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Abstract. LMNtal (pronounced “elemental”) is a simple language model
based on hierarchical graph rewriting that uses logical variables to rep-
resent connectivity and membranes to represent hierarchy. LMNtal is an
outcome of the attempt to unify constraint-based concurrency and Con-
straint Handling Rules (CHR), the two notable extensions to concurrent
logic programming. LMNtal is intended to be a substrate language of
various computational models, especially those addressing concurrency,
mobility and multiset rewriting. Another important goal of LMNtal has
been to put hierarchical graph rewriting into practice and demonstrate
its versatility by designing and implementing a full-fledged, monolithic
programming language. In this paper, we demonstrate the practical as-
pects of LMNtal using a number of examples taken from diverse areas
of computer science. Also, we discuss the relationship between LMNtal
and CHR, which exhibit both commonalities and differences in various
respects.

1 Introduction

The development of the LMNtal language model has been motivated by two
“grand challenges” in computational formalisms and programming languages.
One is to have a computational model that unifies various paradigms of compu-
tation, especially those of concurrent computation and computation based on
multiset rewriting. The other is to design and implement a practical program-
ming language that covers a variety of computational platforms which are now
developing towards both wide-area computation and nanoscale computation.

LMNtal is an outcome of the attempt to unify constraint-based concurrency
(also known as concurrent constraint programming) [10] and (some ideas from)
Constraint Handling Rules (CHR) [3], the two notable extensions to concurrent
logic programming [9]. LMNtal can be viewed also as a multiset rewriting lan-
guage equipped with links, where multisets are supported by the membrane
construct that allows both nesting and mobility and links are represented by
logical variables that essentially work as linear local names (i.e., local names
occurring twice).

Despite its versatility, LMNtal is a surprisingly simple language and one
can start using it with almost no background about programming or logic or



advanced mathematics. This is thanks to its close connection to diagrammatic
representation of computational entities and the choice of the class of diagrams
and reduction mechanisms to work with.

Since LMNtal was first designed in 2002 [11], it underwent the design re-
view process from both theoretical and practical viewpoints. From a theoretical
point of view, the major challenge has been to design the operational semantics
in such a way that the interplay between graph structures formed by links and
hierarchical structures formed by membranes (that may be crossed by links) is
properly handled, which turned out to be quite subtle. From a practical point of
view, the major challenge has been to build a full-fledged implementation of the
newly designed language to provide designers with a constructive understand-
ing of the language, to point out oversights in language design, to distinguish
kernel constructs that require hard-wired support from those that can be imple-
mented on top of the kernel, to accumulate programming experiences, and to
identify language features not essential in theory but important in practice.

The LMNtal system, running on a Java platform and now available on the
web1, is the third of our attempts to implement the language. The purpose of
this paper is to describe the features of LMNtal as a simple and versatile declar-
ative language by means of various examples. The readers are referred to [12]
on LMNtal as a computational model. All the examples in this paper have been
tested on our LMNtal implementation.

2 Introductory Examples

2.1 Hierarchical Multiset Rewriting

The first series of examples is to demonstrate hierarchical multiset rewriting in
LMNtal. Here we use LMNtal in an interactive mode.

$ lmntal

LMNtal version 0.80.20060319

Type :h to see help.

Type :q to quit.

# 1,1,1, {1,1,1,1,1, {1,1,1}, (1,1:-2)}

1, 1, 1, {2, 2, 1, {1, 1, 1}, @601}

# {out,a,b,c}, d, {e,f}, ({out,$p[]} :- $p[]).

d, a, c, b, {f, e}, @603

Symbols starting with lowercase letters and numbers represent atoms, those
starting with uppercase letters (not appearing yet) represent links, and braces

1 http://www.ueda.info.waseda.ac.jp/lmntal/



represent membranes. Symbols starting with the dollar sign represent process con-
texts, and those starting with the at sign represent rulesets, which are (possibly
compiled) sets of rewrite rules.

The first example is simple multiset rewriting (from two 1’s to 2), except
that membranes are used to form hierarchical multisets. Rules local to mem-
branes act only on those atoms in the same place in the membrane hierarchy.
The symbol @601 indicates a compiled ruleset obtained from the rule (1,1:-2).

