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This paper discusses two aspects of parallelism in logic programming: parallelism as a computational
formalism (often referred to as concurrency) and the implications of parallelism with regard to perfor-
mance. Two alternatives for a parallel logic programming system are compared in detail. One allows
programmers to describe processes and communication using concurrent logic languages, and the other
attempts to exploit the parallelism of ordinary logic programs.

1. INTRODUCTION

Since the early days of logic programming, its affinity to
parallelism has often been pointed out and studied [21][3][7].
There have been two major directions in research on paral-
lelism in logic programming over the last ten years. One
emerged from the process interpretation of logic programs
introduced in the late 1970s [12], and led to the design and
(possibly parallel) implementation of a variety of concurrent
logic programming languages amenable to process interpre-
tation [4][34][5][37]. These languages aim at the description
of systems of processes and not directly at the description
of search problems. Control is an integral part of the lan-
guages, and users program concurrent execution.

The other direction aims at the parallel execution of
pure logic or Prolog programs that involve searching.
Programmers may specify control only for guiding execu-
tion. OR-parallelism was exploited first [2][26][8][43], and
AND-parallelism has been incorporated also [9][16][45][15].

There has been a long history of controversy between the
proponents of these two directions. Proponents of concur-
rent logic programming languages claim that pure logic pro-
grams are not expressive enough to describe efficient paral-
lel algorithms or to make effective use of the computational
power of parallel computers. Proponents of the parallel exe-
cution of ordinary logic programs claim that concurrent logic
languages are not logic languages because they fundamen-
tally lack completeness in the sense of theorem proving, and
that programming concurrency is too difficult for ordinary
programmers. Section 2 compares these two directions from
a semantical point of view and clarifies how their frameworks
are different. Section 3 discusses how these directions can
be used for writing efficient programs. Section 4 concludes
the paper by proposing how to reconcile these directions.

2. PARALLELISM AS A COMPUTATIONAL
FORMALISM

2.1 Logic as a Programming Language

Logic programming was born from theorem proving with

Horn-clause logic. Kowalski [21] showed the procedural in-
terpretation of Horn-clause logic, in which predicates are
interpreted as procedures that can compute bindings (the
values of variables) as the result of computation. The capa-
bility of computing values seems to be the minimum require-
ment for a framework to be called a programming language.

Since then, there have been two directions of research in
logic programming. One is its extension and enhancement
within the framework of theorem proving. Various alterna-
tive data domains to Herbrand universes have been consid-
ered for constraint satisfaction problems. Studies on control
structures have yielded such techniques as coroutining, OR-
and AND-parallelism, and forward checking. The inclusion
of negation and other extensions of Horn-clause logic have
been investigated also.

The other direction is the attempt to demonstrate the via-
bility of logic programming for diverse aspects of program-
ming. The most important is the design of a general pro-
gramming language. Prolog is the first such language, but
its generality rests more or less on impure constructs such
as cuts, side-effects, and meta-logical predicates. The re-
designing of these features is still in progress [42][24]. Other
aspects of programming we may wish to consider include
systems and meta programming, concurrent programming
and programming in the large, which motivated studies on
meta-interpreters, perpetual processes and modularization,
respectively. These paradigms may be put into practice sim-
ply by developing new interpretations of logic or new pro-
gramming techniques, or they may be put into practice only
by adding new language constructs. In the latter case, we
should give clean semantics to the constructs.

2.2 Process Interpretation of Logic Programs

In the late 1970s, much research was conducted on the
coroutining (pseudo-parallel) execution of logic programs
[3][30][14][19], while Kahn [20] had shown a network of com-
municating processes to be a simple and elegant framework
of concurrent programming. These two lines of research were
put together by van Emden and de Lucena Filho [12], who



introduced process interpretation of logic programs and ini-
tiated the use of logic for concurrent programming with com-
municating processes.

By a process we mean a unit of computation that may run in
parallel with other processes and communicate with them.
In their interpretation, each process sequentially executes
goals in its own stack. Goals belonging to different processes
may share variables, which may be used as communication
channels. In general, it is the attention to communication
that characterizes concurrent programs. The semantics of
processes should therefore describe the process or history ,
rather than the result, of computation. The result of com-
putation is not necessarily important, and accordingly, pro-
cesses need not terminate.

