
A Pure Meta-Interpreter for Flat GHC, A
Concurrent Constraint Language

Kazunori Ueda

Dept. of Information and Computer Science, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

ueda@ueda.info.waseda.ac.jp

Abstract. This paper discusses the construction of a meta-interpreter
of Flat GHC, one of the simplest and earliest concurrent constraint lan-
guages.

Meta-interpretation has a long history in logic programming, and has
been applied extensively to building programming systems, adding func-
tionalities, modifying operational semantics and evaluation strategies,
and so on. Our objective, in contrast, is to design the pair of (i) a rep-
resentation of programs suitable for code mobility and (ii) a pure inter-
preter (or virtual machine) of the represented code, bearing networked
applications of concurrent constraint programming in mind. This is more
challenging than it might seem; indeed, meta-interpreters of many pro-
gramming languages achieved their objectives by adding small primi-
tives into the languages and exploiting their functionalities. A meta-
interpreter in a pure, simple concurrent language is useful because it is
fully amenable to theoretical support including partial evaluation.

After a number of trials and errors, we have arrived at treecode, a ground-
term representation of Flat GHC programs that can be easily interpreted,
transmitted over the network, and converted back to the original syntax.
The paper describes how the interpreter works, where the subtleties lie,
and what its design implies. It also describes how the interpreter, given
the treecode of a program, is partially evaluated to the original program
by the unfold/fold transformation system for Flat GHC.

1 Introduction

1.1 Meta-Interpreter Technology

Meta-interpreter technology has enjoyed excellent affinity to logic programming
since the seminal work by Bowen and Kowalski [5]. It provides us with a concise
way of building programming systems on top of another. This is particularly
useful for AI applications in which flexibility in designing and modifying in-
ference mechanisms is of crucial importance. Interactive programming environ-
ments such as debuggers or visualizers are another example in which interpreters
can play important rôles. Extensive survey of meta-interpretation in logic pro-
gramming can be found in [11], Chapter 8.

2 Kazunori Ueda

Critics complain of performance degradation incurred by the interpreter tech-
nology, but the speed of system prototyping with interpreters and symbolic lan-
guages cannot be matched by any other methodologies. Hardwiring all design
choices into a lower-level language such as C may be done, but at the latest pos-
sible stage and to the least extent. Indeed, due to Java and scripting languages,
interpreter technologies – including bytecode interpreters and its optimization
techniques such as just-in-time compilers – are now quite ubiquitous outside the
world of symbolic languages. Java demonstrated that poor initial performance
of non-optimized interpreters was acceptable once people believed that the lan-
guage and the system design as a whole were the right way to go.

1.2 Concurrency and Logic Programming

The raison d’être and the challenge of symbolic languages are to construct highly
sophisticated software which would be too complicated or unmanageable if writ-
ten in other languages. Logic programming has found and addressed a number
of such fields [4]. While many of those fields such as databases, constraints,
machine learning, natural languages, etc., are more or less related to Artificial
Intelligence, concurrency seems special in the sense that, although somewhat re-
lated to AI through agent technologies, its principal connection is to distributed
and parallel computing.

Distributed and parallel computing is becoming extremely important because
virtually all computers in the world are going to be interconnected. However, we
have not yet agreed upon a standard formalism or a standard language to deal
with concurrency. Due to the lack of appropriate tools with which to develop net-
worked applications, computers communicate and cooperate much more poorly
than they possibly can.

Concurrent logic programming was born in early 1980’s from the process
interpretation of logic programs [34]. Relational Language [7], the first concrete
proposal of a concurrent logic language, was followed by a succession of proposals,
namely Concurrent Prolog [20], PARLOG [8] and Guarded Horn Clauses (GHC)
[27]. KL1 [29], the Kernel Language of the Fifth Generation Computer Systems
(FGCS) project [22], was designed based on GHC by featuring (among others)
mapping constructs for concurrent processes. To be precise, KL1 is based on Flat
GHC [28], a subset of GHC that restricts guard goals to calls to test predicates.

The mathematical theory of these languages came later in the generalized
setting of concurrent constraint programming (CCP) [18] based on Maher’s
logical interpretation of synchronization [12]. Grand challenges of concurrent
logic/constraint programming are proposed in [32].

Although not as widely recognized as it used to be, Concurrent Prolog was
the first simple high-level language that featured channel mobility exactly in the
sense of π-calculus [15]. When the author proposed GHC as an alternative to
Concurrent Prolog and PARLOG, the principal design guideline was to retain
channel mobility and evolving process structures [22], because GHC was sup-
posed to be the basis of KL1, a language in which to describe operating systems
of Parallel Inference Machines as well as various knowledge-based systems. The

Meta-Interpreter for Flat GHC 3

readers are referred to [22] for various researchers’ personal perspectives of the
FGCS project.

1.3 Meta-Interpretation and Concurrency

Another guideline of the design of GHC was the ability to describe its own
meta-interpreter. Use of simple meta-interpreters as a core technology of system
development was inspired by [5], and early work on Concurrent Prolog pursued
this idea in building logic-based operating systems [21].

A key technology accompanying meta-interpretation turned out to be partial
evaluation. Partial evaluation of a meta-interpreter with an additional “flavor”
with respect to a user program will result in a user program with the additional
“flavor” that runs almost as efficiently as the original user program [24].

This idea, though very elegant, has not become as popular as we had ex-
pected.

One reason is that before the booming of the Internet, a program ran either on
a single processor or on parallel processors with a more or less uniform structure,
where a hardwired approach was manageable and worked. However, software for
distributed computing environments is much harder to build, configure and re-
configure, and run persistently. Such software would not be manageable without
a coherent solution to the difficulties incurred by heterogeneous architectures,
process and code mobility, and persistence.

Another reason is that the languages and the underlying theories were not
mature enough to allow full development of the idea. Meta-interpreters of many
programming languages achieved their objectives by adding small primitives into
the language and exploiting their functionalities. Those primitives were often
beyond the basic computational models of the languages. We believe that pure
symbolic languages are the right way to go in the long run, because only with
theoretical support we can expect a real breakthrough.

1.4 Goal of This Paper

In this paper, we discuss how we can construct a meta-interpreter of Flat GHC,
one of the simplest and earliest concurrent constraint languages. Our objective
is to design the pair of

1. a representation of programs suitable for code mobility and interpretation,
and

2. a pure, simple interpreter of the represented code.

One of the motivations of the work is to use concurrent logic/constraint program-
ming as a concise tool for networked applications. There are strong reasons to
choose concurrent logic/constraint programming as a framework of distributed
computing.

First, it features channel mobility, evolving process structures, and incom-
plete messages (messages with reply boxes), all essential for object-based con-
current programming.

4 Kazunori Ueda

Second, it is unlike most other concurrency frameworks in that data struc-
tures (lists, trees, arrays, etc.) come from the very beginning. This means that
there is little gap between a theoretical model and a practical language. Actually,
a lot of applications have been written in concurrent logic/constraint languages,
notably in KL1 and Oz [23].

Third, it has been extremely stable for more than 15 years. After GHC was
proposed, the main variation was whether to feature atomic tell (publication
of bindings upon commitment) or eventual tell (publication after commitment).
However, by now both concurrent logic programming and concurrent constraint
programming seem to converge on eventual tell, the simpler alternative [22][26].
Indeed, concurrent constraint programming with ask and eventual tell can be
thought of as an abstract model of Flat GHC.