The second example shows that a rule can handle cells (i.e., atoms and cells
enclosed by membranes) and change the membrane structure. The process con-
text $p[] represents a local context of the membrane it belongs to and works as
a wildcard. Thus the rule ({out,$p[]} :- $p[]) can be read as “remove the
membrane containing the atom out and export its content.” Notice that the or-
der of atoms and cells are irrelevant because they form multisets.

2.2 List Processing

Next, we describe the use of links using list processing as an example.
The skeleton of a list can be represented, using ‘.’ atoms (cons) and a ‘[]’

atom (nil), as ‘.’(A1, X1, X0), . . . , ‘.’(An, Xn, Xn−1), ‘[]’(Xn). Here, Ai is the link
to the ith element and X0 is the link to the whole list (from somebody else own-
ing the list). This corresponds to a list formed by the constraints X0 = [A1|X1],
. . . , Xn−1 = [An|Xn], Xn = [] in (constraint) logic programming languages, with
the notable exception that an LMNtal list is a resource (i.e., entity with own-
ership) rather than a value. All links are point-to-point; link names occurring
twice in an expression represent local links and those occurring once represent
free links which are supposed to be connected to an atom outside the expression.

LMNtal links are non-directional like chemical bonds. The directionality of
a list is determined by which arguments of atoms are connected together.

Two lists can be concatenated using the following two rules:

append(X0,Y,Z0), ’[]’(X0) :- Y=Z0.
append(X0,Y,Z0), ’.’(A,X,X0) :- ’.’(A,Z,Z0), append(X,Y,Z).

(As above, each rule can be written in the period-terminated form as well as in
the comma-separated form.) Figure 1 shows a graphical representation of the
append program and its execution (c(ons) for ‘.’ and n(il) for ‘[]’), where b is
the consumer of the result of append and the atom ‘=’ autonomously disappears
after connecting its arguments together.

LMNtal doesn’t distinguish between predicate symbols (procedure names)
and function symbols (constructors); they are equal in status, though a type
system could be employed to distinguish between them.

LMNtal provides a simple, systematic and powerful term abbreviation scheme.
We can exploit the fact that a local link name has exactly two occurrences and
abbreviate p(s1, . . . , sm), q(. . . , sm, . . .) to q(. . . , p(s1, . . . , sm−1), . . .). For instance,
the list shown in the beginning of this section, with n = 3, can be abbreviated
to ‘.’(A1,‘.’(A2,‘.’(A3,[])),X0). This is structurally equivalent to X0 =Y,
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(a) Initial state (b) Final state 1
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(c) Final state 2 (d) Rewrite rules

Fig. 1. List concatenation

‘.’(A1,‘.’(A2,‘.’(A3, [])),Y) (see Section 3.2), and by eliminating Y using the
scheme again we obtain X0 = ‘.’(A1,‘.’(A2,‘.’(A3,[]))) or X0 = [A1,A2,A3],
following the Prolog convention.

Likewise, we write p(. . . , {P}, . . .) to mean p(. . . , A, . . .), {+A, P}, where P is
a process (Section 3.1) and A is a link. The unary atom ‘+’ is used as the standard
atom to terminate incoming links to a cell.

A notable consequence of the above scheme is that f(5), 5(f), f=5, 5=f, and
(5(X),f(X)) represent exactly the same thing, namely the unordered pair (or
the diatomic molecule) of a unary f and a unary 5.

Using abbreviation, the list concatenation program can be written in a (con-
current) logic programming form

append([],Y,Z) :- Y=Z.
append([A|X],Y,Z0) :- Z0=[A|Z], append(X,Y,Z)

and in the term rewriting form

Z= append([],Y) :- Z= Y.
Z= append([A|X],Y) :- Z= [A|append(X,Y)].

The above program resembles append in Interaction Nets [4]. Indeed, LMN-
tal generalizes Interaction Nets by removing the restriction to binary interaction
and allowing hierarchical processes.