In spite of the proposal of process interpretation, pure Horn-
clause logic could not be used immediately for concurrent
programming because it was not clear what to do with its
ability to compute multiple solutions. We still had to design
a concrete programming language in which to describe com-
municating processes. The first concrete concurrent logic
programming language was Relational Language [4]. It in-
troduced Dijkstra’s concept of the guard [10] into logic pro-
gramming for the first time. This made Relational Language
capable of describing don’t-care nondeterministic processes.
The subsequent concurrent logic languages attempted to
refine existing ones or to enhance their expressive power.
These languages include Concurrent Prolog [34], PARLOG
[5], Guarded Horn Clauses (GHC) [37][38], Flat Concurrent
Prolog [35] and Oc [18]. A survey and a genealogy of these
languages can be found in [36] and [31], respectively.

Here, we introduce GHC without guard goals as a process
description language. This subset of GHC is essentially
equivalent to Oc, which is the simplest of the concurrent
logic languages.

A program is a set of guarded clauses of the following form:

h :- | B

where h is an atom(ic formula) called a head and B is a
multiset of atoms called goals. Each clause represents a
rewrite rule of a goal. The commitment operator ‘|’ divides
a clause into a guard (left-hand side) and a body (right-hand
side). The guard specifies the condition for rewriting, and h
in particular specifies the template of a goal to be rewritten.
The body specifies the multiset of goals that replaces the
old goal.

The execution of a program begins with the initial multiset
of goals specified by a goal clause of the following form:

:- B

Goals in B rewrite themselves in parallel. Let g be a goal in
B. Then

(1) if there are a clause h :- | B′ and a substitution θ such
that g ≡ hθ (that is, g and h are unifiable without in-
stantiating g), then g is replaced by B′θ, and

(2) if g is of the form t1 = t2 and t1 and t2 are unifiable with
a most general unifier (mgu) θ, then g is deleted and θ
is applied to the rest of the goals.

Unlike the original process interpretation in [12], we no
longer have any notion of sequential execution. A process is
just an entity that observes and generates substitutions. A
substitution, which is a finite set of bindings between vari-
ables and their values, models a piece of information trans-
ferred between processes. A process is realized by a multiset
of goals which reduce themselves into other goals repeatedly
using guarded clauses. Interprocess communication is done
by unification. Unification executed in a body is for gener-
ating a substitution, and unification executed in a guard is
for observing a substitution. A process is an abstract entity
for our understanding of a computation; what multiset of
goals should be regarded as a process depends entirely on
our interpretation of the computation.

To transfer information, its sender and its receiver(s) must
share a variable. Synchronization accompanying communi-
cation is realized by Rule (1), which allows a goal to rewrite
itself only after it is sufficiently instantiated. Rule (1) con-
trols the direction of information flow and is the only means
of control in the language. The application of an mgu in
Rule (2) need not be done as an atomic action. The in-
formation represented by the mgu need only be published
eventually [33].

Control in a concurrent logic language is not like control in
an ordinary logic language. While control in an ordinary
logic language is for efficiency and is independent of logic,
control in a concurrent logic language determines the direc-
tion of communication and hence is a far more essential con-
struct of the language. Remembering Kowalski’s equation
Algorithm = Logic + Control [22], we see that concurrent
logic languages are for describing concurrent algorithms.

Unification enables quite flexible interprocess communica-
tion; this is a unique feature of concurrent logic languages.
It can be used both for one-directional communication such
as pipelining and for two-directional communication such as
messages that require replies. Another feature of concur-
rent logic languages is that, unlike concurrent procedural
languages, communication channels (streams) are not part
of the language constructs but are represented and operated
as ordinary lists. This contributes much to the simplicity
of the languages. The following is a program implementing
stack objects:

stack([push(X)|S],D ) :- | stack(S,[X|D]).
stack([pop(X) |S],[Y|D1]) :- |

X=Y, stack(S,D1).
stack([], D ) :- | true.