Last, as opposed to other parallel programming languages, it achieves clear
separation of concurrency (concerned with logical aspects of programs) and par-
allelism (concerned with physical mapping of processes). We regard this sepa-
ration of concerns as the most important achievement of KL1 and its parallel
implementation [29]. In other words, by using logical variables as communica-
tion channels we had achieved 100% network transparency within system-area
networks (SAN). The fact that programs developed and tested on sequential ma-
chines ran at least correctly on parallel machines has benefited us enormously
in the development of parallel software. We believe that this feature should be
explored in distributed software as well.

Addressing networked applications using interpreters as a core technology
is promising because flexibility to cope with heterogeneity is more important
than performance. However, it is not obvious whether we can write a reasonably
simple interpreter in a pure concurrent logic/constraint language such as Flat
GHC. A meta-interpreter in a pure, simple concurrent language is fully amenable
to theoretical support including partial evaluation and verification. Also, it can
help analytic approach to language design [32], because meta-interpretation is
considered an acid test of the expressive power of the language. The rôle of
an interpreter technology in networked applications should be clear since an
interpreter is just another name of a virtual machine.

2 Previous Work

Meta-interpreters of symbolic languages date back to a Lisp interpreter in Lisp
around 1960 [13]. Prolog interpreters in Prolog were available and widely used
in 1970’s; an example is the interpreter of the de facto standard DEC-10 Prolog.

Meta-interpreters of Concurrent Prolog can be found in various papers. Fig-
ure 1 shows two versions, the first one in [20] and the second in [17].

Program (a) is very similar to a Prolog interpreter in Prolog, but it relies
on the “large” built-in primitive, clause/2 (clause with two arguments), that
performs synchronization, evaluation of clause guards, and committed choice.
The only thing reified by the interpreter is parallel conjunction. Program (b)
takes both a program and a goal as arguments, and reifies the unification of the

Meta-Interpreter for Flat GHC 5

reduce(true).

reduce((A,B)) :- reduce(A?), reduce(B?).

reduce(A) :- A\=true, A\=(_,_) | clause(A?,B), reduce(B?).

(a) Without a program argument

reduce(Program,true).

reduce(Program,(A,B)) :-

reduce(Program?, A?), reduce(Program?, B?).

reduce(Program,Goal) :-

Goal\=true, Goal\=(A,B),

clause(Goal?,Program?,Body) |

reduce(Program?,Body?).

clause(Goal,[C|Cs],B) :-

new_copy(C?,(H,G,B)), Goal=H, G | true.

clause(Goal,[C|Cs],B) :-

clause(Goal,Cs?,B) | true.

(b) With an explicit program argument

Fig. 1. Meta-Interpreters of Concurrent Prolog

goal with clause heads and the evaluation of guards. Note, however, that most
of the important operations are called from and performed in clause guards. In
particular, clause/3 calls itself recursively from within a clause guard, forming
a nested (or deep) guard.

While Concurrent Prolog employed read-only annotations as a synchroniza-
tion primitive, GHC replaced it with the rule that no bindings (constraints) can
be published from the guard (including the head) of a clause to the caller of the
clause.

Figure 2 shows a GHC interpreter in GHC in [27]. Here it is assumed that
a built-in predicate clauses/2 returns in a frozen form [16] a list of all clauses
whose heads are potentially unifiable with the given goal. Each frozen clause is
a ground term in which original variables are indicated by special constant sym-
bols, and it is melted in the guard of the first clause of resolve/3 by melt-new/2.
The goal melt_new(C, (A :- G|B2)) creates a new term (say T) from a frozen
term C by giving a new variable for each frozen variable in C, and tries to unify
T with (A :- G|B2). However, this unification cannot instantiate A because it
occurs in the head of resolve/3.

The predicate resolve/3 tests the candidate clauses and returns the body
of arbitrary one of the clauses whose guards have been successfully solved. This
many-to-one arbitration is realized by the multi-level binary clause selection
using the nested guard of the predicate resolve/3. It is essential that each
candidate clause is melted after it has been brought into the guard of the first
clause of resolve/3. If it were melted before passed into the guard, all variables

6 Kazunori Ueda

call(true) :- true | true.

call((A, B)) :- true | call(A), call(B).

call(A) :- clauses(A, Clauses) |

resolve(A, Clauses, Body), call(Body).

resolve(A, [C|Cs], B) :- melt_new(C, (A :- G|B2)), call(G) | B=B2.

resolve(A, [C|Cs], B) :- resolve(A, Cs, B2) | B=B2.

Fig. 2. Meta-Interpreter of GHC

in it would be protected against instantiation from the guard. We must protect
variables accessible from outside but allow local variables to be instantiated.

Again, this GHC meta-interpreter calls resolve/3 from within a guard recur-
sively. However, our lesson is that, except for meta-interpreters, we can dispense
with general nested guards. To put it more precisely, we can dispense with guard
goals that may instantiate local variables; restricting guard goals to calls to test
predicates is a more realistic choice. Test predicates are predicates defined in
terms of clauses with no body goals. A nice property of test predicates is that
they deterministically succeed or fail depending on their arguments. They are
regarded as specifying conditions, as opposed to predicates for specifying concur-
rent processes. Test predicates defined using guarded clauses may call themselves
recursively from guards, but unlike general nested guards, there is no need to
maintain multiple layers of variable protection to implement synchronization.
In this sense, languages with restriction to test predicates have been called flat
languages. In most implementations of flat languages, test predicates are further
restricted to predefined ones.

Later development of concurrent logic languages can be phrased as devo-
lution as evolution [26][32] in the sense that it focused on high-performance,
compiler-based implementation of flat languages. Strand [9], KL1 and Janus [19]
all belong to this category. Accordingly, there was less work on meta-interpreters
for the last 10 years. Huntbach [11] shows a meta-interpreter that implements
ask using match/2, a special primitive discussed in detail in Sect. 3.3. Although
using match/2 to implement ask is a natural idea, match/2 turns out to have
properties not enjoyed by other goals definable in concurrent logic languages.
This motivated us to design a meta-interpreter that does not use match/2.

Distributed computing based on concurrent constraint programming is not
a new idea. The Oz group has done a lot of work in this direction [10]. How-
ever, code mobility in Oz is based on bytecode technology, and Oz has added to
CCP a number of new constructs including ports (for many-to-one communica-
tion), cells (value containers that allow destructive update), computation space
(encapsulated store, somewhat affected by nested guards of full GHC and KL1’s
shoen), and higher-order. This is in sharp contrast with the minimalist approach
taken in this paper.

Meta-Interpreter for Flat GHC 7

3 The Problem Statement

Now let us state the goal and the constraints of our problem precisely. Our goal
is to design a binary Flat GHC predicate, say exec, that

– takes
1. a multiset G of goals (represented as a list) to be executed and
2. a ground representation of the program P to execute G, and

– behaves exactly like G running under the ordinary compiled code for P .

The predicate exec/2 is sometimes called a universal predicate because it
can be tailored, at run time, to whatever predicate you like.

The only built-in primitives the exec/2 program is allowed to use are those
definable using (a possible infinite number of) guarded clauses. Other primitives
are considered extralogical and are ruled out. Observing this constraint will
enable the resulting interpreter to run on KLIC [6], which is in our context
considered as a (Flat) GHC-to-C compiler and its runtime system. Flat GHC
and KLIC carefully rule out extralogical built-in primitives because they can
potentially hamper efficient implementation and theoretical support.

