ICLP'01 tutorial A Close Look at Constraint-Based Concurrency

Kazunori Ueda Waseda University Tokyo, Japan

Copyright (C) 2001 Kazunori Ueda

 Constraint-based concurrency (CBC) -Essence of constraint-based communication -Relation to name-based concurrency Type systems and analyses for CBC -modes (directional types) and linear types Strict linearity and its implications Capabilities: types for strict linearity with sharing

Papers

 Resource-Passing Concurrent Programming. In Proc. Fourth Int. Symp. on Theoretical Aspects of Computer Software, LNCS 2215, Springer, 2001, pp. 95-126.

Concurrent Logic/Constraint Programming: The Next 10 Years.

In *The Logic Programming Paradigm: A 25-Year Perspective*, Apt, K.R. *et al.* (eds.), Springer, 1999, pp.53-71.

For other papers see bibliography.

Talk Outline

 Constraint-based concurrency (CBC) -Essence of constraint-based communication -Relation to name-based concurrency Type systems and analyses for CBC -modes (directional types) and linear types Strict linearity and its implications Capabilities: types for strict linearity with sharing

Constraint-Based Concurrency

Concurrency formalism & language based on -single-assignment (write-once) channels and -constructors cf. name-based concurrency Also known as -concurrent logic programming -concurrent constraint programming (CCP) Born and used as languages (early 1980's); then recognized and studied as formalisms

• Syntax of the (asynchronous) π -calculus $P:=\overline{x}y$ (output – send y along x) x(y). P(input – receive y from x) (inaction) $\mathbf{0}$ P|P(parallel composition) (hiding) (v)P[x=y]P(match) P(replication) Structural congruence $-!P \equiv P|!P \qquad -[x=x]P \equiv P$ $-(x)(P|Q) \equiv P|(x)Q$ if x is not free in P

Name-Based Concurrency

• Reduction semantics of the π -calculus

 $x(y) \cdot P \mid \overline{x}z \cdot Q \rightarrow P\{z/y\} \mid Q$ $P \rightarrow P'$ $P | Q \rightarrow P' | Q$ $\frac{P \rightarrow P'}{(y) P \rightarrow (y) P'}$ $Q \equiv P \quad P \rightarrow P' \quad P' \equiv Q'$ $Q \rightarrow Q'$

Single-Assignment Channels

Also known as logical variables Can be written at most once -by *tell*ing a constraint (= partial information) on the value of the channel (unification) • e.g., tell S = [read(X)|S']Reading is non-destructive -by asking if a certain constraint is entailed (term matching) • e.g., ask $\exists A \exists S'(S = [A|S'])$ -covers both *input* and *match* in the π -calculus

Single-Assignment Channels

 The set of all published constraints (tells) forms a constraint store.

- Since reading is non-destructive, constraint store is monotonic.
 - -Still, it's amenable to garbage collection because of its highly local nature.
- The use of constraints for message passing doesn't necessarily involve consistency techniques.

Constraint-Based Communication

Asynchronous

- -*tell* is an independent process (as in the asynchronous π -calculus)
- Polyadic ("many-place")
 - constructors provide built-in structuring and encoding mechanisms
 - -essential in the single-assignment setting
- Mobile
- Non-strict

Constraint-Based Communication

- Asynchronous Polyadic Mobile – channel mobility in the sense of the π -calculus -Channels can be passed using another channel can be fused with another channel
 - are first-class (processes aren't)
 available since 1983 (Concurrent Prolog)
 Non-strict