To use a stack, we first generate a process stack(S,[]) and
instantiate S to a list of requests. For example, if the goals
S=[push(5)|S1], S1=[push(6)|S2], S2=[pop(X)|S3] and
S3=[pop(Y)|S4] are executed (in any order), X and Y will
be instantiated to 6 and 5, respectively.

Note that Rule (1) expresses don’t-care nondeterminism in
the choice of a rewrite rule, due to which concurrent logic
programming languages are not complete when viewed as a
theorem prover of Horn-clause logic.

2.3 The Frameworks of Ordinary and Concurrent
Logic Languages

This section compares the frameworks of ordinary logic lan-



guages with the ability to generate multiple answer substi-
tutions (don’t-know nondeterminism) and concurrent logic
languages with don’t-care nondeterminism. Some concur-
rent logic languages feature don’t-know nondeterminism also
[46][32]. Those languages are considered more similar to or-
dinary logic languages than to other concurrent logic lan-
guages from the viewpoint given below.

The fundamental difference between the frameworks of or-
dinary and concurrent logic languages lies in the way in
which the result of computation is observed and the ma-
terial for computation is provided. Whether explicitly by
input/output primitives or implicitly by the system, transfer
of information to and from the outside world must be done
in any computational system. Transfer of information will
ultimately be done by some operational means; the question
is how it should be modeled in declarative languages.

In a word, the difference is that a concurrent logic program-
ming system is an open system while an ordinary logic pro-
gramming system is a closed system. In concurrent logic pro-
gramming, input/output is formulated as interprocess com-
munication. The advantages of this formulation are that no
special operations need be introduced and that a program
has full control over input/output. The outside world (more
specifically, each peripheral device) is modeled as a system-
defined process that observes and generates substitutions.
This process is assumed to run in parallel with user-defined
processes. A concurrent logic programming system should
provide a means to establish communication channels be-
tween system and user processes. In sum, the outside world
participates in the execution (‘proof’ in logic programming
terms) of a program which proceeds with real time. This is
why a concurrent logic programming system can be called
an open system.

In contrast, the framework of ordinary logic programming is
that of theorem provers. The outside world observes proofs
at the meta-level, the level of the system that searches for
proofs. This observation is considered to be done using some
special mechanism inaccessible from within a program. We
often wish to observe different answer substitutions of a goal
clause obtained from different, independent proofs, but this
is enabled only by simulating don’t-know nondeterminism.
Don’t-care nondeterminism can be directly implemented on
an actual computer, but don’t-know nondeterminism must
be simulated.

Why do concurrent logic languages lack the ability to gener-
ate multiple answer substitutions? It is often claimed that
this is to avoid complex mechanisms such as distributed
backtracking between communicating processes. However,
the more fundamental reason is the incompatibility of the
ability to generate multiple answer substitutions and the
ability to communicate with the outside world. If we allowed
multiple proofs beginning with a multiset of goals, that
many processes corresponding to the outside world would
have to be created. If we were reasoning about the interac-
tion of processes with the outside world, we could consider
multiple possible outside worlds. However, the purpose of
concurrent logic languages is to describe the actual inter-
action of processes with the real outside world. The real
outside world can participate in only one of the proofs, the
one that actually happens.

To sum up, concurrent logic languages and ordinary logic
languages have quite different purposes. Concurrent logic
languages aim at the description of efficient concurrent sys-
tems, and ordinary logic languages aim at the high-level
description of problem solving. Which of the frameworks
should be used depends on whether the interaction with the
outside world is important or not in the problem to be pro-
grammed.

Finally, we note that although concurrent logic languages
are generally suitable for describing systems of processes,
not all of them are suitable as they are for systems pro-
gramming such as the writing of operating systems. An
operating system must be able to safely execute user pro-
grams that may not be cooperative with the operating sys-
tem, whether inadvertently or deliberately. Concurrent logic
languages proposed so far took different approaches to this
requirement. Flat Concurrent Prolog enabled systems pro-
gramming by adopting larger atomic operations. That is,
it made indivisible the two aspects of resolution, rewrit-
ing and unification, while PARLOG and GHC separated
them. Instead, PARLOG featured an additional construct
called ‘metacall’. KL1 [1], the kernel language for the Multi-
PSI machine based on GHC, took an approach similar to
PARLOG’s to write an operating system PIMOS [1].

