
Constraint-based Modeling
and Symbolic Simulation of Hybrid Systems

with HydLa and HyLaGI
*Yunosuke Yamada, Masashi Sato, Kazunori Ueda

Waseda University

CyPhy2019 Oct. 18

Talk Outline

2 / 40

We have developed:

● a declarative modeling language HydLa
○ that makes full use of the notion of constraints

● its simulator HyLaGI based on symbolic computation
○ that opens up various applications

The talk will introduce

● design and features of HydLa and HyLaGI
● applications of simulation with symbolic parameters

3 / 40

Outline
1. HydLa

2. HyLaGI

3. Experiences

4. Conclusion

1.1. Constraint Programming

1.2. HydLa

1.3. Maximal Consistent Set

1.4. Difference from HA

● Users declare constraints
(logical formulas with
(in)equations) on variables

● Constraint solvers check
consistency and compute
solutions (= explicit form)

 5x+2y+3z == 19
&& x >= y >= 0
&& z >= 0

{{x->1, y->1, z->4},
 {x->2, y->0, z->3},
 {x->3, y->2, z->0}}

Constraint Programming

4 / 40

● clear declarative meaning
● computing with partial information

Key features:

Constraint Programming for Hybrid Systems

5 / 40

[1]Peter, F.: Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical
approach. John Wiley & Sons (2014)
[2]Timothy, B., Marc, P.: Zélus: A synchronous language with ODEs. In: HSCC'13, 113–118 (2013)

● Modeling of hybrid systems always involves constraints
(i.e., differential equations)

● But, existing modeling languages come also with
notions other than constraints.

Research question
Can we design a declarative hybrid system modeling
language and system which is based solely on constraints
and constraint solving?
● (cf. Modelica [1], Zélus [2], …)

A Constraint-based Language HydLa [3][4]
● Modeling hybrid systems
● Declaring constraints (temporal logic formulas)

Bouncing particle

6 / 40

INIT <=> 7 < y < 12 & y’ = 0.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

Module
definition

Module declaration
[3] Ueda, K., Matsumoto, S., Takeguchi, A., Hosobe,
H., Ishii, D.: HydLa: A High-Level Language for
Hybrid Systems. In: LfSA2012, 3-17 (2012).
[4] Matsumoto, S.: Validated Simulation of
Parametric Hybrid Systems Based on Constraints.
Ph.D. thesis, Waseda University (2017)

Bouncing particle

Module priority
e.g. FALL is weaker than BOUNCE
What does “weak” mean?

A Constraint-based Language HydLa

7 / 40

INIT <=> 7 < y < 12 & y’ = 0.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

Time derivative

e.g. y’ is

Left limit value
e.g. y’- is

□-operator
e.g. FALL and BOUNCE are

considered at all times;
INIT is considered
only when t = 0

Guard
(“ask”)

Case 1 : When the particle is above the floor

8 / 40

Not with
the □-operator

False

After time 0, INIT and BOUNCE are ineffective constraints.

INIT <=> 7 < y < 12 & y’ = 0.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

● At any time, HydLa adopts a maximal consistent set
(MCS) of modules.

● In this case, the MCS is {INIT, FALL, BOUNCE}.
● The particle keeps falling.

Case 2 : When the particle collides the floor

9 / 40

True

INIT <=> 7 < y < 12 & y’ = 0.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 0 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

● y’’ = -10 and y’ = -4/5 * y’- are inconsistent
● FALL is canceled because it is weaker than BOUNCE
● The MCS is {INIT, BOUNCE}

Module priorities generate constraint hierarchy,
which is a poset
● whose elements are sets of modules and
● whose partial order is induced from module priority.

Constraint hierarchy is a
concise representation of
behaviors with
defaults (e.g., falling) and
exceptions (e.g., bouncing).

Constraint Hierarchy

10 / 40

INIT, (FALL << BOUNCE).

● Variables are functions of (standard) time t (≥ 0)
(cf. superdense time, hyperreal time)

1. Multi-step jumps by cyber components
… can be represented as constraints (= relations)
between initial and final values

2. Simultaneous physical events (e.g. 3-body collision)
… can be handled by symbolic perturbation

Differences between HA and HydLa (1)

11 / 40

t

✓
expressive?

● For translation from HA, we could employ a variable
(taking discrete values) representing the current mode.
○ e.g., mode = k => (constraints of mode k)

(for k = 1, 2, ...)