Constraint-Based Communication

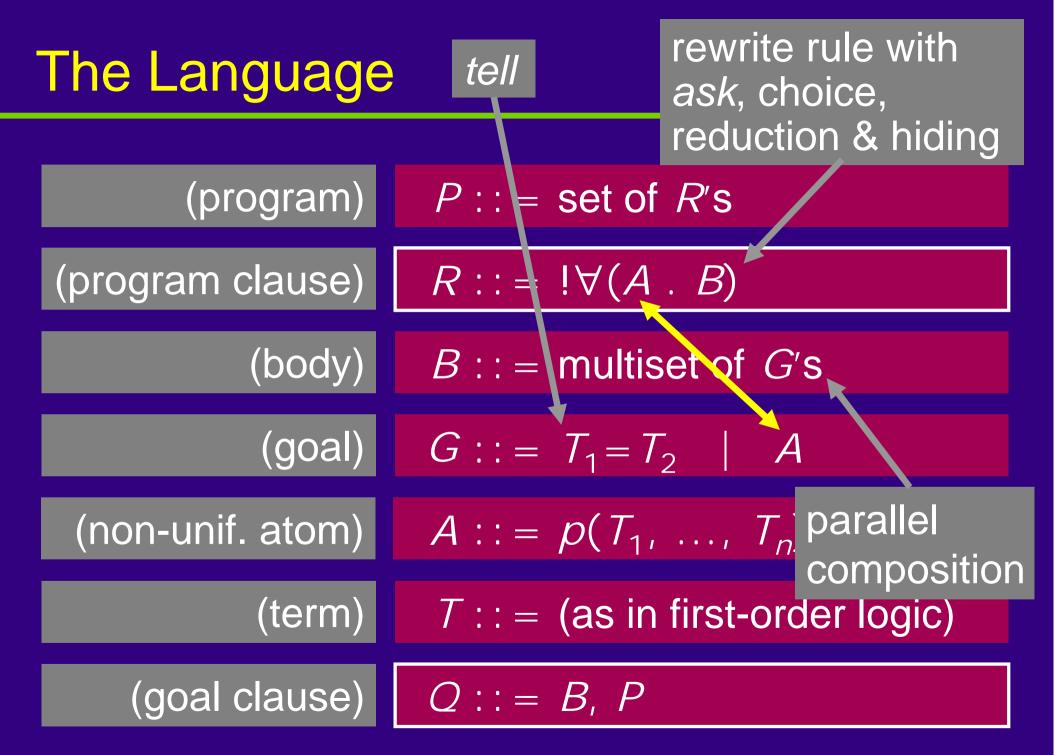
Asynchronous ♦ Polyadic Mobile Non-strict -"Constraint-based" means computing with partial information -Yielded many programming idioms, including (streams of)* streams difference lists messages with reply boxes

The Language (traditional LP syntax)

(program)	P ::= set of R 's
(program clause)	R ::= A :- B
(body)	B ::= multiset of G 's
(goal)	$G ::= T_1 = T_2 A$
(non-unif. atom)	$A ::= p(T_1,, T_n), p \neq '='$
(term)	T ::= (as in first-order logic)
(goal clause)	Q ::= :- B

The Language (alternative syntax)

(program)	$\mathbf{P} ::= \text{set of } R's$
(program clause)	$R ::= ! \forall (A \cdot B)$
(body)	B ::= multiset of G 's
(goal)	$G ::= T_1 = T_2 A$
(non-unif. atom)	$A ::= p(T_1,, T_n), p \neq '='$
(term)	T ::= (as in first-order logic)
(goal clause)	Q::=B,P