A solution to the problem is not obvious because Flat GHC and KLIC do
not have general nested guards, on which the interpreter of full GHC in Sect. 2
depends in a fundamental way.

Some remarks and discussions on our requirements are in order, which are
(1) representation of code, (2) representation of runtime configuration, and (3)
primitives for ask (matching) and tell (unification).

3.1 Representation of Code

Meta-interpreters vary in the representation of programs. Some retrieve pro-
grams from the internal database using primitives like clause/2. This is not
suited to our goal of code mobility and persistence. Some use a list of clauses in
which variables are represented using variables at the level of the interpreters.
This is considered misuse of variables, as criticized by later work on meta-
programming, because those variables are improperly scoped and awkward to
handle. One solution is to use a higher-order construct as in Lambda Prolog
[14], and another solution is to come up with a ground representation of vari-
ables. Although the higher-order approach gives us the most natural solution,
the difference between the two solutions is not large when the programs to be
represented have no nested scope, which is the case with Prolog and Flat GHC.

As we will see later, we have chosen to represent a variable in terms of a
reserved unary constructor with an integer argument. This could be viewed as
a de Bruijn notation as well.

3.2 Representation of Runtime Configuration

In a rule-based language where programs (rewrite rules) are given separately
from expressions (goals), how to represent runtime configurations and how to

8 Kazunori Ueda

represent the programs are independent issues. The two alternatives for the
representation of runtime configurations are

1. to reify logical variables and substitutions and handle them explicitly, and
2. not to reify them but use those at the interpreter level.

We adopt the latter, because

– an interpreted process must be open-ended, that is, it must be able to com-
municate with other native processes running in parallel with the interpreter,

– the reification approach would therefore require ‘up’ and ‘down’ predicates
to move between the two levels of representation and (accordingly) a full-
fledged meta-programming framework in the language, and

– explicit representation can cause performance degradation unless elaborate
optimization is made.

3.3 Primitives for Matching/Ask and Unification/Tell

In the CCP terminology, Prolog and constraint logic languages in their basic
forms are tell -only languages because unification or constraint solving is the
attempt to publish bindings (constraints) to the binding environment (constraint
store). In contrast, concurrent logic/constraint languages are ask+ tell languages
which additionally feature matching (in algebraic terms) or the asking of whether
a given constraint is entailed (in logical terms) by the current store. So how to
implement ask and tell in an interpreter is a key design issue.

The Prolog and GHC versions of tell are unification over finite trees and can
be written as unify(G,H) or G =H. This has the following properties:

1. Immediate — It either succeeds or fails and does not suspend.
2. Monotonic — Its success/failure can depend on the current store; that is,

unify(G,H) that succeeds under some store can fail under a store aug-
mented with additional constraints. However, if we consider failure as a
over-constrained store, unify(G,H) can be thought of as an operator that
monotonically augments the current store.

3. Deterministic — The conjunction of all tells generated in the course of pro-
gram execution deterministically defines the current store.

Now we consider the properties of ask , which appears in concurrent logic
languages as matching between a goal and a clause head. Let σ be the current
store under which the ask is performed. We suppose match(G, H)

– succeeds when there exists a substitution θ such that Gσ = Hσθ,
– suspends when there is no such θ but Gσ and Hσ are unifiable, and
– fails when Gσ and Hσ are non-unifiable.

Clearly, match(G,H) is not immediate. Furthermore, it is neither monotonic
nor deterministic with respect to suspension behavior:

Meta-Interpreter for Flat GHC 9

– match(X, Y) will succeed when Y is uninstantiated but may suspend when Y
is instantiated. This behavior is opposite to that of ordinary CCP processes
which can never be suspended by providing more constraints.

– match(X, Y) ∧ match(3, Y) under the empty store succeeds if executed from
left to right but suspends if executed from right to left.

When simulating matching between a goal G and a clause head H using
match/2, H must have been renamed using fresh variables, and H is therefore
immune to σ. If this convention is enforced, match/2 enjoys monotonicity, that
is, if match/2 succeeds under σ, it succeeds under σσ′ for any σ′. The convention
guarantees determinism as well.

The lesson here is that the scope of the variables in H, the second argument of
match/2, should be handled properly for match/2 to enjoy reasonable properties.
As suggested by [12], the proper semantics of match(G,H) would be whether σ
interpreted as an equality theory implies G = ∃H. Thus the second argument
should specify an existential closure ∃H rather than H. However, then, the
second argument would lose the capability to receive matching terms from G.
For instance, the recursive clause of append/3 in GHC is

append([A|X],Y,Z0) :- true | Z0=[A|Z], append(X,Y,Z).

while the CCP version of the above clause would be less structured:

append(X0,Y,Z0) :- ask(∃ A,X(X0=[A|X])) |
tell(X0=[A|X]), tell(Z0=[A|Z]), append(X,Y,Z).

To summarize, while implementing tell in an interpreter is straightforward, im-
plementing ask without introducing new primitives is a major design issue.

4 A Treecode Representation

In this section, we discuss the design of our treecode representation of Flat
GHC programs, which is interpreted by the treecode interpreter described in
the Sect. 5.

4.1 Treecode

Treecode is intermediate code in the form of a first-order ground term which is
quite close to the original source code. It is more abstract and “structured” than
ordinary bytecode sequences that use forward branching to represent if . . . then
. . . else. Trees are much more versatile than sequences and are much easier to
represent and handle than directed graphs. Indeed, the booming of XML tells us
that standard representation of tagged trees has been long-awaited by a great
number of applications, and XML trees are little more than first-order ground
terms.

Of course, the control flow of a program forms a directed graph in general
and we must represent it somehow. Directed graphs could be created rather

10 Kazunori Ueda

easily by unification over rational terms, but we chose to dispense with circular
structures by representing recursive calls (that form circularity) using explicit
predicate names. When the interpreter encounters a predicate call, it obtains
the code for the predicate using an appropriate lookup method. An optimizing
interpreter may create a directed graph by “instantiating” each predicate call to
its code before starting interpretation.

An alternative representation closer to source code is a set of rewrite rules.
However, it turns out that a set (represented as a list) of rewrite rules is less
suitable for interpretation. This is because GHC “bundles” predicate calls, syn-
chronization and choice in a single construct, namely guarded clauses. While
this bundling simplifies the syntax and the semantics of Flat GHC and cap-
tures the essence of concurrent logic programming, guards – even flat guards
– can specify arbitrary complex conditions that may involve both conjunctive
and disjunctive sets of multiple synchronization points. Programmers also find
it sometimes cumbersome to describe everything using guarded clauses exactly
for the reason why Prolog programmers find that the (P -> Q ; R) construct
sometimes shortens their programs considerably.

As we will see soon, treecode still looks like a set of clauses, but the major
difference from a set of clauses is that the former breaks a set of guards down
to a tree of one-at-a-time conditional branching. In this sense, treecode can be
regarded as structured intermediate code.

