Resource-Passing Concurrent Programming

Kazunori Ueda Waseda University Tokyo, Japan

Copyright (C) 2001 by Kazunori Ueda

Talk Outline

- Constraint-based concurrency (CBC)
 - Essence of constraint-based communication
 - Relation to name-based concurrency
- Type systems and analyses for CBC
 - -modes (directional types) and linear types
- Strict linearity and its implications
- Capabilities: types for strict linearity with sharing

Constraint-Based Concurrency

- Concurrency formalism & language based on
 - single-assignment (write-once) channels and
 - -constructors
 - cf. name-based concurrency
- Also known as
 - –concurrent logic programming
 - –concurrent constraint programming (CCP)
- Born and used as languages (early 1980's);
 then recognized and studied as formalisms

Single-Assignment Channels

- Also known as logical variables
- Can be written at most once
 - -by telling a constraint (= partial information) on the value of the channel (unification)
 - •e.g., tell S=[read(X)|S']
- Reading is non-destructive
 - by asking if a constraint is entailed (term matching)
 - e.g., ask $\exists A \exists S'(S=[A|S'])$
 - -covers both *input* and *match* in the π -calculus

Constraint-Based Communication

- Asynchronous
 - *tell* is an independent process (as in the asynchronous π -calculus)
- Polyadic
 - constructors provide built-in structuring and encoding mechanisms
 - -essential in the single-assignment setting
- ◆ Mobile
- ♦ Non-strict

Constraint-Based Communication

- Asynchronous
- ◆ Polyadic
- Mobile channel mobility in the sense of the π-calculus
 - -Channels
 - •can be passed using another channel
 - •can be fused with another channel
 - are first-class (processes aren't)
 - -available since 1983 (Concurrent Prolog)
- ◆ Non-strict

Constraint-Based Communication

- Asynchronous
- ◆ Polyadic
- Mobile
- Non-strict
 - "Constraint-based" means computing with partial information
 - Yielded many programming idioms, including
 - (streams of)* streams
 - difference lists
 - messages with reply boxes

The Language (traditional LP syntax)

(program) P ::= set of R's

(program clause) R := A :- | B |

(body) B ::= multiset of G's

(goal) $G ::= T_1 = T_2 \mid A$

(non-unif. atom) $A ::= p(T_1, \ldots, T_n), p \neq '='$

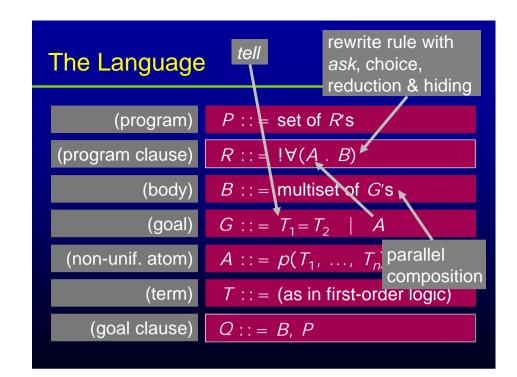
T := (as in first-order logic)

(goal clause) Q : := :- B

The Language (alternative syntax)

(program)
$$P ::= set of R's$$

(program clause) $R ::= !\forall (A . B)$
(body) $B ::= multiset of G's$
(goal) $G ::= T_1 = T_2 \mid A$
(non-unif. atom) $A ::= p(T_1, ..., T_n), p \neq '='$
(term) $T ::= (as in first-order logic)$
(goal clause) $Q ::= B, P$



Reduction Semantics

Concurrency

$$\frac{\left\langle B_{1},C,P\right\rangle \rightarrow\left\langle B_{1}',C',P\right\rangle}{\left\langle B_{1}\cup B_{2},C,P\right\rangle \rightarrow\left\langle B_{1}'\cup B_{2},C',P\right\rangle}$$

◆ Tell

$$\langle \{t_1 = t_2\}, C, P \rangle \rightarrow \langle \phi, C \cup \{t_1 = t_2\}, P \rangle$$

