ii) a guide in the over-approximation re-
finement procedure. Our hydlogic implementation suc-
cessfully handled several examples including those with
nonlinear constraints.

1 Introduction

One of the challenging problems in software verification
is to design and analyse systems in which computer pro-
grams reliably interact with their physical environment
[17]. Such systems are modeled as hybrid systems (Sec-
tion 2.2) that consist of discrete and continuous changes
over time. To develop reliable embedded controllers such
as those for automobiles, we need to describe the specifi-
cation as hybrid systems, and to prove the correctness of
the systems. This paper is intended to construct a model
checking tool for hybrid systems to verify the reachabil-
ity to unsafe states. Tools for hybrid systems such as
[10,15,5,16] have difficulties in modeling and verifica-
tion, especially when the models belong to the class of

nonlinear hybrid systems, where vector fields in the con-
tinuous state space or conditions for discrete changes are
expressed by nonlinear constraints. Since the above tools
take linear hybrid systems as inputs, users need to lin-
earize a problem by hand for each instance.

In this paper, we propose a satisfiability modulo the-
ories (SMT) framework for the bounded model check-
ing (BMC) of nonlinear hybrid systems. In the BMC
of hybrid systems, the bounded execution of a model is
described by a predicate logic formula involving arith-
metic constraints [1,4,3,9]. Checking the satisfiability of
the formula may become possible for systems that are
too large for unbounded execution. An SMT solver enu-
merates propositional models of the formula using a SAT
(propositional satisfiability) solver and then checks the
consistency of these models by calling theory solvers that
handle the conjunctions of arithmetic constraints. BMC
for possibly nonlinear hybrid systems is simply encoded
using formulas involving ordinary differential equations
(ODEs) [3]. However, no existing implementations sup-
port nonlinear hybrid systems.

Due to the state space explosion in handling the
continuous state space of hybrid systems, abstraction
methods play a significant role in model checking. Tech-
niques for over-approximating state space by a set of
boxes (tuples of intervals) [15,4,3] and polytopes [5] have
been developed. In this paper, we use interval arith-
metic (Section 2.1) for rigorous over-approximation. As
a theory solver, we adopt a technique for hybrid systems
proposed in our previous work [11] that integrates an
interval-based method for nonlinear ODEs [13] and an
interval-based constraint programming framework [8].
These interval-based methods guarantee that computed
intervals or boxes enclose the solutions of a given prob-
lem. Moreover, the interval Newton methods guarantee
that a unique solution exists in the computed intervals
or boxes.



2 Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems

More specifically, this paper presents a BMC tool for
nonlinear hybrid systems called hydlogic.

– hydlogic encodes a hybrid system into a predicate
logic formula involving ODEs (Section 3). We de-
scribe a phase of continuous changes between two
discrete changes as a hybrid constraint system (HCS)
(Section 2.3) [11].

– We propose a set of algorithms for checking the sat-
isfiability of the encoded formula (Section 4). The
algorithms work tightly with (i) a SAT solver that
enumerates possible sets of constraints, and (ii) a the-
ory solver based on the HCS solver that simulates a
phase of continuous change, i.e., computation of an
initial value problem based on interval arithmetic.

– In the proposed algorithms, the theory solver effi-
ciently computes a set of boxes that enclose a counter-
example by using the interval Newton method. Ordi-
nary over-approximation methods do not necessarily
guarantee that the computed enclosure contains a
counter-example. In contrast, as a by-product of em-
ploying the interval Newton method, the HCS solver
we adopt guarantees the existence of a unique so-
lution in a result when the checking of certain con-
ditions succeeds. This work focuses on the search of
such sets of boxes in which a unique counter-example
exists. When the algorithms fail to find such sets
of boxes, we can still prove that the model has no
counter-example by exhaustively searching the rest
of the state space.

We have implemented the hydlogic tool (Section 5)
and used it to analyze several examples including those
with nonlinear constraints (Section 6).

1.1 Related Work

Eggers et al. [3] used an interval-based solver for ODEs
in an SMT framework. However, their method did not
support either nonlinear ODEs or nonlinear guard con-
straints which our method does. Their method was also
limited in the integration with the SMT framework. The
method collects ODEs and solves them in a round-robin
manner. Our method solves ODEs incrementally while
the SMT framework unrolls an execution path. To certify
the result and to reduce the search space, our method
utilizes the existence property of a unique solution ob-
tained by the interval-based solver.

Ratschan et al. [15] proposed to translate a safety
verification problem of a hybrid system into a constraint
satisfaction problem. They also provided an interval-
based implementation of the method that supports non-
linear constraints. Their method is not an SMT frame-
work but is based on a specific set of complex constraints.
Our method provides a simpler and more modular SMT
framework that uses generic solvers for (nonlinear) equa-
tions and ODEs.

2 Preliminaries

This section introduces notions used for describing the
technique we propose.

2.1 Interval Arithmetic

The proposed method is based on interval arithmetic
[12]. A (bounded) interval [l, u] (l, u ∈ R) is a set of real
numbers, where

[l, u] = {r ∈ R | l ≤ r ≤ u}.