4.2 Treecode By Example

Now we are in a position to explain how treecode looks like. Throughout this
section we use append/3 as an example. The treecode for append/3 is:

treecode(6,
[c(1=[], b([<(2)= <(3)],[])),
c(1=[>(4)|>(5)],

b([<(3)=[<(4)|>(6)]],[append(5,2,6)]))])

The first argument, 6, stands for the number of variables used in the treecode,
and the second argument is the main part of the treecode.

The readers may be able to guess what it does basically, since it is quite
similar to the original source code:

append(X, Y,Z) :- X=[] | Y=Z.
append(X0,Y,Z0) :- X0=[A|X] | Z0=[A|Z], append(X,Y,Z).

In this simple example, the treecode still looks like a list of clauses, with
heads (with mutually disjoint variables) omitted and variables represented by
positive integers. The constructor c/2 forms a case branch by taking an ask and
another treecode as arguments. The list of case branches forms a casecode.

The constructor b/2 forms a bodycode by taking a list of tells and a list of
calls to user-defined predicates. The former is understood by the interpreter,
while the latter involves code lookup.

A treecode is either a casecode or a bodycode. Figure 3 shows the syntax of
treecode.

Meta-Interpreter for Flat GHC 11

〈treecode〉 ::= 〈casecode〉 | 〈bodycode〉
〈casecode〉 ::= list of 〈choice〉’s
〈choice〉 ::= c(〈ask〉, 〈treecode〉)
〈ask〉 ::= 〈reg〉 = 〈term〉 | 〈reg〉〈relop〉〈term〉

〈bodycode〉 ::= b(〈tells〉, 〈goals〉)
〈tells〉 ::= list of 〈tell〉’s
〈tell〉 ::= 〈annotatedreg〉 = 〈term〉 | 〈annotatedreg〉 := 〈term〉

〈goals〉 ::= list of 〈goal〉’s
〈goal〉 ::= 〈pred〉(〈reg〉,...)

〈annotatedreg〉 ::= [〈annotation〉]〈reg〉
〈annotation〉 ::= < | << | >

〈reg〉 ::= 1 | 2 | 3 | . . .
〈term〉 ::= 〈functor〉(〈annotatedreg〉, ...)

〈relop〉 ::= > | < | >= | =< | =:= | =\=

Fig. 3. Syntax of Treecode

4.3 Representing and Managing Logical Variables

The unary constructors ‘<’ and ‘>’ have two purposes. First, they distinguish
integer representation of variables from integer constants in the program to be
interpreted. Second, they tell whether a variable has occurred before and whether
it will occur later. Initial mode, denoted, ‘>’, means the creation of a new vari-
able, while final mode, denoted ‘<’, means the final access to an already created
variable. In append/3, each variable occurs exactly twice, which means that all
accesses are either initial or final accesses. For variables that are read more than
once, we use another reserved unary constructor, ‘<<’, to indicate that they are
accessed in intermediate mode, that is, they are neither the first nor the last
occurrences.

The first occurrence of a variable in each case branch (1 in the case of
append/3) and the arguments of user-defined predicates are supposed to be
final-mode. These are the only places where mode annotations are omitted for
ease of interpretation.

Representing variables by positive integers suggests the use of arrays to rep-
resent them. We use a constructor g/n to represent goal records, where n is the
number of variables in the treecode that works on the goal. The structure g/n
can be regarded as a register vector as well.

Let a be the arity of the predicate represented by the treecode. The first ath
arguments of g/n are the arguments of the original goal, while the remaining
arguments are local variables of the original goal. Thus this structure can be
regarded both (i) as a concretization of goals that makes housekeeping explicit
and (ii) as an abstraction of implementation-level goal records. When the struc-
ture is created, the first ath arguments are initialized to the arguments of the
original goal, while the remaining arguments are initialized to the constant 0.
The value of a is not recorded in the treecode itself. It is the responsibility of

12 Kazunori Ueda

the predicate try/3 to “apply” treecode to a goal record, as will be described in
Sect. 5.

The distinction between initial, intermediate and final modes not only makes
interpretation easier but also allows the reuse of the same register for different
variables. For example, the code for append/3 could be written alternatively as:

[c(1=[], b([<(2)= <(3)],[])),
c(1=[>(4)|>(1)],

b([<(3)=[<(4)|>(3)]],[append(1,2,3)]))]

because

– Variable 1 in the second branch, holding the first argument of the caller, will
not be accessed after its principal constructor has been known, and

– Variable 3 in the second branch, holding the third argument of the caller,
will not be accessed after it has been instantiated to an non-empty list.

This is register allocation optimization which is optional in our treecode. Without
it, different numbers represent different single-assignment variables and the code
is more declarative. With it, the size of goal records can be reduced.

5 Structure of the Treecode Interpreter

This section describes, step by step, how our treecode interpreter works on a
goal record. We focus on basic ask and tell operations. The actual interpreter
handles arithmetic built-in predicates for comparison (guard) and assignment
(body), but it is straightforward to include them.

The two main predicates of the interpreter are exec/2 and try/3. The predi-
cate exec/2 takes a multiset G of goals and a program E for executing them. We
call the program an environment because it associates each predicate name with
its treecode. The goal exec(G, E) resolves predicate names in G into their corre-
sponding treecode, and invokes try/3 for each goal in G after preparing a goal
record for the goal. The predicate try/3 takes a goal record, a treecode and an
environment, and applies the treecode to the goal record. The more interesting
aspects of the interpreter lie in try/3.

5.1 Deterministic and Nondeterministic Choice

When the treecode given to try/3 is casecode, it deterministically chooses one
branch as follows: It picks up the first case branch of the form c(Ask,Treecode),
where Ask is of the form n =T . This causes the interpreter to wait for the prin-
cipal constructor of the nth argument, and when it is available, it is matched
against the constructor of T . The n’s in each case branch must be identical; thus
casecode has exactly one synchronization point for all its top-level asks and is
therefore deterministic.

When some guard involves the asking of more than one symbol, it is compiled
into nested casecode. For instance, the program

Meta-Interpreter for Flat GHC 13

part(_,[], S, L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A>=X | S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S, L0) :- A< X | L0=[X|L], part(A,Xs,S,L).

can be compiled into:

[c(2=[], b([<(3)=[],<(4)=[]],[])),
c(2=[>(5)|>(2)],

[c(1>= <<(5), b([<(3)=[<(5)|>(3)]],[part(1,2,3,4)])),
c(1< <<(5), b([<(4)=[<(5)|>(4)]],[part(1,2,3,4)]))])]

Note that the matching of the second argument with [X|Xs] has been factored,
as would be done by an optimizing compiler.

Nested casecode is still deterministic because it has at most one synchro-
nization point (i.e., the variable on whose value the interpreter suspends) at any
time. Our experience with Flat GHC/KL1 programming has shown that the
majority of predicates are deterministic.

Nondeterministic predicates are those which contain disjunctive wait, namely
wait for the instantiation of one of several variables. Some of the predicates
people write are nondeterministic, but most of them involve binary choice only.
For instance, the following stream merging program

merge([],Ys,Zs) :- true | Zs=Ys.
merge(Xs,[],Zs) :- true | Zs=Xs.
merge([X|Xs],Ys,Zs0) :- true | Zs0=[X|Zs], merge(Xs,Ys,Zs).
merge(Xs,[Y|Ys],Zs0) :- true | Zs0=[Y|Zs], merge(Xs,Ys,Zs).

has two disjunctive synchronization points, namely the principal constructor of
the first argument and the principal constructor of the second argument.

