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Talk Outline
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We have developed:

● a declarative modeling language HydLa
○ that makes full use of the notion of constraints

● its simulator HyLaGI based on symbolic computation
○ that opens up various applications

The talk will introduce

● design and features of HydLa and HyLaGI
● applications of simulation with symbolic parameters
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Outline
1. HydLa

2. HyLaGI

3. Experiences

4. Conclusion

1.1. Constraint Programming

1.2. HydLa

1.3. Maximal Consistent Set

1.4. Difference from HA



● Users declare constraints 
(logical formulas with 
(in)equations) on variables

● Constraint solvers check 
consistency and compute 
solutions (= explicit form)

   5x+2y+3z == 19 
&& x >= y >= 0 
&& z >= 0

{{x->1, y->1, z->4},
 {x->2, y->0, z->3},
 {x->3, y->2, z->0}}

Constraint Programming
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● clear declarative meaning
● computing with partial information

Key features:



Constraint Programming for Hybrid Systems
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[1]Peter, F.: Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical 
approach. John Wiley & Sons (2014)
[2]Timothy, B., Marc, P.: Zélus: A synchronous language with ODEs. In: HSCC'13, 113–118 (2013)

● Modeling of hybrid systems always involves constraints 
(i.e., differential equations)

● But, existing modeling languages come also with 
notions other than constraints.

Research question
Can we design a declarative hybrid system modeling 
language and system which is based solely on constraints 
and constraint solving?
● (cf. Modelica [1], Zélus [2], …)



A Constraint-based Language HydLa [3][4]
● Modeling hybrid systems
● Declaring constraints (temporal logic formulas)

Bouncing particle
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INIT   <=> 7 < y < 12 & y’ = 0.
FALL   <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

Module
definition

Module declaration
[3] Ueda, K., Matsumoto, S., Takeguchi, A., Hosobe, 
H., Ishii, D.: HydLa: A High-Level Language for 
Hybrid Systems. In: LfSA2012, 3-17 (2012).
[4] Matsumoto, S.: Validated Simulation of 
Parametric Hybrid Systems Based on Constraints. 
Ph.D. thesis, Waseda University (2017)



Bouncing particle

Module priority
e.g. FALL is weaker than BOUNCE
What does “weak” mean?

A Constraint-based Language HydLa

7 / 40

INIT   <=> 7 < y < 12 & y’ = 0.
FALL   <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

Time derivative

e.g. y’ is 

Left limit value
e.g. y’-  is

□-operator
e.g. FALL and BOUNCE are

considered at all times;
INIT is considered
only when t = 0

Guard  
(“ask”)



Case 1 : When the particle is above the floor 
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Not with 
the □-operator

False

After time 0, INIT and BOUNCE are ineffective constraints.

INIT   <=> 7 < y < 12 & y’ = 0.
FALL   <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

● At any time, HydLa adopts a maximal consistent set 
(MCS) of modules.

● In this case, the MCS is  {INIT, FALL, BOUNCE}.
● The particle keeps falling.



Case 2 : When the particle collides the floor
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True

INIT   <=> 7 < y < 12 & y’ = 0.
FALL   <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

● y’’ = -10 and y’ = -4/5 * y’-  are inconsistent
● FALL  is canceled because it is weaker than BOUNCE
● The MCS is  {INIT, BOUNCE}



Module priorities generate constraint hierarchy, 
which is a poset 
● whose elements are sets of modules and
● whose partial order is induced from module priority.

Constraint hierarchy is a
concise representation of
behaviors with 
defaults (e.g., falling) and 
exceptions (e.g., bouncing).

Constraint Hierarchy
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INIT, (FALL << BOUNCE).



● Variables are functions of (standard) time t (≥ 0)
(cf. superdense time, hyperreal time)

1. Multi-step jumps by cyber components 
… can be represented as constraints (= relations) 
between initial and final values

2. Simultaneous physical events (e.g. 3-body collision)
… can be handled by symbolic perturbation

Differences between HA and HydLa (1)

11 / 40

t

✓
expressive?



● For translation from HA, we could employ a variable 
(taking discrete values) representing the current mode.
○ e.g.,  mode = k => (constraints of mode k)

(for k = 1, 2, ...)