2.4 The Semantics of Ordinary and Concurrent
Logic Programs

Let us compare ordinary and concurrent logic programs in
terms of their semantics. First we examine the typical view
of an ordinary logic program:

Goal
clause

−→ Logic program −→ Answer substitutions/
Failure

The question is: what is the result of the computation, or
what is the output of the system? Each computed answer
substitution could be called a result of don’t-know nonde-
terministic computation, but this view is valid only within
the simulated world of don’t-know nondeterminism.

Let us suppose that the result is the set of all computed an-
swer substitutions. What we would like to consider next is
the way to pass that result to the subsequent computation,
because without this facility, we cannot write a program
that collects and processes (compares, for example) the so-
lutions of some goal despite the search capability of logic
programming. One possibility is to represent each substitu-
tion implicitly as the value of a variable or a term of interest
and to represent the set of substitutions as a list of such
values. Another possibility is to explicitly represent each
substitution as a first-class object, namely an association
list.

Whatever representation may be used, putting answer sub-
stitutions together into a single data structure requires
meta-level operations, operations at the level implementing
exhaustive search. For this reason, most Prolog systems
provide all-solutions predicates such as setof of DEC-10
Prolog, all of which adopt implicit representation.

The semantics of existing all-solutions predicates is, how-
ever, by no means clear, as Naish [28] pointed out. For exam-
ple, they can be used for defining the extralogical predicate



var. The major source of this and other problems seems to
be the improper treatment of variables in the goal (for which
exhaustive search is performed) and the result. First, it is
considered problematic to allow an uninstantiated variable
not appearing free in the all-solutions goal (called a local
variable) to appear in the result [28][39], because what a
local variable represents is quite model-dependent. The re-
sult with local variables cannot provide a model-independent
notion of the number of solutions. Furthermore, with local
variables, the universal closure of a successful all-solutions
goal (with the computed result list) can be logically wrong
[28].

Non-local variables, namely variables appearing free in the
all-solutions goal, are less problematic if we disallow them
to be instantiated during the exhaustive search. For exam-
ple, the DEC-10 Prolog goal setof(X,perm([A,B,C],X),S)
for generating permutations will return the binding S =
[[A,B,C],[A,C,B],. . . ,[C,B,A]]. Although a goal perm(
[A,B,C],X) may subsume infinitely many elements of the
least Herbrand model generated from the definition of perm,
it has only six results (say x1, . . . , x6) for which the univer-
sal closures ∀(perm([A,B,C],xi)) are logical consequences
of the definition of perm. A problem still remains when we
want the result to be a set rather than a bag, because in
this case, the values of non-local variables given from out-
side may affect the number of different solutions. However,
this problem can be easily avoided by distinguishing between
non-local variables which will not be instantiated and those
which will be instantiated, and by indicating the occurrences
of the former by constant symbols. If the result can be a bag,
non-local variables can always be left as they are.

Now our goal in the implicit representation approach is to
restrict the use of all-solutions predicates to safe cases where
local variables do not occur in the result and non-local ones
are not instantiated. One possible approach is static check-
ing. Ueda [39] proposes a compilation technique from an
exhaustive search program into a deterministic program.
The technique is based on dataflow analysis, and a program
amenable to compilation is safe in the above sense. The
technique was developed for a class of programs manipulat-
ing ground data, but it will allow generalization. A problem
is that the dataflow of Prolog programs that make use of
logical variables as blackboards does not allow simple static
analysis. How to analyze and compile such programs has
yet to be studied.