In this paper we focus on binary nondeterministic choice, which is simpler
to implement than general multiway choice. It can be expressed in terms of
two nondeterministic branches in the interpreter. By extending our treecode in
Fig. 3, the treecode for merge/3 can be written as follows:

treecode(4,
(1->[c(1=[], b([<(2)= <(3)],[])),

c(1=[>(4)|>(1)], b([<(3)=[<(4)|>(3)]],[merge(1,2,3)]))])
+ (2->[c(2=[], b([<(1)= <(3)],[])),

c(2=[>(4)|>(2)], b([<(3)=[<(4)|>(3)]],[merge(1,2,3)]))]))

The extended syntax of treecode is:

〈treecode〉 ::= 〈casecode〉 | 〈bodycode〉 | 〈nondeterministiccode〉
〈nondeterministiccode〉 ::= (〈reg〉 -> 〈treecode〉) + (〈reg〉 -> 〈treecode〉)

where the form (n1 → treecode1) + (n2 → treecode2) causes the goal to wait
disjunctively upon variables n1 and n2.

14 Kazunori Ueda

5.2 Interpreting Casecode

The ask part of a casecode of the form n =T , where T is a non-variable term
whose arguments are all annotatedregs, is interpreted by the following piece of
code:

try_one(A0,Rn=T,B,Cs,Env) :- true |
setarg(Rn,A0,A0Rn,ARn,A), functor(A0Rn,A0RnF,A0RnN),
functor(T,TF,TN), test_pf(A0RnF,A0RnN,TF,TN,Res),
try_match(Res,T,A0Rn,ARn,A,B,Cs,Env).

test_pf(F1,A1,F2,A2,Res) :- F1=F2, A1=:=A2 | Res=yes(A1).
otherwise.
test_pf(F1,A1,F2,A2,Res) :- true | Res=no.

try_match(yes(N),T,A0Rn,ARn,A0,B,Cs,Env) :- true |
ARn=0, getargs(1,N,T,A0Rn,A0,A), try(A,B,Env).

try_match(no, T,A0Rn,ARn,A, B,Cs,Env) :- true |
ARn=A0Rn, try(A,Cs,Env).

getargs(K,N,T,A0Rn,A0,A) :- K> N | A0=A.
getargs(K,N,T,A0Rn,A0,A) :- K=<N |

arg(K,T,Tk), setarg(K,A0Rn,A0Rnk,0,A0Rn1),
getputreg(Tk,A0,A0Rnk,A1),
K1:=K+1, getargs(K1,N,T,A0Rn1,A1,A).

getputreg(<(Rk), A0,ARk,A) :- true | setarg(Rk,A0,ARk,0,A).
getputreg(<<(Rk),A0,ARk,A) :- true | setarg(Rk,A0,ARk,ARk,A).
getputreg(>(Rk), A0,ARk,A) :- true | setarg(Rk,A0,_,ARk,A).

This is almost a Prolog program with a cut in every clause. KL1’s built-in
predicate, setarg(I, T,X, X ′, T ′), is like Prolog’s arg(I, T, X) except that T ′

is bound to T with its Ith element replaced by X ′. This is a declarative array
update primitive and used extensively in the interpreter to read data from, and
write data to, goal records.

The try_one/5 program first retrieves the Rnth variable in the goal record
A0, binding it to A0Rn. Then it checks if A0Rn is instantiated and its principal
constructor matches that of T, using functor/3 and test_pf/5. If the matching
succeeds, the first clause of try_match/8 stores (by using getargs/6) the top-
level arguments of A0Rn to the goal record A0 according to the prescription
template T. Then it executes the bodycode B under the updated goal record A
and the environment Env. The first goal AR0=0 binds the Rnth element in A to
0; this is to explicitly discharge a pointer from the goal record to the top-level
structure that has just been asked. The interpreter uses the constant 0 as a filler
when some element of a goal record does not contain a meaningful value, that
is, before a meaningful value is loaded or after a meaningful value is taken away.

Meta-Interpreter for Flat GHC 15

5.3 Interpreting Bodycode

Bodycode performs tells and the spawning of user-defined body goals:

try(A0,b(BU,BN),Env) :- true | tell(A0,BU,A), spawn(A,BN,Env).

The tells are not only to instantiate variables passed from the caller; it is also
used to prepare non-variable terms to be passed to user-defined body goals,
and to unify two variables to create a shared variable between two body goals.
How tell/3 manipulates data is quite similar to how getargs/6 gets data from
a non-variable goal argument. A tell of the form n = T manipulates the nth
element of the goal record according to the template T :

tell(A0,[(Rn=T)|BU], A) :- true |
getputreg(Rn,A0,A0Rn,A1), tell_one(T,A0Rn,A1,BU,A).

tell(A0,[], A) :- true | A=A0.

tell_one(<(Rk), A0Rn,A1,BU,A) :- true |
getputreg(<(Rk),A1,A0Rn,A2), tell(A2,BU,A). /* load Rk */

tell_one(>(Rk), A0Rn,A1,BU,A) :- true |
getputreg(>(Rk),A1,A0Rn,A2), tell(A2,BU,A). /* store Rk */

tell_one(T, A0Rn,A1,BU,A) :- integer(T) |
A0Rn=T, tell(A1,BU,A).

otherwise.
tell_one(T, A0Rn,A1,BU,A) :- true |

functor(T,F,N), new_functor(A0Rn0,F,N),
putargs(1,N,T,A0Rn0,A0Rn,A1,A2), tell(A2,BU,A).

putargs(K,N,T,A0Rn0,A0Rn,A0,A) :- K> N | A0Rn0=A0Rn, A0=A.
putargs(K,N,T,A0Rn0,A0Rn,A0,A) :- K=<N |

arg(K,T,Tk), setarg(K,A0Rn0,_,A0Rnk,A0Rn1),
getputreg(Tk,A0,A0Rnk,A1),
K1:=K+1, putargs(K1,N,T,A0Rn1,A0Rn,A1,A).

Note that the two functionalities of Prolog’s functor/3 are provided by differ-
ent KL1 built-ins, functor/3 and new_functor/3. While functor/3 suspends
on the first argument and examines its principal constructor, new_functor/3
creates a new structure with a constructor specified by the second and the third
arguments. The major difference between new_functor/3 and its Prolog coun-
terpart is that the arguments of the structure are initialized to 0 rather than
fresh, distinct variables. This is because we have found that initializing its ele-
ments to a filler constant and replacing them using setarg/5 shows much better
affinity with a static mode system that plays various important rôles [30] in
concurrent logic programming. As discussed in [31], strong moding is deeply
concerned with the number of access paths (or references) to each variable (or
its value). It prefers variables with exactly two occurrences to those with three
or more occurrences by giving the former more generic, less-constrained modes.
Our setarg/5 does not copy or discard the (direct or indirect) access paths to

16 Kazunori Ueda

the elements of an array, including the element to be removed and the element
with which to fill in the blank.

Linearity analysis [33] for Mode Flat GHC is more directly concerned with the
number of access paths. Under reasonable conditions, it enables us to implement
setarg/5 as destructive update as long as the original structure is not shared.