Hybrid automata and HydLa are quite different,
and direct comparison is not easy

But we guess that their expressive power is not different
in practice.

Differences between HA and HydLa (2)

12 / 40

13 / 40

Outline
1. HydLa

2. HyLaGI

3. Experiences

4. Conclusion

2.1. HyLaGI

2.2. Assertion

2.3. Epsilon Mode

2.4. Hybrid Automata Mode

Rigorous Approaches to Hybrid Systems

14 / 40

[5]Taha, W., et al.: Acumen: An open-source testbed for cyber-physical systems research. In: IoT360 2015 (2016)
[6]Chen, X., et al.: Flow*: An analyzer for non-linear hybrid systems. In: CAV 2013 (2013)
[7]Frehse G. et al.: SpaceEx: Scalable Verification of Hybrid Systems. In: CAV 2011 (2011)
[8] Fulton N., et al.: KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems. In: CADE25 (2015)

Rigorous numerical simulators

Acumen [5] : Validated Numerics
Flow* [6] : Taylor model + Domain contraction
SpaceEX [7] : Template Polyhedra

Rigorous symbolic theorem prover

KeYmaera X [8] : differential dynamic logic

Research question:

symbolic simulator?

● A symbolic implementation of HydLa
● Features nondeterministic execution of models with

symbolic parameters
○ based on automatic case analysis

HyLaGI [9]

15 / 40

 Tossing of a Ball to a Ceiling

[9]https://github.com/HydLa/HyLaGI

INIT <=> y = 9 & 3 < y’ < 10.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y = 10 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).

Simulation Result of Ball Tossed to a Ceiling

16 / 40

---------Case 1---------
---------PP 1---------
t : 0
y : 9
y' : p[y, 1, 1]
y'' : -10
---------IP 2---------
t : 0->Infinity
y : 9+t^2*(-5)+t*p[y, 1, 1]
y' : t*(-10)+p[y, 1, 1]
y'' : -10
-parameter condition(Case1)-
p[y, 1, 1] : (3, 2*5^(1/2))

---------Case 2---------
... (stuff deleted) ...
---------PP 4---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1, 1]^2)^(1/2))*1/10
y : 10
y' : (-20+p[y, 1, 1]^2)^(1/2)
y'' : -10
---------IP 6---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1, 1]^2)^(1/2))*1/10
->Infinity
y : 9+t^2*(-5)+t*p[y, 1, 1]
y' : t*(-10)+p[y, 1, 1]
y'' : -10
-parameter condition(Case2)-
p[y, 1, 1] : 2*5^(1/2)

---------Case 3---------
... (stuff deleted) ...
---------IP 7---------
t : (p[y, 1, 1]+(-1)*(-20
+p[y, 1 ,1]^2)^(1/2))*1/10
->Infinity
y : t^2*(-5)+63/5+p[y, 1, 1]
*(t+(-20+p[y, 1, 1]^2)^(1/2)*9/50)
+t*(-20+p[y, 1, 1]^2)^(1/2)*(-9)/5
+p[y, 1, 1]^2*(-9)/50
y' : t*(-10)+p[y, 1, 1]+(-20
+p[y, 1, 1]^2)^(1/2)*(-9)/5
y'' : -10
-parameter condition(Case3)-
p[y, 1, 1] : (2*5^(1/2), 10)

Case 1 : fall Case 2 : touch Case 3 : collide

symbolic
parameter

Visualization tool for the understanding
of results is desirable

● Web IDE
● 2D and 3D

visualization

webHydLa[10]

17 / 40
[10]http://webhydla.ueda.info.waseda.ac.jp/ visualization of the simulation

result of a bouncing particle

Various Functionalities of HyLaGI

18 / 40

(3) HA Mode

(1) Assertion (2) Epsilon
Mode

Sliding Mode
Control[11]

Symbolic
Computation

Loop Detection

[11]Betsuno, K., Matsumoto, S., Ueda, K.: Symbolic analysis of hybrid systems involving numerous
discrete changes using loop detection. In: CyPhy 2016. 17–30. Springer (2017)

Abstract
Interpretation

(1) Assertion

19 / 40

ASSERT can be used for bounded model checking

ASSERT(G) intuitively means □(G) or □(¬G ⇒ false)

ASSERT(y >= 0)