Another solution to the treatment of variables in exhaustive
search might be to represent both the goal and the result by
ground terms, using constant symbols to indicate the occur-
rences of variables. In this scheme, the result can be rep-
resented either implicitly (by values) or explicitly (by sub-
stitutions). However, the ground representation may be too
powerful in that it tells not only what variables are bound
but what variables are not bound; such information is other-
wise accessible only using extralogical predicates. Moreover,
the change of representation does not solve all the concep-
tual problems of the all-solutions predicates. The explicit
manipulation of substitutions may cause inefficiency also.

Next, let us consider the semantics of concurrent logic lan-
guages. Most of the proposed formal semantics of concur-
rent logic languages [32][23][25][13][27][41] try to capture the

possible behavior of a process. Let us take the semantics of
GHC in [41] as an example.

The purpose of the semantics in [41] is to capture the ab-
stract behavior of a process or a multiset of goals by paying
attention to external communication.

Communication with a process B is modeled as a finite se-
quence 〈α1, β1〉〈α2, β2〉 . . . 〈αn, βn〉 of transactions. A (nor-
mal) transaction, denoted 〈α, β〉, is the act of providing a
process with a possibly empty input substitution α and ob-
taining an observable output substitution β. The first input
substitution α1 is given through the variables in var(B) (the
set of variables occurring in B), which we call the interface of
B. The corresponding output substitution β1 is considered a
response to α1, and hence must be such that Bα1β1 �≡ Bα1.
An output substitution is also called a partial answer sub-
stitution. The size of a transaction depends on when the
outside world observes an output substitution. The substi-
tution β1 need not represent atomic information, nor need it
represent maximal information returned in response to α1.

After the first transaction, B will be instantiated to Bα1β1,
and the second transaction 〈α2, β2〉 will be made through
the interface var(Bα1β1). Our view of a process can be
illustrated as follows:

Outside world

α1

↓ ⇒ ↑
β1

⇒ α2

↓ ⇒ ↑
β2

· · ·

Multiset of goals

The point is that the outside world may determine α2 de-
pending on β1. What characterizes an interactive program
is that the input to the program may depend on the out-
put from the program, and we must be able to model the
causality among communicated data.

The semantics of a multiset B of goals running under a pro-
gram P, denoted [[B]]P , is modeled as the set of all possible
finite sequences of transactions with B. Besides the model-
ing of behavior, our semantics is different from the semantics
of ordinary logic programs in two points. First, a meaningful
semantics can be given to a program that does not terminate
but is still useful. Each element of [[B]]P represents a possi-
ble finite sequence of transactions with the process B which
itself may be non-terminating. Second, our semantics deals
with the anomalous behavior of a process such as the fail-
ure of unification and no response to an input substitution.
This is necessary because we want to distinguish between a
process that will always return an output substitution βn in
response to αn and a process that sometimes does so and
sometimes fails or returns nothing. Two kinds of anomalous
behavior are modeled. First, providing a process with αn

may cause the failure of some unification goal, and this is
denoted as 〈αn,
〉. Second, given αn, a process may become
inactive without generating any observable output substitu-
tion. The inactivity may be caused in three ways: by reduc-
tion to an empty multiset of goals, by reduction to a mul-
tiset of goals that does not allow further reduction, and by
falling into an infinite computation that does not yield any
observable output substitution. These cases are denoted as



〈αn,⊥succeed 〉, 〈αn,⊥deadlock 〉, and 〈αn,⊥divergence〉, respec-
tively, or simply as 〈αn,⊥〉 when the distinction is unneces-
sary. Note that the above semantics is a starting point of
our semantics research. Its properties and relationship with
other semantic models proposed in the context of dataflow
languages, CCS, and CSP should be studied in detail.

Although the above semantics models the behavioral or op-
erational aspects of a GHC program, it is still related to
the original framework of logic programming. That is, if
〈α1, β1〉〈α2, β2〉 . . . 〈αn,⊥success〉 ∈ [[B]]P , then the universal
closure ∀(Bα1β1α2β2 . . . αn) is a logical consequence of the
declarative reading of P. Thus the operational semantics
of GHC is sound as a theorem prover, and the declarative
reading of a program provides us with the static properties
of a process.

2.5 Other Aspects

This section discusses the implications of ordinary and con-
current logic languages with regard to modularity and pro-
gramming. Another important aspect, performance, will be
discussed in detail in Section 3.