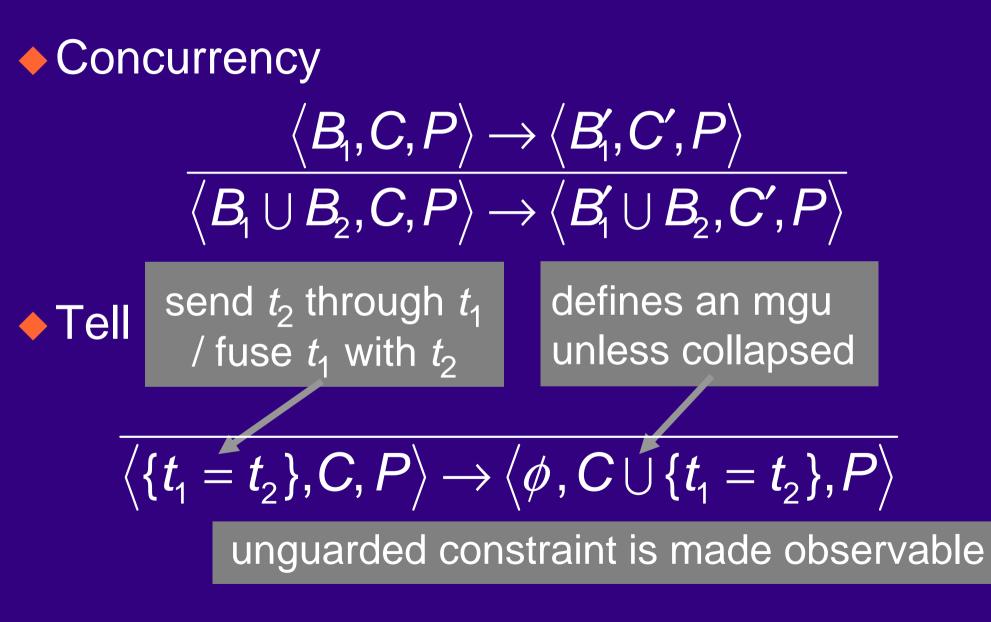
Reduction Semantics

Concurrency

$$\frac{\langle B_1, C, P \rangle \rightarrow \langle B_1', C', P \rangle}{\langle B_1 \cup B_2, C, P \rangle \rightarrow \langle B_1' \cup B_2, C', P \rangle}$$

$$\langle \{t_1 = t_2\}, C, P \rangle \rightarrow \langle \phi, C \cup \{t_1 = t_2\}, P \rangle$$

Reduction Semantics



Reduction Semantics (cont'd)

$\langle \{b\}, C, P \cup \{h: - \mid B\} \rangle$ $\rightarrow \langle B, C \cup \{b = h\}, P \cup \{h: - \mid B\} \rangle$ $\left(\text{if } E \models \forall (C \Rightarrow \exists vars(h)(b = h)) \\ \text{and } vars(h, B) \cap vars(b, C) = \phi \right)$

Reduction Semantics (cont'd)

Ask

ask done and constraints were received by h's args

 $\langle \{b\}, C, P \cup \{h: - \mid B\} \rangle$ $\rightarrow \langle B, C \cup \{b = h\}, P \cup \{h : - | B\} \rangle$ (if $E \models \forall (C \Rightarrow \exists vars(h)(b = h))$) and vars $(h, B) \cap vars (b, C) = \phi$ syntactic equality theory over finite terms (can be h matches b under C generalized)

Relation to Name-Based Concurrency

 Predicates (names of recursive procedures) can be regarded as global names of conventional (destructive) channels.

-the only source of arbitration in CBC

 Variables are local names of write-once channels.

 Constructors are global, non-channel names for composing messages with reply boxes, streams, and other data structures.

Channels in CBC and NBC

Write-once channels allow buffering with the aid of stream constructors -e.g., S = [read(X)|S'] (S': continuation) \bullet Channels in the asynchronous π -calculus are *multisets* of messages from which *input* operations remove messages -e.g., $a(y) \cdot Q \mid \overline{a}b \rightarrow Q\{b/y\}$ -Being a multiset is another source of arbitration

Channels in CBC and NBC

CBC and NBC get closer with type systems: -*mode* (= directional type) system for CBC -*linear* types for the π -calculus Both guarantees that only one process holds a write capability and use it once -hence they leave no sharp difference in nondestructive and destructive read, -except that CBC still allows multicasting and channel fusion

Communication in CBC and NBC

♦ In CBC,

-*tell* subsumes two operations • output e.g., X=3, X=[push(5)|X']• fusion (of two channel names) e.g., X = Y-ask subsumes two operations input (synchronization and value passing) match (checking of values) However, match in moded CBC doesn't allow the checking of channel equality (cf. $L\pi$)

Channels in CBC Are Local Names

 Fallacy: constraint store is global, shared, single-assignment memory

- Channels are created as fresh local names that cannot be forged by the third party
 - -the locality could be made explicit in configurations

 A new channel can be exported and imported only by using an existing channel
 -e.g., p([create(S)|X']) :- | server(S), p(X').