Both mode and linearity systems encourage resource-conscious programming.
Resource-conscious programming means to pay attention to the number of oc-
currences of each variable and to prefer variables with exactly two occurrences.
This is not so restrictive as it might seem, and our static analyzer klint [33] and
an automated debugger kima [2][3] support it by detecting – and even correct-
ing – inadvertently too many or too few occurrences of the variables. Resource-
conscious programs are easier to execute on a distributed platform because they
can benefit more from compile-time garbage collection.

Finally, we show the definition of spawn/3 for spawning body goals according
to the bodycode and the current goal record:

spawn(A, [] ,Env) :- true | true.
spawn(A0,[B0|BN],Env) :- true |

functor(B0,F,N), setargs(1,N,B0,A0,B,A),
exec_one(B,Env), spawn(A,BN,Env).

/* registers once read are cleared */
setargs(K,N,B0,A0,B,A) :- K> N | B=B0, A=A0.
setargs(K,N,B0,A0,B,A) :- K=<N |

setarg(K,B0,Bk,ABk,B1), setarg(Bk,A0,ABk,0,A1),
K1 := K+1, setargs(K1,N,B1,A1,B,A).

Note that concurrent execution of body goals is realized by the concurrent exe-
cution of exec_one’s.

5.4 Summary

Now we have almost finished the description of our interpreter. To be self-
contained, here we show all the remaining predicates.

/* The interpreter’s top-level */
exec([],Env) :- true | true.
exec([G|Gs],Env) :- true | exec_one(G,Env), exec(Gs,Env).

exec_one(G,Env) :- true |
retrieve(G,Env,TC), prepare_goalrec_body(G,TC,A,B),
try(A,B,Env).

retrieve(G,Env,TC) :- true |
functor(G,P,N), retrieve(P,N,Env,TC).

retrieve(P,N,[P/N-TC0|_],TC) :- true | TC=TC0.
otherwise.

Meta-Interpreter for Flat GHC 17

retrieve(P,N,[_|Env],TC) :- true | retrieve(P,N,Env,TC).

prepare_goalrec_body(G0,treecode(N,B0),A,B) :- true |
B=B0,
functor(G0,_,Ng), new_functor(A0,g,N),
transfer_args(1,Ng,G0,A0,_,A).

transfer_args(I,N,G0,A0,G,A) :- I> N | G=G0, A=A0.
transfer_args(I,N,G0,A0,G,A) :- I=<N |

setarg(I,G0,Gi,0,G1), setarg(I,A0,_,Gi,A1),
I1 := I+1, transfer_args(I1,N,G1,A1,G,A).

/* Simply a case branch based on the syntax of treecode */
try(A,[c(G,B)|Cs],Env) :- true |

try_one(A,G,B,Cs,Env).
try(A,(Rn1->Cs1)+(Rn2->Cs2),Env) :- true |

try_two(A,Rn1,Cs1,Rn2,Cs2,Env).
try(A0,b(BU,BN),Env) :- true |

tell(A0,BU,A), spawn(A,BN,Env).

/* Binary disjunctive wait */
try_two(A0,Rn1,Cs1,Rn2,Cs2,Env) :- true |

setarg(Rn1,A0,A0Rn1,ARn1,A1), setarg(Rn2,A1,A0Rn2,ARn2,A),
try_two(A,A0Rn1,ARn1,A0Rn2,ARn2,Cs1,Cs2,Env).

try_two(A,A0Rn1,ARn1,A0Rn2,ARn2,Cs1,Cs2,Env) :- wait(A0Rn1) |
ARn1=A0Rn1, ARn2=A0Rn2, append(Cs1,Cs2,Cs), try(A,Cs,Env).

try_two(A,A0Rn1,ARn1,A0Rn2,ARn2,Cs1,Cs2,Env) :- wait(A0Rn2) |
ARn1=A0Rn1, ARn2=A0Rn2, append(Cs2,Cs1,Cs), try(A,Cs,Env).

append([], Y,Z) :- true | Y=Z.
append([A|X],Y,Z0) :- true | Z0=[A|Z], append(X,Y,Z).

The restrictions of the above interpreter and possible solutions to them are
as follows:

1. Three unary constructors, ‘<’, ‘>’ and ‘<<’, are reserved. This can be easily
circumvented by wrapping non-variable as well as variable symbols by some
constructors, but we did not do so for the readability of treecode.

2. Currently, the only built-in predicates provided (but not shown above) are
those for arithmetics. However, other built-ins such as those used in the
interpreter itself can be easily provided.

3. A nonlinear clause head, namely a head with repeated occurrences of a vari-
able, cannot be compiled into treecode. Extending the interpreter to deal
with nonlinear heads is straightforward and left as an exercise. However, the
use of a nonlinear clause head to check the equality of arguments is discour-
aged, because it is the only construct that may take unbounded execution

18 Kazunori Ueda

time by comparing two terms of arbitrarily large sizes. For distributed and
real-time applications, it is desirable that the execution time of every prim-
itive language construct is bounded.

4. The only construct whose support requires non-straightforward hacking on
the interpreter is non-binary disjunctive wait. Since n-ary disjunctive wait
is essentially n-ary arbitration, this could be supported by implementing an
n-ary arbiter which observes variables x1, . . . , xn and returns an arbitrary k
such that xk has been instantiated.

The interpreter is not self-applicable in its present form, but the discussions
above indicate that we are quite close to a self-applicable meta-interpreter. Note
that the otherwise construct to specify default cases can be expressed implicitly
using casecode because the ask parts of its branches are tested both determin-
istically and sequentially.

6 Partial Evaluation

How can one be assured that interpreted treecode behaves exactly the same as
its original code?

Instead of showing a translator from Flat GHC to treecode and its correct-
ness, here we illustrate how the treecode for append/3 applied to our interpreter
can be partially evaluated to its original Flat GHC code.

The rôle of partial evaluation in our framework is twofold. First, the re-
ceiver of treecode can figure out what Flat GHC code it represents. Second,
although the interpreter itself is not directly amenable to static analysis because
its behavior depends on the treecode given, the original code restored by partial
evaluation is amenable to static analysis. In this way we can attach various kinds
of type information (including mode and linearity) to the arguments of a goal
whose behavior is determined by treecode.

For partial evaluation, we use unfold/fold transformation rules described in
[28]. The rules consist of the following:

1. Normalization — executes unification goals in a guard and a body so that
each clause reaches its unique normal form. A normal form should have no
unification goals in guards, and all residual unification body goals should be
to instantiate head variables of the clause.

2. Immediate Execution — deals with the unfolding of a non-unification body
goal which does not involve synchronization. That is, the rule is applicable
only when, for each clause C in the program and each goal g to be unfolded,
either g is reducible using C or, for all σ, gσ is irreducible using C.

3. Case Splitting — deals with the unfolding of non-unification body goals of
a clause C which may promote asks from the guards of clauses used for the
unfolding to the guard of C. The clause C must not have unification body
goals.
To see how the Case Splitting of C works, consider a goal g that is about
to be reduced using C. For g to generate some output, at least one more

Meta-Interpreter for Flat GHC 19

reduction (of one of the body goals of C) is necessary because C has no
unification body goals. Case splitting enumerates all the possibilities of the
first such reduction.

4. Folding — which is essentially the same as the Tamaki-Sato folding rule [25].

The major difference from the Tamaki-Sato rule set is that unfolding is split
into two incomparable rules, Immediate Execution and Case Splitting , to deal
with synchronization.