I denotes a set of intervals. A box is a tuple (I1, . . . , In)
of n intervals. In denotes a set of boxes. For an inter-
val I ∈ I, lb(I) and ub(I) denote the lower and upper
bounds, respectively. For a tuple X, X.i denotes the i-th
component of X.

For f : Rm → Rn, F : Im → In is called an f ’s
interval extension iff it satisfies the following condition:

∀I1∈I · · · ∀Im∈I ∀r1∈I1 · · · ∀rm∈Im ∀i∈{1, . . . , n}
[f(r1, . . . , rm).i ∈ F (I1, . . . , Im).i].

In the implementation of the proposed method, we
use a machine-representable interval I such that lb(I)
and ub(I) belong to a set of floating-point numbers F ⊂
R. In the computation of interval extensions, we handle
the bounds of intervals rigorously to enclose the theoret-
ical solutions and the accumulation of round-off errors.

2.2 Hybrid Systems

Hybrid systems are systems consisting of discrete changes
and continuous changes over time. We consider a reach-
ability problem that decides whether the execution of
a hybrid system may reach (or never reach) an unsafe
state that is predetermined by the users.

Definition 1. A hybrid system with unsafe states is a
tuple HS = (Q,X , E ,F , I,G,R, Init ,US ) consisting of
the following components:

– A finite set Q of discrete states;
– A set X = Rn of continuous states;
– A finite set E ⊆ Q×Q of discrete state transitions;
– A family F = {fq}q∈Q of vector fields fq : X → Rn.

We assume fq is a Lipschitz continuous function;
– A family I = {Invq}q∈Q of invariants Invq = I1 ×
· · · × In, where I1, . . . , In ∈ I;

– A family G = {ge(x) = 0}e∈E of guard constraints,
where x is a variable over X , and ge is a differentiable
function X → R;

– A family R = {rste}e∈E of (polynomial) reset func-
tions rste : X → X ;

– A set of initial states Init = (q0, I1 ×· · ·× In), where
q0 ∈ Q and I1, . . . , In ∈ I;

– A finite set US ⊆ Q of unsafe states. ⊓⊔



Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems 3

A k-step execution of a hybrid system is an alternating
sequence of discrete change phases (DPs) and continuous
change phases (CPs)

DP0

−−−→(q0, x0, t0) CP0

−−−→(q0, x1
−, t1) DP1

−−−→ · · ·
DPk−1

−−−−→(qk−1, xk−1, tk−1) CPk−1

−−−−→(qk−1, xk
−, tk),

where:

– qi ∈ Q, xi, xi+1
− ∈ X , and t0, ti+1 ∈ R≥0 (i ∈ {0, . . . ,

k−1});
– DP0 stands for the establishment of an initial state

(q0, x0, t0) ∈ Init ;
– For i ∈ {1, . . . , k−1}, DPi is an (instant) state transi-

tion from (qi, xi+1
− , ti+1) to (qi+1, xi+1, ti+1) at time

ti+1 ∈ R≥0, where (qi, qi+1) ∈ E , g(qi,qi+1)(x
i+1
− ) = 0,

and xi+1 = rst (qi,qi+1)(x
i+1
− ) hold;

– For i ∈ {0, . . . , k−1}, CPi is a continuous evolution
of states from xi ∈ X to xi+1

− ∈ X while a discrete
state qi is enabled.

Let 0 < t0 < · · · < tk−1 be k time points, qi a discrete
state enabled over the time interval (ti, ti+1), fqi a vec-
tor field corresponding to qi, and xi ∈ X a continuous
state at time ti. Then, a continuous function (or tra-
jectory) y : [ti, ti+1] → X is determined with the ODE
ẏ(τ) = fqi(y(τ)) ∧ y(ti) = xi, where ẏ(τ) = dy(τ)/dτ .
Since fqi is Lipschitz continuous, a unique trajectory is
determined by the ODE. For all t ∈ [ti, ti+1], y(t) ∈ Invqi

holds. xi+1
− is obtained as y(ti+1). In the following, we

call the pair (DPi, CPi) the i-th step of an execution.
For a hybrid system, a state q ∈ Q is reachable within

k steps if and only if there exists a k-step execution where
∃i ∈ {0, . . . , k−1}[qi = q]. A hybrid system is unsafe
(resp. safe) within k steps if and only if there exists a
state us ∈ US reachable (resp. unreachable) within k
steps.