 Constraint-based concurrency Essence of constraint-based communication -Relation to name-based concurrency Type systems and analyses for CBC -modes (directional types) and linear types Strict linearity and its implications Capabilities: types for strict linearity with sharing

I/O Modes: Motivations

 Our experience with concurrent logic languages (Flat GHC) shows that logical variables are used mostly as *cooperative* communication channels with statically established protocols (point-to-point, multicasting)

 Non-cooperative use may cause collapse of the constraint store

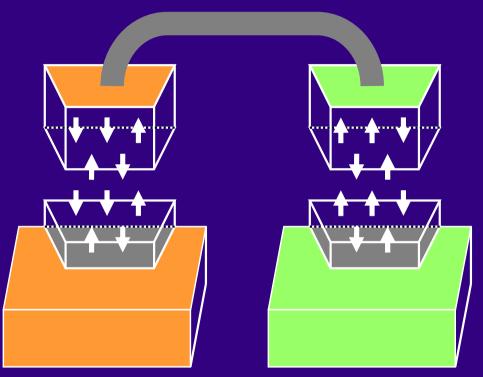
-e.g., $X=1 \land X=2 \land 1\neq 2$ entails anything!

The Mode System of Moded Flat GHC

- Assigns polarity (+/-) structures to the arguments of processes so that the write capability of each part of data structures is held by exactly one process
- Unlike standard types in that modes are resource-sensitive
- Moding rules are given in terms of mode constraints (cf. inference rules)
- Can be solved (mostly) as unification over mode graphs (feature graphs with cycles)

An Electric Device Metaphor

- Signal cables may have various structures (arrays of wires and pins), but
 the two ends of a cable, viewed from outside, should have opposite polarity structures, and
 a plug and a socket
 - a plug and a socket should have opposite polarity structures when viewed from outside.



goal = device variable = cable Given a "position" (of any procedure, of arbitrary depth), a mode function will answer the I/O mode of that position. $m: P_{Atom} \rightarrow \{in, out\}$ • P_{Atom}: set of *paths* of the form $< p, i > < f_1, i_1 > \dots < f_n, i_n > (n \ge 0)$ e.g.: <append, 2><., 2><., 1> • P_{Term}: set of *paths* of the form $< f_1, i_1 > \dots < f_n, i_n > (n \ge 0)$ • m(p): mode at p • m/p: modes at and below $p(P_{Term} \rightarrow \{in, out\})$ ICLP'01, Paphos, November 27, 2001

Mode Constraints on a Well-Moding m

 Constructors occur at *input* positions Non-linear head variables occur at *fully input* positions (to check if they hold identical values) The two arguments of a unification body goal (tell) have complementary modes \bullet Variable occurring at p_1, \dots, p_k (head) and $p_{k+1}, ..., p_n$ (body) satisfies $-R(\{m/p_1, ..., m/p_n\})$ (k=0) $-R(\{\overline{m/p_1}, m/p_{k+1}, ..., m/p_n\})$ (k>0) where $R(S) = \forall q \in P_{Term} \exists s \in S$ $(s(q) = out \land \forall s' \in S \setminus \{s\}(s'(q) = in))$