2.3 Numbers and Arithmetics

LMNtal supports numbers and arithmetics. However, for uniformity LMNtal
treats every atom as resource and numbers are not exceptions. Accordingly,
all numbers (integers and floats) are unary atoms and are connected to the
“owner” of the number (which can be an arithmetic operator). LMNtal still
allows 0-ary 8 and 3.14 as atoms but they are not supported by the arith-
metic features of the language. In our LMNtal system, a ground expression
autonomously evaluates to a number using a system ruleset implicitly built into
every cell. For instance, the cell



(Process) P ::= 0 | p(X1, . . . , Xm) | P, P | {P} | T:- T
(Process template) T ::= 0 | p(X1, . . . , Xm) | T, T | {T} | T:- T

| @p | $p[X1, . . . , Xm|A] | p(*X1, . . . , *Xn)
(Residual) A ::= [] | *X

Fig. 2. Syntax of LMNtal

{n(1), n(2), n(3), n(4), n(5), (n(A),n(B):-n(A*B))}

evaluates nondeterministically to {n(120), (n(A),n(B):-n(A*B))}. LMNtal
and our LMNtal implementation do not specify the strategy of multiset match-
ing, but our implementation has a shuffle mode that randomizes the selection of
atoms to see if the program may yield different results. For rules belonging to
the same membrane, the textual order determines their natural priorities that
can also be randomized by a runtime option.

3 The Core Language

We briefly describe the syntax and the semantics of LMNtal. For details omitted
from here, the readers are referred to [12].

3.1 Syntax

The syntax of LMNtal is given in Figure 2, where two syntactic categories, link
names (denoted by X) and atom names (denoted by p), are presupposed. The
atom name = is reserved for atomic processes for link connection. The subject
entities of LMNtal are called processes.

Intuitively, 0 is an inert process; p(X1, . . . , Xm) (m ≥ 0) is an atom with
m links; P, P is parallel composition called a molecule; {P}, a cell, is a process
grouped by the membrane { }; and T:- T is a rewrite rule for processes.

An atom X =Y, called a connector, connects one side of the link X and one
side of the link Y.

A process P must observe the following link condition: Each link name in P
may occur at most twice. Furthermore, each link name of a rule must occur ex-
actly twice. As usual, α-conversion can be used to avoid clashes of link names.

A rule context, @p, matches a (possibly empty) multiset of rules inside a mem-
brane, while a process context, $p[X1, . . . , Xm|A] (m ≥ 0), matches processes
other than rules inside a membrane. The argument of a process context speci-
fies what links may or must occur free. When the residual A is [], the argument
is abbreviated to [X1, . . . , Xm] and means that the set of free links of $p must
be exactly {X1, . . . , Xm}. When A is of the form ∗X (called a bundle), it repre-
sents zero or more free links of the context that may occur in addition to the
“must-occur” links X1, . . . , Xm.



(E1) 0, P ≡ P (E2) P, Q ≡ Q, P (E3) P, (Q, R) ≡ (P, Q), R
(E4) P ≡ P[Y/X] if X is a local link of P

(E5) P ≡ P′ ⇒ P, Q ≡ P′, Q (E6) P ≡ P′ ⇒ {P} ≡ {P′}
(E7) X = X ≡ 0 (E8) X =Y ≡ Y =X

(E9) X =Y, P ≡ P[Y/X] if P is an atom and X occurs free in P
(E10) {X =Y, P} ≡ X =Y, {P} if exactly one of X and Y occurs free in P

(R1)
P −→ P′

P, Q −→ P′, Q
(R2)

P −→ P′

{P} −→ {P′}
(R3)

Q ≡ P P −→ P′ P′ ≡ Q′

Q −→ Q′

(R4) {X =Y, P} −→ X =Y, {P} if X and Y occur free in {X =Y, P}
(R5) X =Y, {P} −→ {X =Y, P} if X and Y occur free in P

(R6) Tθ, (T:- U) −→ Uθ, (T:- U)

Fig. 3. Structural Congruence and Reduction Relation of LMNtal

The following examples will illustrate the role of process contexts. The LHS
{p(X)} matches a cell exactly consisting of p(X) (X free), while the LHS {p(X),
$q[|*Y]} matches a cell containing p(X) (X free) and the LHS {p(X), $q[X|*Y]}
matches a cell containing p(X) (X local). The context receives the rest of the pro-
cesses inside the membrane, and the bundle *Y is bound to the sequence of free
links (order determined by the system) of the whole cell.