Example 1. We describe a controller that steers a car
along a straight road near a canal [2]. Figure 1 shows
the controller modeled as a hybrid system. The model
consists of 7 discrete states corresponding to each node,
3-dimensional continuous states (p, γ, c) ∈ R3, and 9
discrete state transitions corresponding to each edge.
Let p, γ, and c represent the horizontal position of the
car, the heading angle, and the internal timer, respec-
tively. A discrete state labeled go ahead has a vector
field (−r ·sin(γ), 0, 0) and an invariant [−1, 1]× [−∞,∞]
× [−∞,∞]. The set of initial states is (go ahead, [−1, 1]
× [−π/4, π/4] × [0]). A transition e from go ahead to
left border has a guard constraint ge(x) = p + 1 = 0
and a reset function rste(x) = (p, γ, 0) (x is a variable
over R3). An edge entering go ahead represents the ini-
tial constraint. Reaching the state labeled in canal in
an execution signals the unsafety of the model. ⊓⊔

go ahead

ṗ = −r · sin(γ)
γ̇ = 0
ċ = 0

−1 ≤ p ≤ 1

−1 ≤ p ≤ 1
−π/4 ≤ γ ≤ π/4

c = 0

left border

ṗ = −r · sin(γ)
γ̇ = −ω
ċ = 1

−1.5 ≤ p ≤ −1

right border

ṗ = −r · sin(γ)
γ̇ = ω
ċ = 1
1 ≤ p

correct left

ṗ = −r · sin(γ)
γ̇ = ω
ċ = −2

−1 ≤ p ≤ 1
c ≥ 0

correct right

ṗ = −r · sin(γ)
γ̇ = −ω
ċ = −2

−1 ≤ p ≤ 1
c ≥ 0

straight ahead

ṗ = −r · sin(γ)
γ̇ = 0
ċ = 0

in canal

ṗ = 0
γ̇ = 0
ċ = 0

p = −1
c := 0

p = 1
c := 0

p = −1 p = 1

c = 0 c = 0

p = 1
c := 0

p = −1
c := 0

p = −1.5

Fig. 1. Model of the car steering example.

2.3 Hybrid Constraint Systems

We formulated the problem of detecting a discrete change
in hybrid systems as a hybrid constraint system, con-
sisting of a flow constraint on trajectories and a guard
constraint on states causing discrete changes [11]. The
solution to such a system is the crossing point(s) of a tra-
jectory and a boundary in the state space represented by
a guard constraint.

Definition 2. A hybrid constraint system (HCS) is a
tuple HCS = (x̃,flowq, grde,D,D0) with the following
components:

– A tuple of variables x̃ = (x0, x1, . . . , xn) consisting
of a variable x0 representing the time x0 ∈ R≥0 at a
crossing point and n variables x1, . . . , xn representing
a continuous state in X = Rn at time x0;

– A flow constraint flowq(x̃) corresponding to a dis-
crete state q ∈ Q, which is described by the conjunc-
tion of the four equations

flowq(x̃) ≡ ẏ(τ) = fq(y(τ)) ∧ y(t0) = y0

∧ y(x0) = (x1, . . . , xn) ∧ x0 > t0,

where t0 ∈ R≥0, y0 ∈ X , y(τ) is a trajectory [t0, tmax ]
→ X ([t0, tmax ] ∈ I);

– A guard constraint grde(x1, . . . , xn) corresponding to
a transition e ∈ E is described by

grde(x1, . . . , xn) ≡ ge(x1, . . . , xn) = 0;

– A domain D = (D0, . . . , Dn) ∈ In+1 that contains
possible values of the variables;

– An initial value set D0 = (D0,0, . . . , Dn,0) ∈ In+1

that contains values for parameters t0 and y0 in flowq.
⊓⊔

The valuation of an HCS is a map of the form x̃ 7→
(d0, . . . , dn) from every variable xi = x̃.(i+1) to a value



4 Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems

di ∈ Di. A solution of the HCS is a valuation satisfy-
ing the constraints flowq and grde. An HCS may have
multiple solutions.

In [11], we proposed a technique for solving HCSs
by coordinating (i) interval-based solving of nonlinear
ODEs and (ii) a constraint programming technique for
reducing interval enclosures of solutions. Our technique
provides the following characteristics: (a) the computa-
tion is regarded as a contracting map SHCS : In+1 →
2In+1

, where ∀D′ ∈ SHCS (D)[D′ ⊆ D]; (b) the domain
D′ ∈ SHCS (D) is box-consistent, i.e., for each bound b
of a component Di of D′, interval-based computation of
constraints with a valuation x̃ 7→ (D0, . . . , [b], . . . , Dn)
encloses a solution of the HCS.

The interval Newton method used in SHCS guaran-
tees the existence property of computed intervals. SHCS

checks certain conditions when applying the interval New-
ton method, and if the conditions hold, it guarantees
that a unique solution exists in the computed domain
for each value in the initial domain D0.

Example 2. Consider an execution in the discrete state
q = go ahead ∈ Q of the model in Example 1, which will
move to the state left border with e = (go ahead,
left border) ∈ E . We can express the continuous state
in q causing a discrete change with respect to e by an
HCS consisting of the following components:

x̃ =(t, p, γ, c),
flowq(x̃) ≡ ẏ(τ) = (−r · sin(y(τ).3), 0, 0)

∧ y(t0) = y0 ∧ y(t) = (p, γ, c) ∧ t > t0,

grde(p, γ, c) ≡ p + 1 = 0,

D =(R≥0, [−1, 1], R, R),
D0 =([0], [−1, 1], [−π/4, π/4], [0]).