Hybrid automata and HydLa are quite different, 
and direct comparison is not easy

But we guess that their expressive power is not different 
in practice.

Differences between HA and HydLa (2)
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Outline
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2. HyLaGI
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4. Conclusion

2.1. HyLaGI

2.2. Assertion

2.3. Epsilon Mode

2.4. Hybrid Automata Mode



Rigorous Approaches to Hybrid Systems
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[5]Taha, W., et al.: Acumen: An open-source testbed for cyber-physical systems research. In: IoT360 2015  (2016)
[6]Chen, X., et al.:  Flow*: An analyzer for non-linear hybrid systems. In: CAV 2013 (2013)
[7]Frehse G. et al.: SpaceEx: Scalable Verification of Hybrid Systems. In: CAV 2011  (2011)
[8] Fulton N., et al.: KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems. In: CADE25  (2015)

Rigorous numerical simulators

Acumen [5] : Validated Numerics
Flow* [6] : Taylor model + Domain contraction
SpaceEX [7] : Template Polyhedra

Rigorous symbolic theorem prover

KeYmaera X [8] : differential dynamic logic

Research question:

symbolic simulator?



● A symbolic implementation of HydLa
● Features nondeterministic execution of models with 

symbolic parameters 
○ based on automatic case analysis

HyLaGI [9]
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 Tossing of a Ball to a Ceiling

[9]https://github.com/HydLa/HyLaGI

INIT <=> y = 9 & 3 < y’ < 10.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 10 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).



Simulation Result of Ball Tossed to a Ceiling
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---------Case 1---------
---------PP 1---------
t : 0
y : 9
y' : p[y, 1, 1]
y'' : -10
---------IP 2---------
t : 0->Infinity
y : 9+t^2*(-5)+t*p[y, 1, 1]
y' : t*(-10)+p[y, 1, 1]
y'' : -10
-parameter condition(Case1)-
p[y, 1, 1] : (3, 2*5^(1/2))

---------Case 2---------
... (stuff deleted) ...
---------PP 4---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1, 1]^2)^(1/2))*1/10
y : 10
y' : (-20+p[y, 1, 1]^2)^(1/2)
y'' : -10
---------IP 6---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1, 1]^2)^(1/2))*1/10
->Infinity
y : 9+t^2*(-5)+t*p[y, 1, 1]
y' : t*(-10)+p[y, 1, 1]
y'' : -10
-parameter condition(Case2)-
p[y, 1, 1] : 2*5^(1/2)

---------Case 3---------
... (stuff deleted) ...
---------IP 7---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1 ,1]^2)^(1/2))*1/10
->Infinity
y : t^2*(-5)+63/5+p[y, 1, 1]
*(t+(-20+p[y, 1, 1]^2)^(1/2)*9/50)
+t*(-20+p[y, 1, 1]^2)^(1/2)*(-9)/5
+p[y, 1, 1]^2*(-9)/50
y' : t*(-10)+p[y, 1, 1]+(-20
+p[y, 1, 1]^2)^(1/2)*(-9)/5
y'' : -10
-parameter condition(Case3)-
p[y, 1, 1] : (2*5^(1/2), 10)

Case 1 : fall Case 2 : touch Case 3 : collide

symbolic
parameter



Visualization tool for the understanding
of results is desirable

● Web IDE
● 2D and 3D 

visualization

webHydLa[10]
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[10]http://webhydla.ueda.info.waseda.ac.jp/ visualization of the simulation

result of a bouncing particle



Various Functionalities of HyLaGI
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(3) HA Mode

(1) Assertion (2) Epsilon 
Mode

Sliding Mode
Control[11]

Symbolic
Computation

Loop Detection

[11]Betsuno, K., Matsumoto, S., Ueda, K.: Symbolic analysis of hybrid systems involving numerous 
discrete changes using loop detection. In: CyPhy 2016. 17–30. Springer (2017)

Abstract
Interpretation



(1) Assertion
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ASSERT can be used for bounded model checking

ASSERT(G) intuitively means □(G) or  □(¬G ⇒ false) 

ASSERT(y >= 0)

When y < 0, the assertion fails, and HyLaGI symbolically 
computes the range of parameters causing the failure 