The final form, p(*X1, . . . , *Xn) (n > 0), represents an aggregate of n-ary
atoms, which are to be connected to may-occur free links of process contexts.

Rewrite rules must observe syntactic conditions on possible occurrences of
rules (inside the rules) and contexts, as well as on link names [12], all of which
are for the use of contexts and aggregates to make sense.

3.2 Operational Semantics

The operational semantics of LMNtal (Figure 3) consists of two parts, namely
structural congruence (E1)–(E10) and the reduction relation (R1)–(R6). Here,
[Y/X] is a link substitution that replaces X with Y.

(E1)–(E3) are the characterization of molecules as multisets. (E4) represents
α-conversion of local link names. (E5)–(E6) are structural rules that make ≡ a
congruence. (E7) says that a self-absorbed loop is equivalent to 0, while (E8) ex-
presses the symmetry of connectors. (E9)–(E10) are absorption/emission rules
of connectors for atoms and cells, respectively.

Computation proceeds by rewriting processes using rules collocated in the
same “place” of the nested membrane structure.

(R1)–(R3) are standard structural rules. (R1) says that reductions can pro-
ceed concurrently based on local reducibility conditions. Fine-grained concur-
rency of LMNtal originates from this rule. (R2) says that computation inside a
membrane can proceed independently of the exterior of the membrane. For a
cell to evolve autonomously, it must contain its own set of rules. Computation



of a cell containing no rules are to be controlled by rules outside the cell. (R3)
incorporates structural congruence into the reduction relation.

(R4)–(R5) are the mobility rules of connectors across membranes. The cen-
tral rule of LMNtal is (R6). The substitution θ is a mapping from process tem-
plates to processes and represents what process (or multiset of rules) has been
received by each process context (or rule context), respectively, and what multi-
set of atoms each aggregate represents [12]. The simplest way of viewing rules
with process/rule contexts and aggregates is to view them as rule schemes that
represent sets of rules with no contexts or aggregates.

We can think of a subset of LMNtal, Flat LMNtal, that does not allow cell
hierarchies (and accordingly, process contexts, rule contexts and aggregates).
In Flat LMNtal, θ becomes unnecessary and (R6) is simplified to

(R6′) T, (T:- U) −→ U, (T:- U).

Matching between a process and the LHS of a rule under (R6′) should gener-
ally be done by α-converting the rule using (E4) and (R3). The whole resulting
process, namely U, (T :- U) and its surrounding context, should observe the
link condition, but this can always be achieved by α-converting T :- U before
use so that the local link names in U won’t cause name crashes with the context.

3.3 Extension: Guard and Typed Process Contexts

Our LMNtal system extends the above core language by featuring the notion
of guards and typed process contexts. Guards are to express conditional rewrite
rules, but the question is what should constitute conditions in our setting of
graph rewriting. Suppose we have a multiset of integers expressed as

n(3), n(-5), n(101), n(72), n(18), n(47), n(11).

and want to find the maximum value of them by deleting others. One can
achieve this using a one-liner

n($i), n($j) :- $i =< $j | n($j).

which is an abbreviation of

n(I), $i[I], n(J), $j[J] :- $i =< $j | n(K), $j[K].

Here, the process contexts don’t appear in membranes that would delimit
the contexts, but instead appear as operands of the guard test $i=<$j which
constrains its arguments to unary atoms. The guard test checks if the two unary
atoms are both integers and the second one is not smaller.

Other guard tests available include int($i) to ensure that $i is an integer,
unary($u) to ensure that $u is a unary atom, and ground($g) to capture a min-
imal (and hence connected) graph structure with exactly one free link. Note
that ‘=<’, unary, and ground can all be regarded as type constraints; int is a sub-
type of unary which in turn is a subtype of ground, and ‘=<’ ia s subtype of the
product int× int.



Graph structures received by typed process contexts and checked by guard
tests can be copied or discarded freely. Thanks to this mechanism, many of con-
current logic programs ever written run as LMNtal programs with very minor
modifications, where the ask operation (the synchronization primitive) is natu-
rally replaced by graph matching.