The flow constraint flowq is parametrized by variables t0
and y0 that range over [0] and [−1, 1]×[−π/4, π/4]×[0],
respectively. ⊓⊔

3 Constraint-based Representation of Hybrid
Systems

We describe hybrid systems involving unsafe states as
predicate logic formulas with flow and guard constraints
described in Section 2.3. We propose how a reachability
problem of a hybrid system is translated into satisfia-
bility checking of a formula. This encoding method is a
modification of the former methods [1,3].

Definition 3. A k-step execution of HS is encoded as
a formula [[HS ]]k as follows.

1. Prepare the following variables:
– (k+1) Boolean variables bi

q (i ∈ {0, . . . , k}) for
each discrete state q ∈ Q representing whether
the state is activated in the i-th step;

– k Boolean variables bi
e (i ∈ {0, . . . , k−1}) for each

discrete state transition e ∈ E representing the
activation of the transition;

– (k+1) variables xi (i ∈ {0, . . . , k}) and k variables
xi
− (i ∈ {1, . . . , k}) over n-real vectors represent-

ing the continuous state after the i-th transition
and before the (i + 1)-st transition, respectively;

– k variables ti over R≥0 (i ∈ {0, . . . , k−1}) repre-
senting the time at which the i-th transition takes
place;

– k variables xi
inv over n-dimensional real vectors

and k variables tinv over R≥0 (i ∈ {0, . . . , k−1}).
2. The following formulas express that a unique discrete

state is activated and a unique transition takes place
in the i-th step

UQ i =
⊗
q∈Q

bi
q, UE i =

⊗
e∈E

bi
e,

where ⊗ means that exactly one of the arguments is
true.

3. The following formula expresses the CP correspond-
ing to the discrete state q in the i-th step

CONT i =
∧
q∈Q

(bi
q ⇒ flow i

q(t
i+1, xi+1

− )).

The invariant in the i-th step is described through
the following formula

INV i =(flow i
q(t

i
inv, x

i
inv) ∧ ti ≤ tiinv ≤ ti+1

∧ xi
inv /∈ Invq) ⇒ ¬bi

q.

4. Taking a discrete state transition e = (q, q′) ∈ E at
step i implies enabling the discrete states q at step i
and q′ at step i + 1. Moreover, the guard constraint
should be satisfied by xi

−, and the initial state xi+1

for the next step is determined by the reset func-
tion. For transitions in E , we describe the following
formulas

EDGE i =
∧

e=(q,q′)∈E

(bi
e ⇒ (bi

q ∧ bi+1
q′ )),

TRANS i =EDGE i ∧
∧
e∈E

(bi
e ⇒ (grde(x

i
−)

∧ xi+1 = rste(xi
−))).

5. Let q be a discrete state specified in Init .1. The initial
state is described by the following formula

INIT = b0
q ∧ x0 ∈ Init .2.

6. Finally, conjunct all the formulas described above.
We also express that the unsafety (to be falsified in
model checking) holds. In this paper, unsafety prop-
erties are represented as discrete states US ⊆ Q
in a model. For each variable bi

us corresponding to



Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems 5

us ∈ US , we express that us will be reached within
the k-step execution

[[HS ]]k =INIT ∧
k−1∧
i=0

(UQ i ∧ UE i ∧ CONT i ∧ INV i

∧ TRANS i) ∧ UQk ∧
k∨

i=0

∨
us∈US

bi
us . ⊓⊔

Proposition 1. For a hybrid system HS, suppose [[HS ]]k

is a formula encoded for k steps as described above. If
[[HS ]]k is unsatisfiable, then HS is safe for its k-step ex-
ecution. ⊓⊔

4 Algorithms for Checking the Satisfiability

In this section, we propose a set of algorithms for check-
ing the satisfiability of the formula [[HS ]]k described in
Section 3. We use interval-based techniques to deduce
the satisfiability of constraints in a formula by comput-
ing a set of boxes that may enclose the solution of the
constraints. As in DPLL(T ) [6], we tightly integrate a
modern SAT solver and a theory solver, i.e., the HCS
solver described in Section 2.3. Our method incremen-
tally runs a SAT solver, for each step, to enumerate com-
binations of active constraints in a formula, such as the
discrete state to enable in the current step, the flow con-
straint in the discrete state, and the guard constraint
for a possible transition from the current state. Then,
the interval-based HCS solver computes an enclosure of
states causing the next discrete change. With this re-
sult, the algorithms check the consistency of the set of
constraints for the current step.

As in the previous work [2,15,4,3], we refine an over-
approximation of continuous changes in a solving process
to obtain a more accurate enclosure. Refinements are
done by splitting one of the components of an initial
boxed value. The refined initial values are enumerated by
the SAT solver. In our method, refinements are guided
by whether computed intervals are proved to enclose a
unique solution, or whether by or an initial interval value
is precise enough.

4.1 Incremental Solving

The IncSolve algorithm illustrated in Figure 2 checks
the satisfiability of the formula [[HS ]]k. Input to the al-
gorithm is a hybrid system with unsafe states HS , and
a maximum number of steps k ∈ N to verify. The algo-
rithm returns one of the following values: Sat (satisfi-
able); Unsat (unsatisfiable); Unknown indicating that it
cannot be decided whether the formula is satisfiable or
not (due to the too coarse initial condition). When Sat
is returned, the existence of a counter-example, which
signals the unsafety of the systems, is guaranteed.