Examples are explained in the section of inverse problems



The simulation of hybrid systems may fall into a singular 
situation such as

1. A ball hits the wall and the floor at the same time
2. One of the two balls touching with each other 

is hit by the third ball[12]

(2) Epsilon Mode
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[12] Lee, E.A.: 
Constructive models of 
discrete and continuous 
physical phenomena.
IEEE Access 2, 797–821 
(2014)



(2) Epsilon Mode
These situations are considered the limits of non-singular 
situations such as

1. The ball hits the wall or the floor first
2. One of the two balls slightly apart is hit by the third ball

HyLaGI’s epsilon mode [13] can take the limits of these 
models when the special symbolic parameter eps is used.
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[13] Wakatsuki, Y., Masumoto, S., Ito, T., Wada, T., Ueda, K.: 
Model analysis by using micro errors in hybrid constraint 
processing system HyLaGI. In: The 32nd
JSSST Annual Conference (2015 (in Japanese))



Three-body collision

HyLaGI handles eps symbolically and is able to handle it as 
infinitesimal

(2) Epsilon Mode
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INIT <=> x1 = 0 & x2 = 5 & x3 = 6+eps
       & x1' = 1 & x2' = 0 & x3' = 0.
EPS  <=> 0 < eps < 0.1 & [](eps' = 0).
CONST(x) <=> [](x'' = 0).
COLLISION(xa, xb) <=>
   [](xa- = xb- - 1 => xa' = xb'- & xb' = xa'-).

INIT, EPS.
(CONST(x1),CONST(x2),CONST(x3))
   << (COLLISION(x1,x2), COLLISION(x2,x3)).



(2) Epsilon Mode
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Three-body collision

The red ball hits first Newton’s cradle

Take the limit
(eps→0)



Collision of three bodies with different masses

(2) Epsilon Mode
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INIT <=> x1 = 0 & x2 = 5 & x3 = 10+eps 
         & x1' = 1 & x2' = 0 & x3' = -1.
EPS  <=> -0.1 < eps < 0.1 & [](eps' = 0).
MASS <=> [](m1 = 0.2 & m2 = 1 & m3 = 5).
CONST(x) <=> [](x'' = 0).
COLLISION(xa,ma,xb,mb) <=> 
    [](xa- = xb- - 1 => 
       xa' = (xa'- *(ma-mb) + 2*mb*xb'-)/(ma+mb)
     & xb' = (xb'- *(mb-ma) + 2*ma*xa'-)/(ma+mb)).

INIT. EPS. MASS.
(CONST(x1),CONST(x2),CONST(x3)) 
   << (COLLISION(x1,m1,x2,m2), COLLISION(x2,m2,x3,m3)).



Collision of three bodies with different masses

Left-hand and right-hand limits do not coincide
If the masses are equal, a two-sided limit exists

(2) Epsilon Mode
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If eps > 0,
The red one hits first

If eps < 0,
The blue one hits first



(3) Hybrid Automata Mode
HydLa users don't have to write automata

However, it is sometimes convenient to consider an 
automaton with explicit states
● for the analysis of systems
● for optimized simulation based on static analysis

The HA mode generates automata from HydLa programs 
by abstract interpretation [14]
● This analysis is based on the loop detection

by symbolic computation
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[14] Takeguchi, A., Wada, R., Matsumoto, S., Hosobe, H., Ueda, K.: An algorithm for
converting hybrid constraint programs to hybrid automata. In: The 29nd JSSST
Annual Conference, 2A-3 (2012 (in Japanese))



(3) Hybrid Automata Mode
Bouncing particle

Initial values of y and y’ must be parameterized

(No conditions on y’ means that y’ is fully parameterized)
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INIT   <=> y > 0.
FALL   <=> [](y'' = -10).
BOUNCE <=> [](y- = 0 => y' = -4/5 * y'-).

INIT, FALL << BOUNCE.