LMNtal features another important guard test, uniq(X1, . . . , Xn). This test
succeeds if (i) each Xi is connected to a (connected) graph with no free links
other than Xi, and (ii) the rule has not been applied to the same tuple of graphs
before. As a special case of n = 0, uniq succeeds if the rule in question has not
been used before. The uniq() test, which was inspired by CHR’s propagation
rules, is a general tool for avoiding infinite application of rules whose RHS is a
super(multi)set of the LHS.

4 Ideas Behind the Language Design

4.1 Basic Ingredients

The “four elements” of LMNtal are logical links, multisets (or membranes), nested
nodes, and transformation.

Links, which are represented by linear local names, are used to represent
both one-to-one communication channels between logically neighboring pro-
cesses and logical neighborhood relations between data cells. LMNtal viewed
as a process calculus is different from many other process calculi (or more pre-
cisely, it is a special case of them) in that a message sent through a link changes
the identity of the link and that links are always private in the sense that the
third party cannot access them. The conception of logical links originate from
logical variables in logic programming, but again they are the special case of
logical variables in that LMNtal has no notion of instantiating a link variable to
a value; it just retains the notion of fusing two variables.

The notion of multisets can be found in diverse computational models in-
cluding classical Petri Nets and Production Systems. However, not many of
them feature multisets as first-class citizens, and the essence of membranes is to
give hierarchical structures to the systems of multisets. Models and languages
featuring membranes include the Chemical Abstract Machine [1], mobile am-
bients [2], P-systems [6], bigraphical reactive systems [5], LMNtal, and the Kell
Calculus [7].

4.2 Uses of Membranes: The π-calculus Example

Membranes play many roles in LMNtal programming. First, they are used to
represent records or feature structures. Second, they can encapsulate rules and
delimit their scope of effect. Third, they can protect processes from the rewrite
rules that would otherwise act on the processes.

The following example that encodes the communication mechanism of the
asynchronous π-calculus illustrates the first and the third uses of membranes.
The rules are prefixed by rule names here.



snd@@ snd({$y[|*V]},X) :- {$y[|*V], m(X)}.

get@@ get({m(X),$y[|*V]},Z), {$body[Z|*V]} :- {$y[|*V]}, $body[X|*V].

cp@@ {name(N),$p[N|*Y],+Z}, Z=cp(Z0,Z1) :- {name(N),$p[N|*Y],+Z0,+Z1}.

rm@@ {name(N),$p[N|*Y],+Z}, Z=rm :- {name(N),$p[N|*Y]}.

Here, a π-calculus name is represented by a cell containing the name() at-
tribute and referenced by incident links (each marked by the ‘+’ atom). The cell
also works as a message buffer where the links marked by the m atom are con-
nected to outstanding messages. The first rule gives the semantics of sending x
to y, while the second rule gives the semantics of receiving a message x from y
and substitute it for the formal name z. The last two rules, cp for copy and rm
for remove, are used when a formal name is used more than once or not used
at all. For instance, a π process (a(z).b(y).z〈y〉) | a〈c〉 | b〈d〉 is encoded as

(get(A0,Z), {get(B0,Y), {snd(Z,Y)}}).

snd(A1,C).

snd(B1,D).

{name(a),+A0,+A1}, {name(b),+B0,+B1}, {name(c),+C}, {name(d),+D}.

which reduces to

{name(a)}, {name(b)}, {name(c),m(_78)}, {name(d),’+’(_78)}, @601

meaning that the channel c contains an outstanding message d, while a and b
do not hold any messages nor are referenced any more. Note the use of mem-
branes in the encoding of (a(z).b(y).z〈y〉); prefixed processes are protected by
membranes until the get rule removes them.

4.3 Logical Interpretation

LMNtal processes are designed to allow diagrammatic representation, but at
the same time processes and rules allow logical interpretation. We focus on Flat
LMNtal (LMNtal without membranes) due to space limitation.