At lines 1–2, the algorithm translates HS into [[HS ]]k

and reads the subformula Init describing the initial states
into the proposition database P (P is always modified
by appending formulas). When reading a predicate logic
formula lf , the algorithm first translates lf into a propo-
sitional logic formula bf by mapping each constraint in
lf to a propositional variable (these maps are preserved
in a table), and then substitutes bf into P . A flag uk
initialized in line 3 indicates whether the satisfiability of
the formula can be decidable or not.

In the loop starting from line 5, the algorithm in-
crementally checks the satisfiability of [[HS ]]i for i ∈
{0, . . . , k−1}. At line 6, the subformulas UQ i, CONT i,
INV i, and EDGE i are read. Then the SAT solver pro-
cesses the proposition P and computes a valuation for
the propositional variables within them (lines 7–10). If
there is no valuation, the algorithm terminates and re-
turns Unknown or Unsat. Note that TRANS i is not han-
dled here. The algorithm returns Sat if the current dis-
crete state is unsafe (line 12).

The decision of a transition e ∈ E to take place is
computed in the HcsPropag procedure described in the
next section (line 14). For each e ∈ E from the state qi,
HcsPropag checks whether the transition will be en-
abled or not, and returns the result rese of the check,
a reachable continuous state De that is consistent with
the guard constraint grde, and the next discrete state
qe to proceed to. At lines 15–25, the algorithm analyzes
the results. When the box De is guaranteed to contain
a unique solution of grde, the algorithm learns an ini-
tial condition for the next step and proceeds to the next
loop (line 17). When grde is unsatisfiable, the algorithm
learns that it does not need to re-check this transition in
the sequel (line 20). This is effective when the algorithm
refines the initial domain and re-simulates the execution
from the domain. Otherwise, grde may be satisfied or
may not. Thus, the algorithm tries to refine the initial
domain (see Section 4.3) at line 23. If it cannot be re-
fined, i.e., the initial domain is too coarse to divide, the
algorithm turns on the flag uk . If there is no possible
transition, the algorithm returns Unknown or Unsat (line
27).

4.2 Propagation by Solving HCSs

The HcsPropag algorithm (Figure 3) computes a con-
tinuous state evolution simultaneously evaluating the
guard constraints to determine the next transition to
take place. This is done by constructing an HCS for each
candidate transition, and solving it with the method de-
scribed in Section 2.3. The procedure is equivalent to
theory propagation in DPLL(T ). The input consists of a
set E of candidate transitions, an initial domain D0 for
the HCS, a flow constraint flowq for the current step,
and an invariant Invq.

The destination state qe and the guard constraint
grde are given by a transition e ∈ E (line 3). At line



6 Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems

Input: a hybrid system HS , and a maximum step k
Output: satisfiability sat ∈ {Sat, Unsat, Unknown}
1: encode HS to obtain [[HS ]]k

2: P := INIT
3: uk := false
4: i := 0
5: while 0 ≤ i ≤ k−1 do
6: P := P ∧ (UQ i ∧ UE i ∧ CONT i ∧ INV i ∧ EDGE i)
7: sat := Solve(P )
8: if ¬sat then
9: return uk ? Unknown : Unsat

10: (qi,Di
0,flow i

qi , Invq) :=
collect true-valued constraints from P

11: if qi ∈ US then
12: return Sat

13: E ′ := {(q, q′) ∈ E | q = qi}
14: {(rese,De, qe)}e∈E′ :=

HcsPropag(E ′,Di
0,flow i

qi , Invq)

15: for e ∈ E ′ do
16: if rese = true then
17: P := P ∧ ((qi+1 =qe) ⇒ (xi+1∈Rste(De)))
18: else
19: if De = ∅ then
20: P := P ∧ (¬e)
21: else
22: if ¬ (the initial domain is precise enough)

then
23: P := Refine(P ); i := 0;Continue()
24: else
25: uk := true; P := P ∧ (¬e)
26: i := i + 1
27: return uk ? Unknown : Unsat

Fig. 2. IncSolve algorithm.

4, an initial domain is prepared by setting a maximum
time interval beyond the initial time and the invariant
box for the current state.

An HCS is solved at line 5 and a set of box-consistent
domains are obtained as a result. Domains in the set
are enumerated at lines 6–13. As described in Section
2.3, the SHCS we adopt may guarantee that a resulting
domain contains a unique solution with respect to every
initial value in D0. The algorithm returns true if the
existence of a solution is guaranteed, or false otherwise.