Let E be the treecode for append/3:

[append/3-treecode(6,
[c(1=[], b([<(2)= <(3)],[])),
c(1=[>(4)|>(1)], b([<(3)=[<(4)|>(3)]],[append(1,2,3)]))])]

To show that exec_one(append(X,Y,Z),E) behaves the same as append(X,Y,Z)
under its standard definition, let us start with a clause

append(X,Y,Z) :- true | exec_one(append(X,Y,Z),E).
and start applying Immediate Execution to its body goal. Using exec_one/2
shown in Sect. 5.4, we obtain

append(X,Y,Z) :- true |
retrieve(append(X,Y,Z),E,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(A,B,E).

With two more applications of Immediate Execution, first to the goal retrieve/3
and the second to the primitive functor/3, we obtain

append(X,Y,Z) :- true |
P=append, N=3, retrieve(P,N,E,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(A,B,E).

which can be normalized to

append(X,Y,Z) :- true |
retrieve(append,3,E,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(A,B,E).

With several steps of Immediate Execution and Normalization, we arrive at

append(X,Y,Z) :- true |
transfer_args(1,3,append(X,Y,Z),g(0,0,0,0,0,0),_,A),
try(A,[c(1=[],b([<(2)= <(3)],[])),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)]))],E).
where transfer_args/6 “loads” the arguments X, Y, Z to the goal record and
returns the result to A. Further steps of Immediate Execution and Normalization
lead us to

20 Kazunori Ueda

append(X,Y,Z) :- true |
functor(X,A0RnF,A0RnN),
test_pf(A0RnF,A0RnN,[],0,Res),
try_match(Res,[],X,ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
This is the first point at which we can’t apply Immediate Execution or Normal-
ization.

We regard the primitive functor/3 as comprising clauses such as:

functor([], F,N) :- true | F=[], N=0.
functor([_|_],F,N) :- true | F=’.’, N=2.
functor(f(_), F,N) :- true | F=f, N=1.

There is one such clause for each constructor available, but without loss of gen-
erality we can focus on the above three clauses, of which the third one is meant
to be a representative of all constructors irrelevant to the current example.

Now we apply Case Splitting and obtain the following:

append([],Y,Z) :- true |
A0RnF=[], A0RnN=0,
test_pf(A0RnF,A0RnN,[],0,Res),
try_match(Res,[],[],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
append([H|T],Y,Z) :- true |
A0RnF=’.’, A0RnN=2,
test_pf(A0RnF,A0RnN,[],0,Res),
try_match(Res,[],[H|T],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
append(f(X),Y,Z) :- true |
A0RnF=f, A0RnN=1,
test_pf(A0RnF,A0RnN,[],0,Res),
try_match(Res,[],f(X),ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
That is, we unfold functor/3 and promote its asks to the guards of append/3.
The Case Splitting rule dictates that we should unfold test_pf/5 and try_
match/7 as well; however, unfolding test_pf/5 using its first clause, for instance,
would promote two asks, A0RnF=[] and A0RnN=:=0, which can never be satisfied
because the two variables don’t occur in the head of append/3. Clauses with
unsatisfiable asks are deleted finally. Note that clauses below the otherwise
directive (such as the second clause of test_pf/5) implicitly perform all asks in
the clauses above the otherwise.

Now we come back to applying Normalization and Immediate Execution,
which leads us via

append([],Y,Z) :- true |
try_match(yes(0),[],[],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

Meta-Interpreter for Flat GHC 21

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
append([H|T],Y,Z) :- true |
try_match(no,[],[H|T],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
append(f(X),Y,Z) :- true |
try_match(no,[],f(X),ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]),

c(1=[>(4)|>(1)],b([<(3)=[<(4)|>(3)]],[append(1,2,3)])),E).
to the following:

append([],Y,Z) :- true |
getargs(1,0,[],[],g(0,Y,Z,0,0,0),A),
try(A,b([<(2)= <(3)],[]),E).

append([H|T],Y,Z) :- true |
getargs(1,2,[>(4)|>(1)],[H|T],g(0,Y,Z,0,0,0),A),
try(A,b([<(3)=[<(4)|>(3)]],[append(1,2,3)]),E).

append(f(X),Y,Z) :- true | try(g(f(X),Y,Z,0,0,0),[],E).
Here, the rules as stated in [28] do not allow Immediate Execution of the third

clause because we cannot form any unfolded clause to replace it. However, a close
look at the reason why assures us that this clause can indeed be removed. The
removal of a clause C whose body goal can never proceed changes the behavior
of a goal g when there is another clause C ′ that can reduce g. However, the three
clauses of append/3 above don’t overlap with one another; that is, any goal that
can be reduced using the third clause and then gets stuck will get stuck without
it.

By steps of Immediate Execution, we can “load” necessary values to registers:

append([],Y,Z) :- true |
try(g(0,Y,Z,0,0,0),b([<(2)= <(3)],[]),E).

append([H|T],Y,Z) :- true |
try(g(T,Y,Z,H,0,0),b([<(3)=[<(4)|>(3)]],[append(1,2,3)]),E).

Now we have restored the guards of the original append/3, which is much more
than halfway to our goal. It remains to restore the bodies, and this can be done
by repetitive application of Immediate Execution and Normalization:

append([],Y,Z) :- true | Y=Z.
append([H|T],Y,Z) :- true |
Z=[H|A0Rn], exec_one(append(T,Y,A0Rn),E).

Finally, we fold the body goal of the second clause using the clause we coined
initially, and obtain the following:

append([], Y,Z) :- true | Y=Z.
append([H|T],Y,Z) :- true | Z=[H|A0Rn], append(T,Y,A0Rn).

We anticipate that the significance of partial evaluation in our context is it
enables us to use available tools for “just-in-time” static analysis. For faster ex-
ecution, designing an optimizing compiler from treecode to machine code would
be more appropriate than going back from treecode to Flat GHC source code.

22 Kazunori Ueda

7 Conclusions

We have described an interpreter of Flat GHC treecode in Flat GHC. The in-
terpreter uses only pure built-in primitives, that is, those whose behavior can be
defined using a set of guarded clauses (e.g., functor/3, setarg/5, etc.) or by
simple source-to-source transformation (otherwise). The interpreter is only 39
clauses long (without arithmetics), and runs directly on KLIC.

Treecode is very close to source code but is designed so that it can be easily
interpreted, transmitted over the network, and stored in files. The major dif-
ferences from most bytecode representations are that it is more structured and,
more importantly, that it is inherently concurrent.

The design of an interpreter involves decisions as to what are reified and
what are not. To allow interpreted processes to freely communicate with non-
interpreted, native processes, we made the following design choices:

– Reified : code, reduction, concurrency and nondeterminism; goal records, ar-
gument registers and temporary registers; control structures

– Not reified : logical variables and substitutions (constraints); heaps; repre-
sentation of terms.

Although our initial objective was to have an 100% pure interpreter of Flat
GHC, the outcome can be viewed also as a virtual machine working on register
vectors. The three annotations, ‘>’, ‘<’, and ‘<<’, are reminiscent of the distinction
between put and get instructions in the Warren Abstract Machine [1].