A (Flat) LMNtal process is a conjunction of atoms where local links are in-
terpreted as existentially quantified variables. First-order logic with equality
(to handle connectors) works as the underlying logic in many cases. For pro-
grams dealing with multisets (i.e., conjunction of two or more identical formu-
lae), however, we should drop weakening and contraction from the logic, which
results in a (tiny) fragment of linear logic. Programs with don’t-care nondeter-
minism are another example in which linear logic interpretation would be more
appropriate. In the following, we focus on the classical case.

A rule T:- U is interpreted as ∀(∃T ⇔ ∃U), where T and U are conjunctions
of atoms, the two ∃’s quantify the local links of T and U, respectively, and the
leftmost ∀ quantifies the free links of T and U (each occurring once in T and once
in U). Thus a LMNtal rule is not a clause in the classical sense, but it is easy to
see that the rewrite rule (R6′), ∃T ∧ ∀(∃T ⇔ ∃U) −→ ∃U ∧ ∀(∃T ⇔ ∃U), is a
sound reasoning. (Note that the quantifier of the redex ∃T works on local links
of T only; free links in T are left free.) For instance, under the append program,



the molecule append([a,b],[c],X),answer(X) reduces to answer([a,b,c]),
which is a sound deduction.

Note the symmetry of our logical reading of rules. This means that the initial
state append([a,b],[c],X),answer(X) can be deduced from answer([a,b,c])
as well. Computationally, the base case of append, if reversed, would cause di-
vergence because it would match any link in the current configuration. How-
ever, there is a class of reversible programs whose initial states can be restored
from the final states by the backward application of LMNtal rules, an interest-
ing topic of future study.

Our logical interpretation is to be contrasted with that of CHR where its
simplification rule T<=>U is interpreted as ∀(T ⇔ ∃U) [3]. The difference comes
from the purpose of the languages (in general) and the roles of the variables
(technically) that will be discussed below.

4.4 Relation to CHR

LMNtal rules without membranes resemble simplification rules of CHR. In-
deed, Flat LMNtal could be thought of as a linear fragment of CHR. However,
we find LMNtal and CHR quite different and rather complementary. First, CHR
was developed for glass-box constraint programming, while LMNtal was de-
veloped as a declarative concurrent language with powerful data structures
(hierarchical graphs that subsume first-class multisets). Second, CHR is to be
used with some platform language (such as Prolog and Java) while LMNtal
was developed as a monolithic, stand-alone language. Third, LMNtal comes
with membranes that can be used not only as data structures but also as control
structures, which are essential for a stand-alone language. Fourth, CHR resem-
bles Prolog in the use of constructors and logical variables, while LMNtal is
constructor-free and restricts variables to linear ones representing connectiv-
ity. Fifth, computation in LMNtal is not necessarily intended to be confluent
because its intended applications include concurrent programming.

Nevertheless, a logic variable (possibly with attributes as in some Prolog
implementations) can be encoded using membranes. Furthermore, the uniq
guard test (Section 3.3) has been used successfully to encode propagation rules
of CHR.

5 Overview of the Implementation

The current version of our LMNtal system consists of 43,000 lines of Java code
including programming environments. Both the lmntal and lmnc commands
invoke the compiler to generate dedicated intermediate code. The lmntal com-
mand executes it interpretively, while lmnc translates it further into Java code
packed into a Java archive file, which can be executed by the lmnr command.
Several subtleties, mostly resulting from the hierarchical nature of the language,
have been identified and resolved in the course of design reviews.



LMNtal is a fine-grained concurrent language, but how to implement it cor-
rectly and efficiently is far from obvious for the following two reasons. First,
it features both connectivity (links) and hierarchy (membranes) in such a way
that links may connect remote atoms across one or more membranes. Second,
different rulesets belonging to different membranes may attempt to rewrite the
same process competitively; for instance, a process located at some place in the
membrane hierarchy may be manipulated by both local and non-local rules.
In addition, since LMNtal features interface to Java and Java allows users to
create threads—explicitly or implicitly by using GUI’s—, being able to control
asynchronous execution is an important requisite. The major challenge at this
stage of language development has been to establish a correct implementation
scheme amenable to asynchronous rewriting by multiple tasks (though we have
already implemented several, mostly intra-rule, optimization techniques in-
cluding dependency-directed backtracking of multiset matching, reuse of atoms
and links upon reduction, etc.).