Reduction Semantics

Concurrency

$$\frac{\left\langle B_{1},C,P\right\rangle \rightarrow\left\langle B_{1}',C',P\right\rangle}{\left\langle B_{1}\cup B_{2},C,P\right\rangle \rightarrow\left\langle B_{1}'\cup B_{2},C',P\right\rangle}$$

◆ Tell send t_2 through t_1 / fuse t_1 with t_2

defines an mgu unless collapsed

$$\langle \{t_1 = t_2\}, C, P \rangle \rightarrow \langle \phi, C \cup \{t_1 = t_2\}, P \rangle$$

unguarded constraint is made observable

Reduction Semantics (cont'd)

Ask + Reduction

$$\langle \{b\}, C, P \cup \{h : - \mid B\} \rangle$$

$$\rightarrow \langle B, C \cup \{b = h\}, P \cup \{h : - \mid B\} \rangle$$

$$\left(\text{if } E \models \forall (C \Rightarrow \exists vars(h)(b = h)) \\ \text{and } vars(h, B) \cap vars(b, C) = \phi \right)$$

Reduction Semantics (cont'd)

Ask + Reduction

ask done and constraints were received by h's args

$$\langle \{b\}, C, P \cup \{h : - \mid B\} \rangle$$

$$\rightarrow \langle B, C \cup \{b = h\}, P \cup \{h : - \mid B\} \rangle$$

$$\text{(if } E \models \forall (C \Rightarrow \exists vars(h)(b = h)) \}$$

$$\text{(and } vars(h, B) \cap vars(b, C) = \emptyset$$

syntactic equality theory over finite terms

h matches b under C

Relation to Name-Based Concurrency

- Predicates (names of recursive procedures) can be regarded as global names of conventional (destructive) channels.
 - -the only source of arbitration in CBC
- Variables are local names of write-once channels.
- Constructors are global, non-channel names for composing messages with reply boxes, streams, and other data structures.

Channels in CBC and NBC

 Write-once channels allow buffering by using stream constructors

$$-e.g.$$
, $S=[read(X)|S']$ (S': continuation)

- Channels in the asynchronous π-calculus are multisets of messages from which input operations take messages away
 - $-e.g., \ a(y).Q \mid \overline{a}b \rightarrow Q\{b/y\}$
 - Being a multiset is another source of arbitration

Channels in CBC and NBC

- ◆ CBC and NBC get closer with *type systems*:
 - − mode (= directional type) system for CBC
 - *linear* types for the π -calculus
- Both guarantees that only one process holds a write capability and use it once
 - hence they leave no sharp difference in nondestructive and destructive read,
 - except that CBC still allows multicasting and channel fusion

Communication in CBC and NBC

- ♦ In CBC,
 - -tell subsumes two operations
 - •output e.g., X=3, X=[push(5)|X']
 - •fusion (of two channel names) e.g., X=Y
 - *−ask* subsumes two operations
 - input (synchronization and value passing)
 - match (checking of values)
- However, match in *moded* CBC doesn't allow the checking of channel equality (cf. $L\pi$)

Channels in CBC Are Local Names

- Fallacy: constraint store is global, shared, single-assignment memory
- Channels are all created as fresh local names that cannot be forged by the third party
- A new channel can be exported and imported only by using an existing channel
 - -e.g., p([create(S)|X']) :- | server(S), p(X').

Talk Outline

- ◆ Constraint-based concurrency
 - Essence of constraint-based communication
 - Relation to name-based concurrency
- Type systems and analyses for CBC
 - -modes (directional types) and linear types
- Strict linearity and its implications
- Capabilities: types for strict linearity with sharing

I/O Modes: Motivations

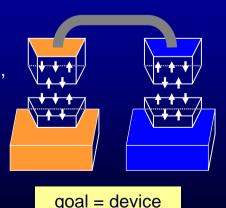
- Our experience with concurrent logic languages (Flat GHC) shows that logical variables are used mostly as cooperative communication channels with statically established protocol (point-to-point, multicasting)
- Non-cooperative use may cause collapse of the constraint store
 - -e.g., X=1 ∧ X=2 ∧ 1≠2 entails anything!