Modularity: It is crucial for a large program to be compos-
able from small building blocks or modules. In this respect,
concurrent logic languages support process-oriented modu-
larization with no extra cost. A process can be used as a
building block of a larger process, and the output of a pro-
gram can be easily directed to another process running in
parallel. A problem with ordinary logic languages is that
pure versions of those languages are inadequate for writing
large programs. A large program may have some fragments
in which a pure ordinary logic language enables elegant de-
scription, but its overall structure cannot dispense with op-
erational notions. Pure ordinary logic languages, with the
aid of negation-as-failure or modal logic, may be useful for
building large databases or knowledge-bases using hierar-
chical and other modularization schemes. However, such
databases should still be managed by a language with con-
trol.

Programming: Meta-level constructs such as all-solution
predicates, var, assert and retract in ordinary logic lan-
guages will certainly make programming in the mundane
sense easier. Without them, we would have to lower the
level of programming by programming exhaustive search,
by simulating unification using, say, association lists, and by
maintaining databases explicitly. However, the use of meta-
level constructs complicates the semantics. The situation is
even worse when parallel execution is taken into account,
because many of the meta-level predicates are sensitive to
how programs are executed, while parallel execution does
not guarantee the total order of primitive operations. For
this reason, GHC did not inherit any extralogical features
in Prolog (except for commitment, a cleaner version of cut).
This decision proved to be very useful for discouraging the
use of extralogical notions and encouraging better program-
ming from the logic programming point of view.

2.6 Alternative to Concurrent Logic Languages

A problem with concurrent logic languages perceived by
many researchers is that its control constructs, although se-
mantically fundamental, have nothing to do with logic.

Then can we represent control in logic? If we are reasoning
about the behavior of a concurrent system, we can describe
the whole system as an ordinary logic program, and its ex-
ecution will infer what behavior can happen. There might
be various ways to represent the result, including a serial-
ized trace and a program in an appropriate concurrent lan-
guage. However, the control constructs of concurrent logic
languages are for controlling the actual execution of pro-
grams. They could still be specified in logic if we could
define an appropriate meta-level at which non-first-class ob-
jects (like substitutions and events) can be reified (that is,
made first-class).

2.7 Summary

We have seen that ordinary and concurrent logic languages
are designed for different purposes. We could argue that
concurrent logic languages are at a lower level than ordinary
logic languages because control is essential. However, the
control of concurrent logic languages is for correctness and
not for efficiency; it is for guiding computation in the correct
direction. The presence or absence of control in this sense
is more a matter of formalism than a matter of the level
of abstraction. Control for efficiency must be considered
separately, as is the case with ordinary logic programming.

Which family of languages is more suitable depends on what
should be elegantly described. Ordinary logic languages
will be appropriate for describing fragments of a program
in which communication is not made or need not be spec-
ified. Concurrent logic languages will be appropriate for
describing communication.

3. PARALLELISM FOR PERFORMANCE

This section discusses another aspect of parallelism, paral-
lelism for the faster execution of a program.

3.1 Parallelism in Programming and Parallelism in
Implementation

First, we note that parallelism in programming (concur-
rency) and parallelism in implementation and execution
are independent notions. Parallelism may well be uncov-
ered from a program not written in a concurrent language.
Conversely, a concurrent language may well be used for writ-
ing a program to be run on a sequential computer if it allows
natural description.

The granularity (of parallelism) of a language and the gran-
ularity of an implementation are also independent. For in-
stance, GHC is an inherently parallel language; it is de-
signed so that programmers cannot express unnecessary se-
quentiality. However, a GHC process need not always be
implemented as a process in the ordinary sense. It is very
important to exploit sequentiality from concurrent programs
and thus to eliminate the overhead of interprocess commu-
nication and process spawning. Ueda and Furukawa [41]
propose the use of program transformation for fusing com-
municating processes. Abstract interpretation will be useful
for analyzing dataflow and compiling control.