Applications of this 
functionality include

● LTL model checking
● Sliding mode control
● (Handling Zeno)

bouncing 
particle

(3) Hybrid Automata Mode
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2. HyLaGI
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3.1. Asks

3.2. Inverse Problems



Discrete Asks and Continuous Asks

Continuous asks are enabled on 
intervals and determine 
                   continuous behavior

There are two categories of guarded constraints in HydLa

Thermostat

INIT  <=> p = 65 & sw = 0.
CONST <=> [](sw' = 0).
ON    <=> [](sw = 1 => p' =  1).
OFF   <=> [](sw = 0 => p' = -2).
SWITCHON  <=> [](p- = 62 & sw- = 0 => sw = 1).
SWITCHOFF <=> [](p- = 68 & sw- = 1 => sw = 0).

INIT, ON, OFF, CONST << (SWITCHON, SWITCHOFF).30 / 40

Discrete asks are enabled only at time points and cause discrete changes



Inverse Problems of Hybrid Systems
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Inverse problems of hybrid systems are interesting
because they involve case analysis

Can we hit hole-in-one?
Can we win the chicken race?

HyLaGI allows us to solve inverse
problems of hybrid systems by
using
● symbolic parameters
● assertion
● exhaustive search



Hole-in-one

● Modeling with parameter and ASSERT

● We write an assert condition as not reaching the cup

Inverse Problems of Hybrid Systems
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Search range

Negation of the goal state

INIT    <=> x = 0 & y = 0
            & 1 < x' < 9 & y' = (100 - x'^2)^0.5.
AXCONST <=> [](x'' = 0).
FALL    <=> [](y'' = -10).
BOUNCE  <=> [](y- = 0 => y' = -0.8*y'-).

ASSERT(!(y = 0 & 9.5 <= x <= 10)).
INIT, AXCONST, FALL << BOUNCE.



Hole-in-one

Simulation result up to four bounces

Inverse Problems of Hybrid Systems
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Behavior Parameter range

cup-in [√((20-√39)*5/2), √((20+√39)*5/2)]

bounce, cup-in [5/3*√((36-√935)/2), (5√14-10)/3]

bounce, bounce, cup-in [5*√((244-√50511)/122), 5*√((61-6√86)*2/61)]

bounce, bounce, bounce, cup-in [5/3*√((1476-√1952951)/82), 5/3*√((369-2√30134)*2/41)]

bounce, bounce, bounce, bounce others



Persistent Consequent
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HydLa allows us to use □-operators in consequent

[](x = 0 => [](y = 0)).

Once x becomes 0,  y is always 0

We call it a persistent consequent

When the antecedent holds, the consequent is expanded 
as a constraint of the same strength

● Persistent consequent can be used to express 
irreversible changes such as object destruction



Inverse Problems of Hybrid Systems
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INIT   <=> 5 < y < 10 & y' = 0 & dmg = 0.
FALL   <=> [](y'' = -10).
CONST  <=> [](dmg' = 0).
BOUNCE <=> [](y- = 0 => y' = -4/5 * y'- 
                      & dmg = dmg- + y'-^2/100).
BREAK  <=> [](dmg >= 4 => 
              [](y'' = -10 & dmg' = 0)).

INIT, (FALL, CONST) << BOUNCE << BREAK.
ASSERT(!(y < 0)).

Bouncing ball damaging the floor

Assert condition states that the ball is not below the floor 



Bouncing ball damaging the floor

Simulation result up to five bounces 

Inverse Problems of Hybrid Systems
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Behavior Parameter range

bounce, bounce, bounce, bounce, bounce (5, 7812500/968561)

bounce, bounce, bounce, bounce, break [7812500/968561, 312500/36121)

bounce, bounce, bounce, break, through [312500/36121, 12500/1281)

bounce, bounce, break, through [12500/1281, 10)
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Conclusion

38 / 40

Constraints allow natural modeling of hybrid systems 
with partial (uncertain) information

Constraint hierarchies allow concise modeling of 
default/exceptional behaviors

Symbolic simulation based on constraint satisfaction 
realizes various functionalities

● Nondeterministic execution
● Handling of infinitesimal quantities
● Construction of hybrid automata
● Solving inverse problems



Handling difficult constraints

● Nonlinear ODEs with parameters
● DAEs
● ODEs including many parameters

Dealing with Zeno behavior by loop detection

In-depth expressive power comparison with hybrid 
automata and other methods

Future work
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Thank you for the attention!