The Mode System of Moded Flat GHC

- Assigns polarity (+/-) structures to the arguments of processes so that the write capability of each part of data structures is held by exactly one process
- Unlike standard types in that modes are resource-sensitive
- Moding rules are given in terms of mode constraints (cf. inference rules)
- Can be solved (mostly) as unification over mode graphs (feature graphs with cycles)

An Electric Device Metaphor

- Signal cables may have various structures (arrays of wires and pins), but
 - the two ends of a cable, viewed from outside, should have opposite polarity structures, and
 - a plug and a socket should have opposite polarity structures when viewed from outside.



variable = cable

Modes as Functions

 Given a "position" (of any procedure, of arbitrary depth), a mode function will answer the I/O mode of that position.

$$m: P_{Atom} \rightarrow \{in, out\}$$

• P_{Atom}: set of paths of the form

$$< p, i > < f_1, i_1 > ... < f_n, i_n > (n \ge 0)$$

- P_{Term} : set of *paths* of the form $\langle f_1, i_1 \rangle \dots \langle f_n, i_n \rangle \quad (n \ge 0)$
- m(p): mode at p
- m/p: modes at and below $p(P_{Term} \rightarrow \{in, out\})$

Mode Constraints on A Well-Moding *m*

- Constructors occur at *input* positions
- Non-linear head variables occurs at fully input positions (to check if they hold identical values)
- The two arguments of a unification goal (tell) have complementary modes
- Variable occuring at $p_1, ..., p_k$ (head) and $p_{k+1}, ..., p_n$ (body) satisfies

$$-\mathbf{R}(\{m/p_1, ..., m/p_n\})$$
 (k=0)

$$-R(\{\overline{m/p_1}, m/p_{k+1}, ..., m/p_n\})$$
 (k>0)

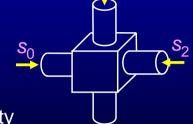
where $R(S) = \forall q \in P_{Term} \exists s \in S$

$$(s(q) = out \land \forall s' \in S \setminus \{s\}(s'(q) = in)$$

Principles Behind the Constraints

◆ A variable is a cable or a hub.

$$\mathbf{R}(\{s_1, s_2\}) \Leftrightarrow s_1 = \overline{s_2}$$

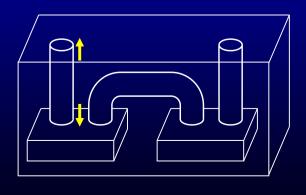


Constraint for connectivity

$$R(\{s_0, s_1, s_2, s_3\})$$

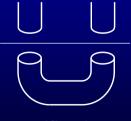
Principles Behind the Constraints

 Clause heads and body goals have opposite polarities, so do their arguments.



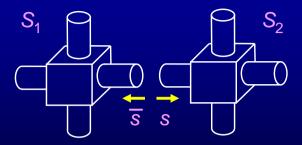
Principles Behind the Constraints

Goal-head connection



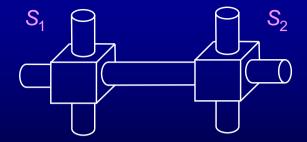
unification

Resolution Principle



$$R(\{\overline{s}\} \cup S_1) \wedge R(\{s\} \cup S_2)$$

Resolution Principle



$$R(\{\overline{s}\} \cup S_1) \wedge R(\{s\} \cup S_2)$$

 $\Rightarrow R(S_1 \cup S_2)$

Moding: Implications and Experiences

- A process can pass a (variable containing) write capability to somebody else, but cannot duplicate or discard it.
- ◆ Two write capabilities cannot be compared
- Read capabilities can be copied, discarded and compared
 - -cf. Linearity system
- Extremely useful for debugging pinpointng errors and automated correction (!)
- Encourages resource-conscious programming

Theorems

- Unification degenerates to assignment to a variable.
- (Subject Reduction) A well-moding m is preserved by reduction
- (Groundness) When a program terminates successfully, every variable is bound to a constructor.