Principles Behind the Constraints

$$\boldsymbol{R}(\{s_1, s_2\}) \Leftrightarrow s_1 = \overline{s_2}$$

Constraint for connectivity

$$\sum_{S_1} \bigcup_{S_2} S_1 = \overline{S_2}$$

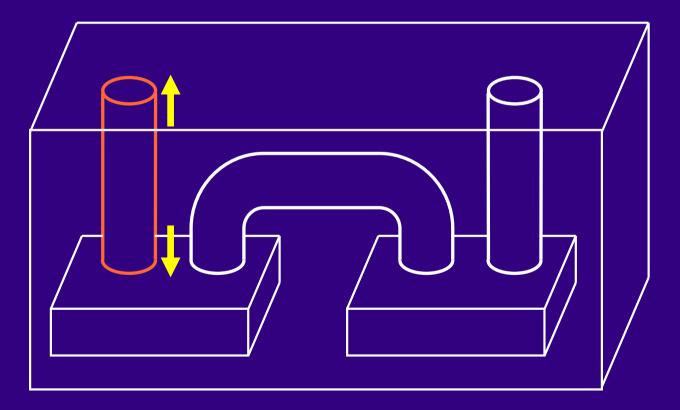
ICLP'01, Paphos, November 27, 2001

S3

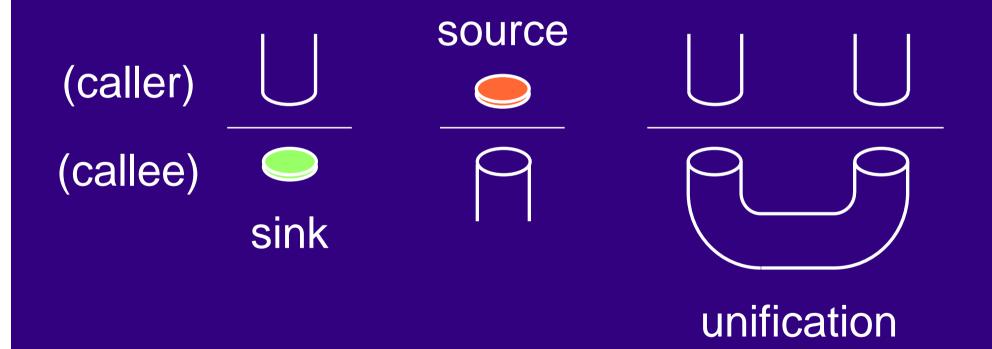
 $R(\{S_0, S_1, S_2, S_3\})$

Principles Behind the Constraints

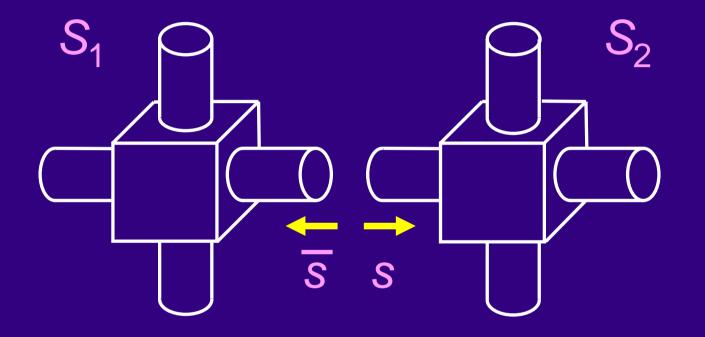
 Clause heads and body goals have opposite polarities, so do their arguments.



Principles Behind the Constraints

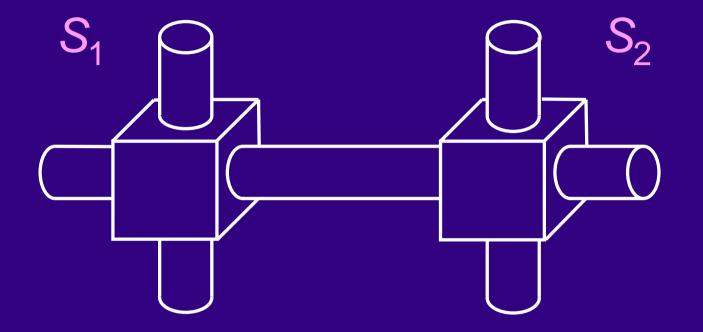


Resolution Principle



 $\boldsymbol{R}(\{\boldsymbol{s}\}\cup\boldsymbol{S}_1) \wedge \boldsymbol{R}(\{\boldsymbol{s}\}\cup\boldsymbol{S}_2)$

Resolution Principle



 $\boldsymbol{R}(\{\boldsymbol{s}\}\cup\boldsymbol{S}_1) \wedge \boldsymbol{R}(\{\boldsymbol{s}\}\cup\boldsymbol{S}_2)$ $\Rightarrow \boldsymbol{R}(\boldsymbol{S}_1\cup\boldsymbol{S}_2)$

Moding: Implications and Experiences

 A process can pass a (variable containing) write capability to somebody else, but cannot duplicate or discard it.

- Two write capabilities cannot be compared
- Read capabilities can be copied, discarded and compared
 - -cf. Linearity system
- Extremely useful for debugging pinpointing errors and automated correction (!)

Encourages resource-conscious programming

Moding: Implications and Experiences

- Encourages resource-conscious programming by giving weaker mode constraints to variables with exactly two occurrences
 - A singleton variable constrains the mode of its position to fully input or fully output.
 - A variable with three or more occurrences constrain the modes of more positions.
- Weaker constraints lead to more generic (= more polymorphic) programs

well-moded (well-typed)

ill-moded (ill-typed)

Theorems

Unification degenerates to assignment to a variable.