When y < 0, the assertion fails, and HyLaGI symbolically
computes the range of parameters causing the failure

Examples are explained in the section of inverse problems

The simulation of hybrid systems may fall into a singular
situation such as

1. A ball hits the wall and the floor at the same time
2. One of the two balls touching with each other

is hit by the third ball[12]

(2) Epsilon Mode

20 / 40

[12] Lee, E.A.:
Constructive models of
discrete and continuous
physical phenomena.
IEEE Access 2, 797–821
(2014)

(2) Epsilon Mode
These situations are considered the limits of non-singular
situations such as

1. The ball hits the wall or the floor first
2. One of the two balls slightly apart is hit by the third ball

HyLaGI’s epsilon mode [13] can take the limits of these
models when the special symbolic parameter eps is used.

21 / 40

[13] Wakatsuki, Y., Masumoto, S., Ito, T., Wada, T., Ueda, K.:
Model analysis by using micro errors in hybrid constraint
processing system HyLaGI. In: The 32nd
JSSST Annual Conference (2015 (in Japanese))

Three-body collision

HyLaGI handles eps symbolically and is able to handle it as
infinitesimal

(2) Epsilon Mode

22 / 40

INIT <=> x1 = 0 & x2 = 5 & x3 = 6+eps
 & x1' = 1 & x2' = 0 & x3' = 0.
EPS <=> 0 < eps < 0.1 & [](eps' = 0).
CONST(x) <=> [](x'' = 0).
COLLISION(xa, xb) <=>
 [](xa- = xb- - 1 => xa' = xb'- & xb' = xa'-).

INIT, EPS.
(CONST(x1),CONST(x2),CONST(x3))
 << (COLLISION(x1,x2), COLLISION(x2,x3)).

(2) Epsilon Mode

23 / 40

Three-body collision

The red ball hits first Newton’s cradle

Take the limit
(eps→0)

Collision of three bodies with different masses

(2) Epsilon Mode

24 / 40

INIT <=> x1 = 0 & x2 = 5 & x3 = 10+eps
 & x1' = 1 & x2' = 0 & x3' = -1.
EPS <=> -0.1 < eps < 0.1 & [](eps' = 0).
MASS <=> [](m1 = 0.2 & m2 = 1 & m3 = 5).
CONST(x) <=> [](x'' = 0).
COLLISION(xa,ma,xb,mb) <=>
 [](xa- = xb- - 1 =>
 xa' = (xa'- *(ma-mb) + 2*mb*xb'-)/(ma+mb)
 & xb' = (xb'- *(mb-ma) + 2*ma*xa'-)/(ma+mb)).

INIT. EPS. MASS.
(CONST(x1),CONST(x2),CONST(x3))
 << (COLLISION(x1,m1,x2,m2), COLLISION(x2,m2,x3,m3)).

Collision of three bodies with different masses

Left-hand and right-hand limits do not coincide
If the masses are equal, a two-sided limit exists

(2) Epsilon Mode

25 / 40

If eps > 0,
The red one hits first

If eps < 0,
The blue one hits first

(3) Hybrid Automata Mode
HydLa users don't have to write automata

However, it is sometimes convenient to consider an
automaton with explicit states
● for the analysis of systems
● for optimized simulation based on static analysis

The HA mode generates automata from HydLa programs
by abstract interpretation [14]
● This analysis is based on the loop detection

by symbolic computation

26 / 40

[14] Takeguchi, A., Wada, R., Matsumoto, S., Hosobe, H., Ueda, K.: An algorithm for
converting hybrid constraint programs to hybrid automata. In: The 29nd JSSST
Annual Conference, 2A-3 (2012 (in Japanese))

(3) Hybrid Automata Mode
Bouncing particle

Initial values of y and y’ must be parameterized

(No conditions on y’ means that y’ is fully parameterized)

27 / 40

INIT <=> y > 0.
FALL <=> [](y'' = -10).
BOUNCE <=> [](y- = 0 => y' = -4/5 * y'-).

INIT, FALL << BOUNCE.