Linearity: An Observation (cf. LNCS 1068)

- In (concurrent) logic programs, many of the program variables have exactly two occurrences.
 - Example:

```
append([], Y,Z):- true | Z=Y.
append([A|X],Y,Z0):- true | Z0=[A|Z], append(X,Y,Z).
```

– Counter-example:

```
p(...X...) :- true | r(...X...), p(...X...).
```

An Observation

◆ Another example: quicksort

```
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |
    part(X,Xs,S,L), qsort(S,Ys0,Ys1),
    Ys1=[X|Ys2], qsort(L,Ys2,Ys3).
part(_,[],S,L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A≥X |
    S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S,L0) :- A<X |
    L0=[X|L], part(A,Xs,S,L).</pre>
```

An Observation

Another example: quicksort

```
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |
    part(X,Xs,S,L), qsort(S,Ys0,Ys1),
    Ys1=[X|Ys2], qsort(L,Ys2,Ys3).
part(_,[],S,L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A≥X |
    S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S,L0) :- A<X |
    L0=[X|L], part(A,Xs,S,L).</pre>
```

Another Observation

```
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |
    part(X,Xs,S,L), qsort(S,Ys0,Ys1),
    Ys1=[X|Ys2], qsort(L,Ys2,Ys3).
```

- ◆ Virtually all variables with ≥3 occurrences (nonlinear variables) are used for simple, oneway communication
- Many variables with 2 occurrences (linear variables) have quite complex communication protocols

Linearity System

- Deals with the sharing aspects of programs
- Assigns linearity structures to the arguments of processes so that as many parts of data structures as possible are guaranteed to be "non-shared"
- Unlike standard types in that linearities are resource-sensitive
- Can be solved (mostly) as unification over linearity graphs (feature graphs with cycles)

Talk Outline

- Constraint-based concurrency
 - -Essence of constraint-based communication
 - Relation to name-based concurrency
- ◆ Type systems and analyses
 - -modes (directional types) and linear types
- Strict linearity and its implications
- Capabilities: types for strict linearity with sharing

Linear Variables Are Dipoles (1st step)

Insertion sort

```
\begin{split} & sort([], \quad S) : - \mid S = []. \\ & sort([X|L0],S) : - \mid sort(L0,S0), \, insert(X,S0,S). \\ & insert(X,[], \quad R) : - \quad \mid R = [X]. \\ & insert(X,[Y|L], \ R) : - \ X \le Y \mid R = [X,Y|L]. \\ & insert(X,[Y|L0],R) : - \ X > Y \mid R = [Y|L], \\ & \quad insert(X,L0,L). \end{split}
```

 From now on we disallow monopole (singleton) variables

Polarizing Constructors (2nd step)

Insertion sort

```
sort([], S) :- | S=[]. \\ sort([X|L0],S) :- | sort(L0,S0), insert([X|S0],S). \\ insert([X], R) :- | R=[X]. \\ insert([X,Y|L], R) :- X \le Y | R=[X,Y|L]. \\ insert([X,Y|L0],R) :- X > Y | R=[Y|L], \\ insert([X],L0,L).
```

 Linear constructors are also dipoles; the two occurrences of a linear constructor are two polarized instances of the same constructor.

Strict Linearity

- ◆ A program clause is called *strictly linear* if all variables and constructors are dipoles.
 - Constructors can now be regarded as channels that convey fixed values (and more importantly, resources) from head to body.
- A further step towards resource-conscious programming

Polarizing Constructors (cont'd)

Are initial constructors and variables monopoles?

```
:- sort([3,1,4,1,5,9],X).
```

◆ A strictly linear (and symmetric) version is:
 main([3,1,4,1,5,9],X) :- | sort([3,1,4,1,5,9],X).
 which will be reduced finally to
 main([3,1,4,1,5,9],X) :- | X = [1,1,3,4,5,9].

Programming Under Strict Linearity

Append

```
append([],Y,Z):-|Z=Y.
append([A|X],Y,Z0):-|
Z0=[A|Z], append(X,Y,Z).
```

Strictly linear version

```
append([],Y,Z,U) :- | Z=Y, U=[].
append([A|X],Y,Z0,U) :- |
Z0=[A|Z], append(X,Y,Z,U).
```

◆ The former is a slice of the latter.