Processes can be used for storage as well as computation,
because their behavior can be history sensitive. This means



they can be used as building blocks of mutable data struc-
tures and databases that allow concurrent access. We have
to develop quite different optimization techniques for pro-
cesses used for storage rather than computation.

3.2 Parallelism and Algorithms

There are in general two ways to obtain good performance:
parallel execution and the adoption of good algorithms.
Both approaches have been studied in ordinary logic pro-
gramming. For parallelism, Disz et al. [11] reported that
OR-parallel execution can attain substantial speedup. For
algorithms, the study started with the coroutining execution
of generate-and-test programs, in which each constraint is
checked passively when all its arguments have been deter-
mined. Van Hentenryck and Dincbas [17] proposed active
constraint checking (called forward checking), in which con-
straints are used for reducing the number of possible values
of uninstantiated variables. The effect of forward checking
they demonstrated reminded us that we should consider al-
gorithms before resorting to parallelism.

Then, is parallelism unnecessary for solving search prob-
lems? The answer is no. In general, a better algorithm de-
signed for sequential execution tends to have less parallelism,
because to reduce computation often requires access to non-
local information. However, in search problems, a good algo-
rithm may still use backtracking. In that event, we can eas-
ily attain parallel speedup by exploiting OR-parallelism, and
this is actually the case in van Hentenryck’s and Dincbas’s
method.

One way to exploit the OR-parallelism of ordinary logic pro-
grams is to write an OR-parallel implementation in a low-
level concurrent language. Another way is to compile search
programs into a high-level concurrent language like concur-
rent logic languages, as we discussed in Section 2.4. The
advantages of the former approach are that better efficiency
will be attained with sophisticated implementation and that
any ordinary logic program can be processed. The advan-
tages of the latter approach is that implementation is much
easier and that the result of search can gracefully be passed
to the subsequent stage written in the same language as the
target language of the search programs.

The viability of the latter approach depends on whether ex-
haustive search using good algorithms can be compiled into
efficient concurrent logic programs. Our first step was to
show that the AND-sequential execution of a class of or-
dinary logic programs can be compiled [39], and the second
step was to show that coroutining execution can be analyzed
and compiled as well [40]. Both techniques compile the OR-
parallelism of pure Prolog into the AND-parallelism of con-
current logic languages, and the sequential or coroutining
execution of conjunctive goals into continuation processing.
The essence of the techniques is to analyze and delay out-
put unification so that multiple binding environments need
not be created. The AND-parallelism in object programs
is independent AND-parallelism, which can be most easily
exploited.

Recently, we proposed a compilation technique of logic pro-
grams with finite domains that realizes forward checking
[47]. The technique uses a source language similar to the

one in [17]. The domain (set of possible values) of a vari-
able, represented as a bit vector, is reduced by the active
evaluation of constraints. The main task of the compilation
is the derivation of a domain reducer from the constraints
in a source program. First, the ‘test’ predicates describing
constraints are partially evaluated to obtain a conjunction
of primitive constraint goals. Second, primitive constraints
such as equality and inequality are compiled into predicates
for reducing the domain of a variable. Then, a predicate is
constructed whose call reduces the domains of (some of the)
variables upon determination of the value of some variable.
The domain reducer obtained from the above procedure is
called from the problem-independent main program in which
it is checked whether the domain of any variable is reduced
to an empty set or to a singleton, and whether there is a
variable whose value is yet to be determined.

We have ascertained that the object program of the n-queens
problem, if optimized, outperforms the object programs us-
ing our previous techniques and even the n-queens program
using layered-streams [29]. The speedup fully reflected the
reduction of the search tree. Advantages of our technique
are that object programs obtained use no special primitives
and that they have independent AND-parallelism.

Various types of constraints appear in search problems. For
example, the n-queens problem has a lot of weak constraints
(inequality) that make up a regular structure. The cryp-
toarithmetic problem has a rather small number of strong
constraints (equality). We observed that the effect of for-
ward checking can be drastic when constraints are strong but
may not be so drastic when constraints are weak. For exam-
ple, generalized forward checking [17] reduced the size of the
search trees to 70% (8-queens) and to 58% (12-queens) com-
pared with the trees formed with passive constraint check-
ing. This means that parallelism is still important for this
problem.