4.3 Over-approximation Refinement

The Refine procedure called in IncSolve tries to re-
fine an over-approximation by dividing the initial box
and re-computing the over-approximation for each of the
divided boxes. In a refinement, an initial box is divided
along one of the components of the box (each time the
component is changed in a round-robin manner). Each
time an initial box is refined, the solver learns an addi-
tional formula on the initial constraint. In the formula,
we use Boolean variables id i (i ∈ N) which give an iden-
tifier to each initial box. Beforehand, we give id0 to INIT
by adding the formula id0 ⇔ INIT to the proposition

Input: a set E of transitions, an initial domain D0, a flow
constraint flowq, and an invariant Invq

Output: a set R of tuples (res,D, q), where res ∈
{true, false}, D ⊆ X , and q ∈ Q

1: R := ∅
2: for e ∈ E do
3: (qe, grde) := collect the destination state and the

guard constraint of e
4: D := (D0, . . . , Dn), where D0 = [lb(D0.1), tmax ] and

D1 × · · · × Dn = Invq

5: DS := SHCS (D), // see Section 2.3
where HCS = (x̃,flowq, grde,D,D0)

6: if DS = ∅ then
7: R := R ∪ {(false, ∅, qe)}
8: else
9: for D ∈ DS do

10: if D is proved to contain a solution then
11: R := R ∪ {(true,D, qe)}
12: else
13: R := R ∪ {(false,D, qe)}
14: return R

Fig. 3. HcsPropag algorithm.

database P . Let D0 be an initial boxed value, and as-
sume that D0 is divided into boxes D0,1 and D0,2. Then,
we construct the following formula and add this to the
solver.

((id0 ∧ qi+1) ⇒ (id1 ⊕ id2)) ∧ (¬id1 ∨ ¬id2)

∧ (id1 ⇒ (x0 ∈ D0,1)) ∧ (id2 ⇒ (x0 ∈ D0,2)).

After a refinement, the Continue() command at line 23
of IncSolve restarts the solving loop from step i = 0.
Accordingly, one of the identifiers id1 and id2 is selected,
and the computation of refined over-approximation starts.
Note that not id1 and id2 but id0 may be selected be-
cause a search along a different path may be still on the
way.

4.4 An Example

We describe how the proposed method verifies the hybrid
system in Example 1. Here, we change the initial domain
to (p, γ, c) ∈ [−1, 0]×[π/6, π/4]×[0]. Parameters are set
as r = 2 and ω = π/4. Computed domains for p along
the time line are illustrated in Figure 4. Enumeration of
refined initial domains and decisions on transitions are
illustrated in Figure 5.

The computation proceeds as follows:

a. At line 10 of IncSolve, the initial state go ahead
and the initial domain D0 = ([0, tmax ], [−1, 0], [π/6,
π/4], [0]) is activated using the SAT solver (we denote
D0 by D0,0 in the following, where the identifier for
(refined) domains is subscripted). Then, HcsPropag
constructs HCSs with respect to the state go ahead
and the transitions from go ahead to left border
and right border. By solving these, HcsPropag



Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems 7

Fig. 4. Process of solving the car steering example. The horizontal
line at t = 0 denotes the initial domains for p. The vertical lines are
the boundary values at the discrete state transitions. In (a), the
p component of the domain is divided into two (D0,1 and D0,2).
In (b), the γ component is divided (D0,3 and D0,4). Bending lines
show the results of numerical computation using the boundary
values of the initial domain.

id \ step 0 1 2 3

0
(true,D0,0,

go ahead)
(false ,D1,0,

left border)

(false , ∅,
right border)

1
(true,D0,1,

go ahead)
(true,D1,1,

left border)
(false,D2,0,

in canal)

(true,D2,1,

correct left)
(true,D3,0,

straight ahead)

2
(true,D0,2,

go ahead)
(false ,D1,2,

left border)
(false , ∅,

right border)

3
(true,D0,3,

go ahead)
(true,D1,3,

left border)
(false,D2,2,

in canal)

4
(true,D0,4,

go ahead)
(true,D1,4,

left border)
(true,D2,3,

in canal)

Fig. 5. Enumeration of possible execution paths. Enumeration
starts from the upper-left of the figure. A simulation from an ini-
tial domain proceeds horizontally as directed by the arrows. Each
node is a tuple of a result of evaluating a guard constraint, a do-
main satisfying the guard constraint, and the next state to tran-
sit. Refinements of the initial domains are shown by the identifier
numbers directed by the dotted arrows.

computes the results {(false,D1,0, left border),
(false, ∅, right border)}. Since all the results con-
tain false, the algorithm refines D0,0 to D0,1 and D0,2

by dividing the component [−1, 0] for p into [−0.5, 0]
and [−1,−0.5].

b. Afterward, HcsPropag computes the result {(true,
D1,1, left border)} from D0,1. IncSolve proceeds
to step 1 of the execution, and HcsPropag com-

putes the results {(false,D2,0, in canal), (true,D2,1,
correct left)} from D1,1. Since D2,0 is returned
with false, D0,1 is refined into D0,3 and D0,4 along
the component for γ, i.e., [π/6, π/4] into [π/6, 5π/24]
and [5π/24, π/4]. The algorithm also computes the
execution path that moves to correct left at step
2, and reaches straight ahead at step 3.

c. From D0,2, the algorithm is still unable to decide
whether the transition to left border may be en-
abled or not. The algorithm applies another refine-
ment.

d. From D0,3, the algorithm computes the results with-
out the guarantee of existence, as in the computation
from D0,1. Note that the path to straight ahead is
not computed here again, since the existence of this
path is learned in Step b.

e. Finally, from D0,4, the algorithm computes a counter-
example guaranteed to reach in canal at step 2.