Linearizing Server Processes (Hard)

Stack server

```
 \begin{array}{lll} stack([], & D & ) :- \mid true. \\ stack([push(X)|S],D & ) :- \mid stack(S,[X|D]). \\ stack([pop(X)|S], & [Y|D]) :- \mid X=Y, stack(S,D). \end{array}
```

Strictly linear version

```
stack([](Z), D ):- | Z=[](D).

stack([push([X|*],Y)|S],D ):- |

Y=[push(*,*)|*], stack(S,[X|D]).

stack([pop(X)|S], [Y|D]):- |

X=[pop([Y|*])|*], stack(S,D).
```

Linearizing Server Processes (Hard)

Strictly linear version

```
\begin{split} stack([](Z), & D ) :- \mid Z = [](D). \\ stack([push([X|*],Y)|S],D ) :- \mid \\ & Y = [push(*,*)|*], \ stack(S,[X|D]). \\ stack([pop(X)|S], & [Y|D]) :- \mid \\ & X = [pop([Y|*])|*], \ stack(S,D). \end{split}
```

- -A server doesn't want to keep envelopes
 ([|]) or cover sheets (push/pop)
- -"*" (void) is a non-constructor-non-variable symbol with zero capability (no write, no read)

Polarizing Predicates (3rd step)

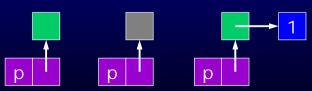
Insertion sort

```
sort([], S):-|S=[], sort(*,*).
sort([X|L0],S), insert(*,*):-|
sort(L0,S0), insert([X|S0],S).
```

- -cf. Constraint Handling Rules (CHR)
- Goals with void arguments are free goals waiting for habitants
 - -can be considered as implicitly given

Resource Aspect of Values

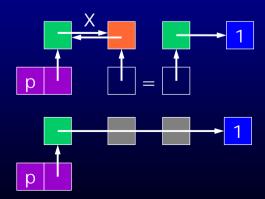
- Standard counting under the untyped setting
 - -Void: 1 unit
 - Variable: 1 unit per occurrence
 - N-ary constructor and predicate: N+1 units
 - Arguments should point to variables or voids
 - -e.g., p(X): 3 units, p(*): 3 units, p(1): 4 units



-Typing can reduce dereferencing and space

Constant-Time Property

◆ All entities are accessed by dereferencing exactly twice (yes, two is the magic number).



Talk Outline

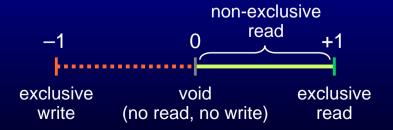
- ◆ Constraint-based concurrency
 - -Essence of constraint-based communication
 - Relation to name-based concurrency
- ◆ Type systems and analyses
 - -modes (directional types) and linear types
- Strict linearity and its implications
- Capabilities: types for strict linearity with sharing

Sharing under Strict Linearity

- Goals:
 - To allow concurrent access to shared resource
 - e.g., large arrays used for table lookup
 - 2. To recover linearity after concurrent access
 - Can on get back to 1?
- Two modes of concurrent access
 - multiplicative = full access to disjoint parts
 - already supported by mode+linearity
 - additive = read access to the whole structure

Let's Take a Reciprocal

◆ Mode {in,out} and linearity {nonshared, shared} can be unified and generalized in a simple setting, the [-1,+1] capability system.



cf. Weighted reference counting

In Pursuit of Symmetry

- ♦ What's the meaning of (-1,0) capabilities?
- Example: concurrent read

```
read(X0,X) :- |
    read1(X0,X1), read2(X0,X2), join(X1,X2,X).
```

- -Suppose read receives X0 with exclusive read capability 1 (1(p)=+1) and split it into two non-exclusive capabilities, α and 1- α .
- –Then these capabilities will be returned through X1 ($-\alpha$) and X2 (α –1)
 - because they cannot be disposed

In Pursuit of Symmetry

Example: concurrent read (cont'd)

```
read(X0,X) :- |
    read1(X0,X1), read2(X0,X2), join(X1,X2,X).
```

- -X1 $(-\alpha)$ and X2 $(\alpha-1)$ become logically the same as X0 (they must alias unless read n diverges or deadlocks)
- Then the two aliases are joined by a clause with a nonlinear head:

$$join(A,A,B) : - \mid B = A.$$

• The capabilities of the three args sum up to O.