One of our decisions was to let a link cross a membrane via two “immigra-
tion” proxies, one inside the membrane and the other outside. For instance, the
standard internal representation of the configuration {a(X)},b(X) is

{a(X0), $in(X1,X0)}, $out(X1,X2), b(X2)

as one can see by raising the verbosity level of the system. Semantically, these
proxies are just connectors (=) sticking to the membrane.

These proxies enable concurrent rewriting of subgraphs belonging to differ-
ent places of the membrane structure. Having proxies both inside and outside
the membrane also eases the implementation of (R4) and (R5) by letting them
react autonomously when two $in’s or two $out’s are tied together.

6 More Examples

The programs we have successfully expressed using LMNtal are quite diverse,
including the pure and call-by-name lambda calculi, the synchronous and the
asynchronous π-calculus (see Section 4.1 for the asynchronous case), the am-
bient calculus, bigraphs and their composition [5], bottom-up parsers and un-
parsers, calculators with GUI, fullerenes (as examples of highly-connected graph
structures), to name a few.

6.1 The Lambda Calculus

The lambda calculus based on graph reduction can be elegantly encoded in
LMNtal. Here we give a nondeterministic version (Fig. 4).

This is a simplified version of the encoding into Interaction Nets by Sinot [8].
The first rule captures the essence of the lambda calculus, β-reduction, while all
the other rules are to handle nonlinear (i.e., 6= 1) use of variables by copying or
removing graph structures. The key idea of [8] was to use two different atoms,
cp and dp, to control graph copying.

For instance, the Church numeral 2 (λ f x. f ( f x)) is encoded as



beta@@ H=apply(lambda(A, B), C) :- H=B, A=C.

l_c@@ lambda(A,B)=cp(C,D) :- C=lambda(E,F), D=lambda(G,H), A=dp(E,G), B=dp(F,H).

a_c@@ apply(A,B)=cp(C,D) :- C= apply(E,F), D= apply(G,H), A=cp(E,G), B=cp(F,H).

l_d@@ lambda(A,B)=dp(C,D) :- C=lambda(E,F), D=lambda(G,H), A=dp(E,G), B=dp(F,H).

a_d@@ apply(A,B)=dp(C,D) :- C= apply(E,F), D= apply(G,H), A=dp(E,G), B=dp(F,H).

l_r@@ lambda(A,B)=rm :- A=rm, B=rm.

a_r@@ apply(A,B)=rm :- A=rm, B=rm.

c_r@@ cp(A,B)=rm :- A=rm, B=rm.

d_r@@ dp(A,B)=rm :- A=rm, B=rm.

r_r@@ rm=rm :- .

d_d@@ dp(A,B)=dp(C,D) :- A=C, B=D.

c_d@@ cp(A,B)=dp(C,D) :- C=cp(E,F), D=cp(G,H), A=dp(E,G), B=dp(F,H).

u_c@@ U=cp(A,B) :- unary(U) | A=U, B=U.

u_d@@ U=dp(A,B) :- unary(U) | A=U, B=U.

u_r@@ U=rm :- unary(U) | .

Fig. 4. The lambda calculus, nondeterministic version

lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X))),Result).

and

N=n(2) :- N=lambda(cp(F0,F1), lambda(X, apply(F0,apply(F1,X)))).
N=n(3) :- N=lambda(cp(F0,cp(F1,F2)), lambda(X,

apply(F0,apply(F1,apply(F2,X))))).
res=apply(apply(apply(n(2), n(3)), s), 0).
H=apply(s, I) :- int(I) | H=I+1.

evaluates to a molecule res=9 (plus the initial rules), where the readers are
reminded that exponentiation of Church numerals is encoded as λmn.nm. As
illustrated above, the encoding in LMNtal allows some free names (s in this
example) to be “evaluated” by rules given by the user (δ-reduction).

We have also encoded the call-by-name lambda calculus, and ran recursive
functions expressed using the fixpoint (Y) combinator.