5 Implementation

We built a prototype implementation called hydlogic of
the method described in this paper. hydlogic is imple-
mented in OCaml, C, and C++, and consists of about
2000 lines of code. Input to hydlogic is a textual de-
scription of a hybrid system. hydlogic translates an in-
put model into a formula as explained in Section 3. Then,
the core component checks the satisfiability of the for-
mula by the method in Section 4. hydlogic integrates
the following external solvers.

– The Decision Procedure Toolkit (DPT) [7] is used as
an incremental SAT solver. DPT is an implementa-
tion of a DPLL-based SAT solver in OCaml. It has
a flexible API for adding clauses incrementally and
controlling search procedures.

– We use the implementation described in [11] for solv-
ing HCSs. The HCS solver is built on top of Elisa
[8], an interval-based constraint solver based on box-
consistency, and VNODE-LP [13], which handles ini-
tial value problems for ODEs based on interval arith-
metic. The whole system is implemented in C++.

6 Experiments

We present results of experiments on three examples. It
shows how the complexity scales by the unrolled exe-
cution steps, the size of models, and the size of boxes
given by initial constraints. We also compared the tool
with HSolver [15] and PHAVer [5]. We experimented on
a 2.4GHz Intel Core 2 Duo processor with 4GB of RAM.

6.1 Car Steering Problem

Consider the car steering problem given in Example 1.
We first analyzed the unsafety of the model as described



8 Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems

in Section 4.4. hydlogic took 692.74 seconds and 1716
times of refinements to prove the existence of a counter-
example. We set the minimum width wmin of the initial
boxed values to 0.05, and the time domain D.1 in the
HCSs to [0, 3].

We then modified the guard constraint for the edge
entering in canal as p = 2, and analyzed the model
again. hydlogic returned the result Unknown in 91.88
seconds. Refinements were done 48 times. The result
was Unknown because it was unable to prove the exis-
tence property for some of the guard constraints and the
initial values. For example, when the initial domain for
p was [0, 0.05], the existence of a solution to the guard
constraint of left border was not proved. We confirmed
that all the evaluation of the transition to in canal had
no solution.

We tried to solve the same instance of this problem
by HSolver but the computation did not terminate after
10 minutes (though HSolver could solve another instance
of the problem).

6.2 Navigation Benchmark

We present results of the navigation benchmark problem
taken from [5,15]. This problem models an object at a
position (px(t), py(t)) ∈ R2 moving within a grid of n ×
n areas of size 1 × 1 (n ∈ N). Each area in the grid
determines the velocity (vx(t), vy(t)) of the object as

(v̇x(t), v̇y(t))T = A · ((vx(t), vy(t))T − vd), where

A =
(
−1.2 0.1
0.1 −1.2

)
, vd = (sin(i · π/4), cos(i · π/4))T .

i ∈ {0, . . . , 7} is determined by each area. The lower left
corner area of the grid has the coordinate (0, 0). We used

a map specified by the following matrix M =

U 2 4
4 3 4
2 2 U

 ,

where U denotes an unsafe region, and the other numbers
indicate the values i of the corresponding areas. We set
the initial discrete state as the (1, 2) area in the grid, and
set the initial values as (px,0, py,0, vx,0, vy,0) ∈ [0, 1] ×
[1, 2] × [0.5] × [0].

We analyzed the reachability to the unsafe areas us-
ing hydlogic. Parameters are set as k = 4, wmin =
0.25, and tmax = 10. We proved the existence of a path
from the initial state, where (px,0, py,0) ∈ [0.25, 0.5] ×
[1.5, 1.75], to the unsafe area at (3, 3). The analysis took
60.1 seconds and 34 refinements.

We then modified the initial condition for py to py,0 ∈
[1, 1.5], and tried to find an execution path reaching to
the unsafe area at (1, 1). We analyzed for k ∈ {2, . . . , 7}
and each computation returned Unknown because there
were some guard constraints not guaranteed to be sat-
isfied. We confirmed those guard constraints are not for
the boundary of the unsafe area. The computation took

37.93, 40.33, 43.46, 70.37, 70.36, and 70.38 seconds, re-
spectively.

PHAVer can check the safety of several instances of
this problem [5]. An advantage of hydlogic is that it can
prove the existence of a path reaching the goals speci-
fied as unsafe areas. As previously experimented [15],
HSolver could not solve this problem.

6.3 Tunnel Diode Oscillator Circuit

The third example taken from [5] models an RLC circuit
involving a tunnel diode. The two dimensional continu-
ous state (i, v) ∈ R2 expresses the current i through the
inductor and the voltage drop v of the tunnel diode.
The vector fields are specified as in the original paper.
We describe the model as a hybrid system, where each
discrete state corresponds to an equation for id. In the
experimentation, we unrolled the model for 7 steps and
tried to find a path. We set the initial constraint as tak-
ing q3 for the discrete state, and (i, v) ∈ [0.0006]× [0.45]
for the continuous state. hydlogic computed an enclo-
sure of a path with the guarantee of the existence. It
took 4332 seconds. Most of the CPU time was spent by
VNODE-LP to solve the ODEs because VNODE-LP can
only take small time steps (around 10−8) in its iterative
computation.