Capability Annotations

- We annotate all constructors in (initial or reduced) goal clauses.
 - -The annotations are to be comiled away

$$f^1(\ ,\ ,\)$$
 or $f^\kappa(\ ,\ ,\)$ exclusive $(0<\kappa<1)$ non-exclusive

Closure condition:

$$-f^{\kappa}(... g^{1}(...) ...) - NO$$

 $-f^{1}(... g^{\kappa}(...) ...) - OK$

Extending Operational Semantics

$$: - \dots p(\dots X \dots) \dots X = t \dots q(\dots X \dots)$$

$$\rightarrow : - \dots p(\dots t \dots) \dots q(\dots t \dots)$$

:- ...
$$p(... t ...)$$
 ...
 $p(... X ...)$:- $| q(... X ...), r(... X ...)$.
 \rightarrow :- ... $q(... t ...), r(... t ...)$...

- ◆ X nonlinear split the capabilities in the term *t* using random numbers
- ◆ X linear retain the original capabilities

Capability System

◆ A capability is a function

$$c: P_{Atom} \rightarrow [-1,+1]$$

- Polymorphic w.r.t. non-exclusive capabilites because they decrease by repeated splitting
 - So all goals created at runtime are distinguished using suffixes

Capability Constraints (= Typing Rules)

- For a unification goal (of the form $t_1 =_s t_2$), $c/<=_s, 1>+c/<=_s, 2>=0$
- For a variable occurring at $p_1, ..., p_k$ (head) and $p_{k+1}, ..., p_n$ (body),

$$-c/p_1 - \dots - c/p_k + c/p_{k+1} + \dots + c/p_n = \mathbf{0}$$
(Kirchhoff's Current Law)

and exactly one of $\{-c/p_1, +c/p_{k+1}, ..., +c/p_n\}$ is negative

• For a nonlinear head variable at p, c/p > 0

Capability Constraints (= Typing Rules)

- ◆ A constructor f in head/body must find its partner with matching capability (> 0) in body /head
 - If f is exclusive, only top-level capability match is required; the constructor name and the arguments can be changed
 - -Otherwise, full match is required
- A void path has a zero capability
- A non-void path has a non-zero capability

Example

$$p(X,Y,...) :- | r(X,Y1), p(X,Y2,...), join(Y1,Y2,Y).$$

 $p(X,Y,...) :- | X=Y.$
 $join(A,A,B) :- | B=A.$

- ◆ Suppose $c/<r_{s.1},1>+c/<r_{s.1},2>=0$ and $c/<p_{s_0},1>=1$. Then $c/<p_{s_0},2>=\overline{1}$ holds, while all subgoals carry non-exclusive capabilities.
 - All capabilities distributed to the r's will be fully collected as long as all the r's return what they are given.

Properties

- Degeneration of unification to assignment
- Subject reduction
- Conservation of constructors
 - A reduction wll not gain or lose any constructor in the goal
- Groundness
- Non-sharing of constructors at "exclusive" positions

Related Work

- Relating CCP and π
 - -new calculus (γ , ρ , Fusion, Solo, ...)
 - -encoding one in the other
- lacktriangle Variants of π with nicer properties
- (Linear) types in other computational models $-\pi$, λ , typed MM, session types, ...
- Linear languages
 - -Linear Lisp, Lirac, Linear LP, ...
- Compile-time GC
 - -Mercury, Janus, ...
 - -compiling streams into message passing

Future Work

- Type reconstructor
- Occur-check problem
- ◆ Time (+ space) bounds
- Programming support
 - help writing strictly linear programs or reconstructing them from their slices
- Constructs for mobile/real-time/embedded computing + implementation

Conclusions

- A strictly linear, polarized subset of Guarded Horn Clauses
 - -retains most of the power of CBC
 - allows resource sharing within the linear framework
- Capability type system supporting strict linearity
- A step towards a unified framework for nonsequential computing