6.2 Highly Connected Graph Structures

In most declarative languages (except logic programming languages featuring
unification over rational terms), cyclic or highly connected data structures are
harder to manipulate than lists and trees. To demonstrate that this is not the
case with LMNtal, we give a simple program to build a fullerene (C60) structure
consisting of only two rules and two initial atoms:

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-

p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4), p(L2,L3,H1,T1,H0),

p(L4,L5,H2,T2,H1), p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9). /* top half */



Fig. 5. The C60 structure

{ module(io).

...

io.input(Message, X) :- [:/*inline*/

String s = javax.swing.JOptionPane.showInputDialog(null, me.nth(0));

me.setName(‘‘done’’);

me.nthAtom(0).setName(s);

:](Message, X).

...

}

Fig. 6. The io module

dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1). /* bottom half */

p(L0,L1,L2,L3,L4) :- X=c(L0,c(L1,c(L2,c(L3,c(L4,X))))).

The first rule and the next two initial atoms build a icosahedron (polyhedron
with 20 triangles) by sewing up two five-triangle domes, and the final rule turns
it into a fullerene structure. Figure 5 shows the graph structure rendered using
the visualization option (-g) of the LMNtal system.

6.3 Modules and Foreign-Language Interface

The system comes with modules and foreign-language interface, both extremely
important for developing applications. For instance, the io module, coming as
a standard library, starts with the definition of Fig. 6.

A module is just a membrane containing the module name declaration and
a set of rules. When a(n extended) name of the form modulename.atomname is
mentioned in some membrane, the ruleset belonging to the module is implicitly
imported to that membrane.

This example also shows the use of Java code in LMNtal. The Java code
appears as a special atom, quoted by [: and :] and starting with /*inline*/,
which is called an inline execution atom. The code is expanded in the translated



Java code and executed in the final phase of rule application, so that the code
can access graph structures built by the RHS of the rule. The special variable
me refers to the atom (which is the Java code being executed) and mem (not used
in the example) refers to the membrane it belongs to. The ith argument given
to the inline code can be accessed as me.nth(i). Using these mechanisms, one
can manipulate LMNtal’s graph structures from within the inline atom. For
instance, executing result=io.input("Hello") will show a pop-up window
saying "Hello", and typing in "World!" into the text field will cause the the
whole molecule to evolve into result=done("World!") .

One can also define Java classes used by inline code using an inline dec-
laration atom, a quoted atom starting with /*inline_define*/. The foreign-
language interface greatly facilitated the development of the LMNtal system
because one could easily provide and test new features (arrays, sockets, win-
dow toolkits, etc.) before or without hard-coding them into the runtime system.

7 Concluding Remarks

We have presented a concise declarative language LMNtal with diverse pro-
gram examples. The main contribution of the work is that we have succeeded in
putting hierarchical graph rewriting into practice and demonstrated its versatil-
ity. We have also shown the logical interpretation of LMNtal computation. LM-
Ntal inherits some of the ideas from constraint-based concurrency and CHR,
but cell hierarchy that allows trans-membrane links and local rulesets required
us to develop a new implementation technique almost from scratch.

CHR is another multiset rewriting language that features logical variables.
While Flat LMNtal could be thought of as a linear fragment of CHR, they ex-
hibit differences as well as commonalities in various respects including the use
of logical variables, the control structure, and principal applications. Still, we
believe that their commonalities call for the cross-fertilization of the ideas, re-
sults and experiences we have accumulated.

Parallel and distributed implementations of LMNtal are both underway,
building upon the asynchronous execution scheme we have developed.

LMNtal opens up many interesting research issues. One of the most im-
portant issues in language design and implementation is to equip it with use-
ful type systems. We believe that many useful properties, for instance shapes
formed by processes and the directionality of links (i.e., whether links can be
implemented as one-way pointers), can be guaranteed statically using type sys-
tems and enable aggressive compiler optimization. Another important topic
is to design and implement appropriate constructs for (don’t-know) nondeter-
ministic computation. Although LMNtal started as a concurrent language, it is
now addressing diverse applications including those involving (don’t-know)
nondeterminism (e.g., verification), and backtracking or exhaustive search for
possible reduction paths is becoming much more important than we had ex-
pected. We have finished a prototype implementation of backtracking and ex-



haustive search for Flat LMNtal. Extending it to deal with hierarchical graphs
is far from obvious, and is a challenging topic of future research.
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