In [5], PHAVer took a model, which is linearized be-
forehand, and proved that the continuous state stayed
within a certain region. HSolver also solved a reachabil-
ity problem based on this example in a reasonable time
[15]. Our method might solve reachable sets more effi-
ciently by applying recent techniques for solving ODEs
with uncertain initial domains. By detecting that a box
enclosure of a state in an execution is included in the
initial domain, we can verify the safety for the infinite
steps.

7 Conclusion

We have presented the hydlogic tool for verifying sys-
tems that interact with physical environments. We pro-
vide hydlogic as an SMT-based tool that inter-works
with an incremental SAT solver and an interval-based
constraint solver.

hydlogic supports nonlinear hybrid systems (Defi-
nition 1) involving nonlinear ODEs and nonlinear guard
constraints, which cannot be handled by the most of the
available tools. The proposed method utilizes the prop-
erty to guarantee the existence of a unique solution in
an over-approximation provided by the HCS solver. The
property is used to prune the search space in the pro-
posed algorithms, as well as to output a set of boxes in
which a counter-example of a model (or a path to the
goal) is guaranteed to exist.



Daisuke Ishii et al.: An Interval-based SAT Modulo ODE Solver for Model Checking Nonlinear Hybrid Systems 9

In this paper, refinement of an over-approximation
is performed by simply dividing an initial box. The re-
finement method can be improved in several ways using
techniques for handling nonlinear ODEs with uncertain-
ties [14], for example.

Acknowledgements. The authors are indebted to anonymous
referees for their useful comments. The authors are also in-
debted to the members of the HydLa project for the devel-
opment of the ideas. This research is partially supported by
JSPS, Grant-in-Aid for Young Scientists (B) 20700033 and
Grant-in-Aid for Scientific Research (B) 20300013.

References

1. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebas-
tiani. Verifying industrial hybrid systems with Math-
SAT. Electronic Notes in Theoretical Computer Science,
119(2):17–32, 2005.

2. E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg,
and M. Theobald. Verification of hybrid systems based
on counterexample-guided abstraction refinement. In
Proc. of TACAS’03, LNCS 2619, pp. 192–207, 2003.

3. A. Eggers, M. Franzle, and C. Herde. SAT modulo ODE:
A direct SAT approach to hybrid systems. In Proc. of
ATVA’08, LNCS 5311, pp. 171–185, 2008.

4. M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schu-
bert. Efficient solving of large non-linear arithmetic con-
straint systems with complex boolean structure. Jour-
nal on Satisfiability, Boolean Modeling and Computation
(JSAT), 1:209–236, 2007.

5. G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past HyTech. International Journal on Software
Tools for Technology Transfer (STTT), 10(3):263–279,
2008.

6. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. DPLL(T): Fast decision procedures. In
Proc. of CAV’04, LNCS 3114, pp. 175–188, 2004.

7. A. Goel and J. Grundy. Decision Procedure Toolkit 1.2.
http://dpt.sourceforge.net/, 2008.

8. L. Granvilliers and V. Sorin. Elisa 1.0.4.
http://sourceforge.net/projects/elisa/, 2005.

9. S. Gulwani and A. Tiwari. Constraint-based approach for
analysis of hybrid systems. In Proc. of CAV’08, LNCS
5123, pp. 190–203, 2008.

10. T. J. Hickey and D. K. Wittenberg. Rigorous modeling
of hybrid systems using interval arithmetic constraints.
In Proc. of HSCC’04, LNCS 2993, pp. 402–416, 2004.

11. D. Ishii, K. Ueda, H. Hosobe, and A. Goldsztejn.
Interval-based solving of hybrid constraint systems. In
Proc. of the 3rd IFAC Conference on Analysis and De-
sign of Hybrid Systems (ADHS’09), pp. 144–149, 2009.

12. R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduc-
tion to Interval Analysis. SIAM, 2009.

13. N. S. Nedialkov. VNODE-LP: a validated solver for ini-
tial value problems in ordinary differential equations. TR
CAS-06-06-NN, McMaster University, 2006.

14. N. Ramdani, N. Meslem, and Y. Candau. A hybrid
bounding method for computing an over-approximation
for the reachable space of uncertain nonlinear systems.
IEEE Trans. on Automatic Control, 2009 (to appear).

15. S. Ratschan and Z. She. Safety verification of hybrid
systems by constraint propagation-based abstraction re-
finement. ACM Trans. on Embedded Computing Systems
(TECS), 6(1), Article 8, 2007.

16. S. Sankaranarayanan, F. Ivancic, and T. Dang. Symbolic
Model Checking of Hybrid Systems using Template Poly-
hedra. In Proc. of TACAS’08, LNCS 4963, pp. 188–202,
2008.

17. L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-
physical systems: a new frontier. Machine learning in
cyber trust: security, privacy, and reliability, pp. 3–14,
Springer-Verlag, 2009.