A disadvantage of our technique is that, being based on
static analysis, it is not very flexible. However, it will be
possible to move part of the analysis to run time without
significant loss of efficiency. The use of a high-level target
language makes this kind of experiment easy.

Ordinary logic programming enables concise description of
OR-parallel search for feasible solutions. However, search
problems of another kind look for the best (or approximately
best) solutions instead of feasible solutions. In this case, the
paths of a search tree should communicate so that computa-
tion is concentrated on promising paths. Processes explor-
ing different paths must evaluate their current work occa-
sionally and communicate the results to know if they are
exploring promising paths. If they evaluate themselves and
communicate too infrequently, they may explore unimpor-
tant paths for a long time. If they evaluate and communicate
too frequently, they can avoid unnecessary computation but
will spend too much time for evaluation and communication.
This means that in parallel search with communication, the
optimal frequency of communication depends on the prop-
erties of the underlying hardware.

3.3 Programming versus Uncovering Parallelism

There are two alternative ways to improve performance us-
ing parallelism: one is to program parallelism and the other



is to uncover parallelism.

It is true that parallelism can be uncovered. For example, it
is quite easy to uncover the OR-parallelism of search prob-
lems written in ordinary logic languages. If parallelism is
not a difficult issue and can be fully exploited by language
implementors only, ordinary programmers need not be both-
ered with parallelism.

Systems under this hypothesis may work well on small- or
middle-scale parallel computers. However, we conjecture
that programming parallelism is more important in the long
run. Parallelism, we feel, is too difficult to be considered by
a small number of people working on specific areas of com-
puter science. There are so many things to be considered
and many people should be involved. The current practice
of sequential computation owes much to many fruitful re-
sults on sequential algorithms. It seems unlikely that we
can make effective use of parallel computers without accu-
mulating good parallel algorithms for a variety of problems.
A naive parallel algorithm may well be inferior to a good
sequential algorithm. Furthermore, good sequential algo-
rithms may well be hard to parallelize, because the cost of
communication will not have been considered in designing
them.

Concurrent logic programming systems try to let people pro-
gram parallelism as easily as possible by providing them
with a simple and abstract framework of parallel compu-
tation. We found that writing programs using processes is
rather easy. Writing efficient parallel programs is not easy,
but this is partly because we are inexperienced in taking
the cost and the locality of communication into account.
Communication is the most important aspect in designing
parallel algorithms and is worth much more study. Realistic
parallel computation models with which to evaluate parallel
algorithms are badly needed.

4. CONCLUSIONS

Two alternatives for a parallel logic programming system,
one using an ordinary logic language and the other using
a concurrent logic language, have been compared from the
semantics and performance points of view. There are sev-
eral proposals for unifying these two families of languages;
Clark and Gregory [6] propose a hybrid language approach
and Haridi and Brand [15] propose a unified language called
Andorra. However, we believe that the combination of these
languages should be made very carefully and only when a
well-defined and semantically clear interface can be defined
between them. The viewpoints discussed in Section 2.4 will
help graceful combination.

Current research on the parallel implementation of these
families of languages seems to have different scopes. ICOT
intends a concurrent logic language KL1 to be the kernel lan-
guage of large-scale, non-shared-memory parallel computers
in the future, and takes the approach of exposing the locality
of computation and parallelism. The Gigalips project plans
to implement Andorra Prolog on virtual shared-memory
multiprocessors [44]; this seems to be based on the principle
that locality as well as parallelism should be considered only
at a very low level.

These approaches are not necessarily incompatible; individ-
ual technicalities developed could be combined in the future.
The semantic gap between hardware and applications seems
to be widening in pursuit of performance and functional-
ity, making the connection of these two ends less straight-
forward. This means that layers of abstraction should be
provided between these two ends, because a method or a
technique should generally be considered and put into prac-
tice at the highest possible layer for the sake of simplicity
and generality. Ordinary logic languages will serve as one
of the high-level layers for applications in which parallelism
can be hidden, and concurrent logic languages will serve as
a lower-level layer.
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