Applications of this
functionality include

● LTL model checking
● Sliding mode control
● (Handling Zeno)

bouncing
particle

(3) Hybrid Automata Mode

28 / 40

29 / 40

Outline
1. HydLa

2. HyLaGI

3. Experiences

4. Conclusion

3.1. Asks

3.2. Inverse Problems

Discrete Asks and Continuous Asks

Continuous asks are enabled on
intervals and determine
 continuous behavior

There are two categories of guarded constraints in HydLa

Thermostat

INIT <=> p = 65 & sw = 0.
CONST <=> [](sw' = 0).
ON <=> [](sw = 1 => p' = 1).
OFF <=> [](sw = 0 => p' = -2).
SWITCHON <=> [](p- = 62 & sw- = 0 => sw = 1).
SWITCHOFF <=> [](p- = 68 & sw- = 1 => sw = 0).

INIT, ON, OFF, CONST << (SWITCHON, SWITCHOFF).30 / 40

Discrete asks are enabled only at time points and cause discrete changes

Inverse Problems of Hybrid Systems

31 / 40

Inverse problems of hybrid systems are interesting
because they involve case analysis

Can we hit hole-in-one?
Can we win the chicken race?

HyLaGI allows us to solve inverse
problems of hybrid systems by
using
● symbolic parameters
● assertion
● exhaustive search

Hole-in-one

● Modeling with parameter and ASSERT

● We write an assert condition as not reaching the cup

Inverse Problems of Hybrid Systems

32 / 40

Search range

Negation of the goal state

INIT <=> x = 0 & y = 0
 & 1 < x' < 9 & y' = (100 - x'^2)^0.5.
AXCONST <=> [](x'' = 0).
FALL <=> [](y'' = -10).
BOUNCE <=> [](y- = 0 => y' = -0.8*y'-).

ASSERT(!(y = 0 & 9.5 <= x <= 10)).
INIT, AXCONST, FALL << BOUNCE.

Hole-in-one

Simulation result up to four bounces

Inverse Problems of Hybrid Systems

33 / 40

Behavior Parameter range

cup-in [√((20-√39)*5/2), √((20+√39)*5/2)]

bounce, cup-in [5/3*√((36-√935)/2), (5√14-10)/3]

bounce, bounce, cup-in [5*√((244-√50511)/122), 5*√((61-6√86)*2/61)]

bounce, bounce, bounce, cup-in [5/3*√((1476-√1952951)/82), 5/3*√((369-2√30134)*2/41)]

bounce, bounce, bounce, bounce others

Persistent Consequent

34 / 40

HydLa allows us to use □-operators in consequent

[](x = 0 => [](y = 0)).

Once x becomes 0, y is always 0

We call it a persistent consequent

When the antecedent holds, the consequent is expanded
as a constraint of the same strength

● Persistent consequent can be used to express
irreversible changes such as object destruction

Inverse Problems of Hybrid Systems

35 / 40

INIT <=> 5 < y < 10 & y' = 0 & dmg = 0.
FALL <=> [](y'' = -10).
CONST <=> [](dmg' = 0).
BOUNCE <=> [](y- = 0 => y' = -4/5 * y'-
 & dmg = dmg- + y'-^2/100).
BREAK <=> [](dmg >= 4 =>
 [](y'' = -10 & dmg' = 0)).

INIT, (FALL, CONST) << BOUNCE << BREAK.
ASSERT(!(y < 0)).

Bouncing ball damaging the floor

Assert condition states that the ball is not below the floor

Bouncing ball damaging the floor

Simulation result up to five bounces

Inverse Problems of Hybrid Systems

36 / 40

Behavior Parameter range

bounce, bounce, bounce, bounce, bounce (5, 7812500/968561)

bounce, bounce, bounce, bounce, break [7812500/968561, 312500/36121)

bounce, bounce, bounce, break, through [312500/36121, 12500/1281)

bounce, bounce, break, through [12500/1281, 10)

37 / 40

Outline
1. HydLa

2. HyLaGI

3. Experiences

4. Conclusion

4.1. Conclusion

4.2. Future work

Conclusion

38 / 40

Constraints allow natural modeling of hybrid systems
with partial (uncertain) information

Constraint hierarchies allow concise modeling of
default/exceptional behaviors

Symbolic simulation based on constraint satisfaction
realizes various functionalities

● Nondeterministic execution
● Handling of infinitesimal quantities
● Construction of hybrid automata
● Solving inverse problems

Handling difficult constraints

● Nonlinear ODEs with parameters
● DAEs
● ODEs including many parameters

Dealing with Zeno behavior by loop detection

In-depth expressive power comparison with hybrid
automata and other methods

Future work

39 / 40

Thank you for the attention!