(Subject Reduction) A well-moding *m* is preserved by reduction

 (Groundness) When a program terminates successfully, every variable is bound to a constructor.

Linearity: An Observation (cf. LNCS 1068)

 In (concurrent) logic programs, many of the program variables have exactly two occurrences.

-Example:

append([], Y,Z) :- true | Z=Y. append([A|X],Y,ZO) :- true | ZO=[A|Z], append(X,Y,Z).

-Counter-example:

p(...X...) :- true | r(...X...), p(...X...).

Another example: quicksort qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]). qsort([], Ys0, Ys) : - true | Ys = Ys0. qsort([X|Xs],Ys0,Ys3) :- true | part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys1 = [X|Ys2], qsort(L, Ys2, Ys3).part(_,[],S,L) : - true | S=[], L=[]. $part(A, [X|Xs], SO, L) : - A \ge X$ SO = [X|S], part(A, Xs, S, L).part(A, [X|Xs], S, LO) : - A < XLO = [X|L], part(A, Xs, S, L).

Another example: quicksort qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]). qsort([], Ys0, Ys) : - true | Ys = Ys0. qsort([X|Xs],Ys0,Ys3) :- true | part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys1 = [X|Ys2], qsort(L, Ys2, Ys3).part(_,[],S,L) : - true | S=[], L=[]. $part(A, [X|Xs], SO, L) :- A \ge X$ SO = [X|S], part(A, Xs, S, L).part(A, [X|Xs], S, LO) : - A < XLO = [X|L], part(A, Xs, S, L).

qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |
 part(X,Xs,S,L), qsort(S,Ys0,Ys1),
 Ys1=[X|Ys2], qsort(L,Ys2,Ys3).

◆ Virtually all variables with ≥3 channel occurrences (nonlinear variables) are used for simple, one-way communication
 ◆ Many variables with exactly two occurrences (linear variables) have quite complex

communication protocols

 Statically distinguishes between shared and nonshared data structures

- *shared* : possibly referenced by two or more pointers (when assignments are done by pointer sharing)
- nonshared : referenced by only one pointer

 Nonshared structures can be recycled as soon as read by the sole reader (compile-time garbage collection), as long as writers have no access to structure elements any more

Linearity Annotations

 We annotate all constructors in the body goals of program+goal clauses (cf. 1-bit reference counting)

Closure conditions:

 $-f^{0}(\dots g^{1}(\dots) \dots) - NO$ $-f^{1}(\dots g^{0}(\dots) \dots) - OK$

Linearity Annotations

Example:

- :-p([1,2,3],X), q([1,2,3],Y).
- The 14 constructors can be given "1" if the lists are created separately, and should be given "o" if the lists are shared.
- The annotations are dynamic (as reference counters are), but are to be compiled away by static linearity analysis

Extending Operational Semantics

A nonlinear change the annotations in the term t to "o"

X linear retain the original annotations

Linearity System

Deals with the sharing aspects of programs Assigns linearity (nonshared/shared) structures to the arguments of processes so that as many parts of data structures as possible are guaranteed to be "nonshared" Unlike standard types in that linearities are resource-sensitive Can be solved (mostly) as unification over linearity graphs (feature graphs with cycles)

Output of klint v2

%%% Mode %%% :- mode main:quicksort(1,3). :- mode main:qsort(1,3,-3). :- mode main:part(++,1,-1,-1). :- modedef 1 = (+, [[-2|1]]).:- modedef 2 = (-, []).:- modedef 3 = (-, [[2|3]]).%%% Linearity %%% :- lin main:quicksort(1,2). :- lin main:qsort(1,2,2). :- lin main:part(**,1,1,1). :- lindef 1 = (?, [[**|1]]). :- lindef 2 = (?,[[**|2]]).

 Constraint-based concurrency Essence of constraint-based communication -Relation to name-based concurrency Type systems and analyses -modes (directional types) and linear types Strict linearity and its implications Capabilities: types for strict linearity with sharing

Linear Variables Are Dipoles (1st step)

Insertion sort

sort([], S) :- | S=[]. sort([X|L0],S) :- | sort(L0,S0), insert(X,S0,S). insert(X,[], R) :- | R=[X]. insert(X,[Y|L], R) :- $X \le Y$ | R=[X,Y|L]. insert(X,[Y|L0],R) :- X > Y | R=[Y|L], insert(X,L0,L).