Translation from source code to treecode is straightforward for most cases.
For deterministic programs, its essence is to build a decision tree for clause selec-
tion. Some complication arises only when a predicate has both conjunctive and
disjunctive synchronization points. The paper did not show a concrete transla-
tion algorithm, but instead illustrated how a treecode could be translated back
to its source code using partial evaluation. Note that the source code could be
restored because the interpreter was a meta-interpreter. Partial evaluation thus
ensures the applicability of program analysis to interpreted code. Type analysis
is important for an interpreted process to communicate with a native process
running with no runtime type information. It is also important in building a
stub and a skeleton of a (marshaled) logical stream laid between remote sites.

Our primary future work is to deploy those technologies to demonstrate that
concurrent logic/constraint programming can act, possibly with minimal exten-
sions, as a high-level and concise formalism for distributed programming. An-
other important direction is, starting with treecode, to develop an appropriate
intermediate code representation for optimizing compilers. This is important for
another application of concurrent languages, namely high-performance parallel
computation.

Acknowledgment

Comments from anonymous referees were useful in improving the presentation
of the paper.

Meta-Interpreter for Flat GHC 23

References

1. Aı̈t-Kaci, H., Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT
Press, Cambridge, MA, 1991.

2. Ajiro, Y., Ueda, K. and Cho, K., Error-Correcting Source Code. In Proc. Fourth
Int. Conf. on Principles and Practice of Constraint Programming (CP’98), LNCS
1520, Springer-Verlag, Berlin, 1998, pp. 40–54.

3. Ajiro, Y. and Ueda, K., Kima – an Automated Error Correction System for Con-
current Logic Programs. In Proc. Fourth Int. Workshop on Automated Debugging
(AADEBUG 2000), Ducassé, M. (ed.), 2000.
http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html

4. Apt, K. R., Marek, V. W., Truszczynski M., and Warren D. S. (eds.), The Logic
Programming Paradigm: A 25-Year Perspective. Springer-Verlag, Berlin, 1999.

5. Bowen, K. A. and Kowalski, R. A., Amalgamating Language and Meta-Language
in Logic Programming. In Logic Programming, Clark, K. L. and Tärnlund, S. Å.
(eds.), Academic Press, London, pp. 153–172, 1982.

6. Chikayama, T., Fujise, T. and Sekita, D., A Portable and Efficient Implementation
of KL1. In Proc. 6th Int. Symp. on Programming Language Implementation and
Logic Programming (PLILP’94), LNCS 844, Springer-Verlag, Berlin, 1994, pp. 25–
39.

7. Clark, K. L. and Gregory, S., A Relational Language for Parallel Programming. In
Proc. ACM Conf. on Functional Programming Languages and Computer Architec-
ture (FPCA’81), ACM, 1981, pp. 171–178.

8. Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM.
Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1–49.

9. Foster, I. and Taylor, S., Strand: a Practical Parallel Programming Tool. In Proc.
1989 North American Conf. on Logic Programming (NACLP’89), The MIT Press,
Cambridge, MA, 1989, pp. 497–512.

10. Haridi, S., Van Roy, P., Brand, P. and Schulte, C., Programming Languages for Dis-
tributed Applications. New Generation Computing, Vol. 16, No. 3 (1998), pp. 223–
261.

11. Huntbach, M. M., Ringwood, G. A., Agent-Oriented Programming: From Prolog
to Guarded Definite Clauses. LNCS 1630, Springer-Verlag, Berlin, 1999.

12. Maher, M. J., Logic Semantics for a Class of Committed-Choice Programs. In Proc.
Fourth Int. Conf. on Logic Programming (ICLP’87), The MIT Press, Cambridge,
MA, 1987, pp. 858–876.

13. McCarthy, J., Lisp 1.5 Programmer’s Manual. MIT Press Cambridge, MA, 1962.
14. Miller, D. and Nadathur, G., Higher-order Logic Programming. In Proc. Third Int.

Conf. on Logic Programming (ICLP’86), LNCS 225, Springer-Verlag, Berlin, 1986,
pp. 448–462.

15. Milner, R. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

16. Nakashima, H., Ueda, K. and Tomura, S., What Is a Variable in Prolog? In Proc.
Int. Conf. on Fifth Generation Computer Systems 1984 (FGCS’84), ICOT, Tokyo,
1984, pp. 327–332.

17. Safra, M. and Shapiro, E. Y., Meta Interpreters for Real, In Information Processing
86, Kugler, H.-J. (ed.), North-Holland, Amsterdam, pp. 271–278, 1986.

18. Saraswat, V. A. and Rinard, M., Concurrent Constraint Programming (Extended
Abstract). In Conf. Record of the Seventeenth Annual ACM Symp. on Principles
of Programming Languages (POPL’90), ACM Press, 1990, pp. 232–245.

24 Kazunori Ueda

19. Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-
straint Programming. In Proc. 1990 North American Conference on Logic Pro-
gramming (NACLP’90), The MIT Press, Cambridge, MA, 1990, pp. 431–446.

20. Shapiro, E. Y., Concurrent Prolog: A Progress Report. IEEE Computer, Vol. 19,
No. 8 (1986), pp. 44–58.

21. Shapiro, E. Y. (ed.), Concurrent Prolog: Collected Papers, Volumes I+II. The MIT
Press, Cambridge, MA, 1987.

22. Shapiro, E. Y., Warren, D. H. D., Fuchi, K., Kowalski, R. A., Furukawa, K., Ueda,
K., Kahn, K. M., Chikayama, T. and Tick, E., The Fifth Generation Project:
Personal Perspectives. Comm. ACM, Vol. 36, No. 3 (1993), pp. 46–103.

23. Smolka, G., The Oz Programming Model. In Computer Science Today, van
Leeuwen, J. (ed.), LNCS 1000, Springer-Verlag, Berlin, 1995, pp. 324–343.

24. Takeuchi, A. and Furukawa, K., Partial Evaluation of Prolog Programs and Its
Application to Meta Programming. In Information Processing 86, Kugler, H.-J.
(ed.), North-Holland, Amsterdam, 1986, pp. 415–420.

25. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs. In Proc.
Second Int. Logic Programming Conf. (ICLP’84), Uppsala Univ., Sweden, 1984,
pp. 127–138.

26. Tick, E. The Deevolution of Concurrent Logic Programming Languages. J. Logic
Programming, Vol. 23, No. 2 (1995), pp. 89–123.

27. Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo, 1985.
Also in Logic Programming ’85, Wada, E. (ed.), LNCS 221, Springer-Verlag, Berlin,
1986, pp. 168–179.

28. Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1988 (FGCS’88), ICOT, Tokyo,
1988, pp. 582–591.

29. Ueda, K. and Chikayama, T. Design of the Kernel Language for the Parallel Infer-
ence Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494–500.

30. Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3–43.

31. Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems
(PSLS’95), LNCS 1068, Springer-Verlag, Berlin, 1996, pp. 134–153.

32. Ueda, K., Concurrent Logic/Constraint Programming: The Next 10 Years. In [4],
1999, pp. 53–71.

33. Ueda, K., Linearity Analysis of Concurrent Logic Programs. In Proc. Int. Workshop
on Parallel and Distributed Computing for Symbolic and Irregular Applications, Ito,
T. and Yuasa, T. (eds.), World Scientific, Singapore, 2000, pp. 253–270.

34. van Emden, M. H. and de Lucena Filho, G. J., Predicate Logic as a Language for
Parallel Programming. In Logic Programming, Clark, K. L. and Tärnlund, S. -Å.
(eds.), Academic Press, London, 1982, pp. 189–198.