 From now on we disallow monopole (singleton) variables

Polarizing Constructors (2nd step)

Insertion sort

sort([], S) :- | S=[]. sort([X|L0],S) :- | sort(L0,S0), insert([X|S0],S). insert([X], R) :- | R=[X]. insert([X,Y|L], R) :- $X \le Y | R=[X,Y|L]$. insert([X,Y|L0],R) :- X > Y | R=[Y|L], insert([X|L0],L).

 Linear constructors are also dipoles; the two occurrences of a linear constructor are two polarized instances of the same constructor. A program clause is called strictly linear if all variables and constructors are dipoles.

- Constructors can now be regarded as channels that convey fixed values (and more importantly, *resources*) from head to body.
- A further step towards resource-conscious programming

Polarizing Constructors (cont'd)

Are initial constructors and variables monopoles?

:- sort([3,1,4,1,5,9],X).

 A strictly linear (and symmetric) version is: main([3,1,4,1,5,9],X) :- | sort([3,1,4,1,5,9],X).
 which will be reduced finally to main([3,1,4,1,5,9],X) :- | X = [1,1,3,4,5,9].

Programming Under Strict Linearity

Append append([],Y,Z) :- | Z = Y. append([A|X],Y,Z0) :- | ZO = [A|Z], append(X,Y,Z). Strictly linear version append([],Y,Z,U) :- | Z=Y, U=[].append([A|X],Y,ZO,U) :- | ZO = [A|Z], append(X,Y,Z,U).The former is a slice of the latter.

Linearizing Server Processes (Hard)

Stack server

<u>D</u>):-|true. stack([], stack([push(X)|S],D) := | stack(S,[X|D]).stack([pop(X)|S], [Y|D]) :- | X=Y, stack(S,D). Strictly linear version (1st attempt) D):-|Z=[](D).stack([](Z), stack([push([X|*],Y)|S],D) :- | Y = [push(*, *)|*], stack(S, [X|D]).stack([pop(X)|S], [Y|D]) :- | X = [pop([Y|*])|*], stack(S,D).

Linearizing Server Processes (Hard)

Stack server

D) : - | true. stack([], stack([push(X)|S],D) := | stack(S,[X|D]).stack([pop(X)|S], [Y|D]) :- | X=Y, stack(S,D). Strictly linear version (2nd attempt) stack([](Z), D):-|Z=[](D).stack([push([X|*],Z)|S],D) :- | Z = [push(*,*)|*], stack(S,[X|D]).stack([pop(X,Z)|S], [Y|D]) : - | X = [Y|*], Z = [pop(*,*)|*], stack(S,D).

Linearizing Server Processes (Hard)

 Strictly linear version D): - | Z = [](D).stack([](Z), stack([push([X|*],Y)|S],D) :- | Y = [push(*, *)|*], stack(S, [X|D]).stack([pop(X,Z)|S], [Y|D]) :- |X = [Y|*], Z = [pop(*,*)|*], stack(S,D).–A server doesn't want to keep envelopes ([|]) or cover sheets (push/pop) -"*" (void) is a non-constructor-non-variable symbol with zero capability (no write, no read)

Polarizing Predicates (3rd step)

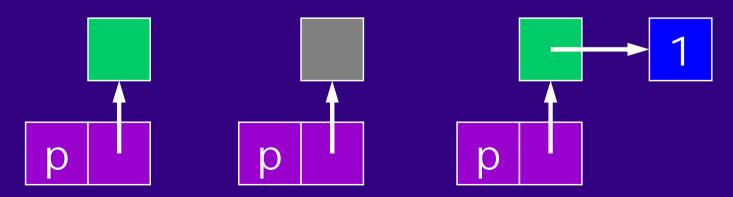
Insertion sort sort([], S) :- | S = [], sort(*, *).sort([X|L0],S), insert(*,*) :- | sort(L0,S0), insert([X|S0],S). -cf. CHR, cc(multiset) Goals with void arguments are free goals waiting for habitants -can be considered as implicitly given

Resource Aspect of Values

Standard counting under the untyped setting
 Void: 1 unit

-Variable: 1 unit per occurrence

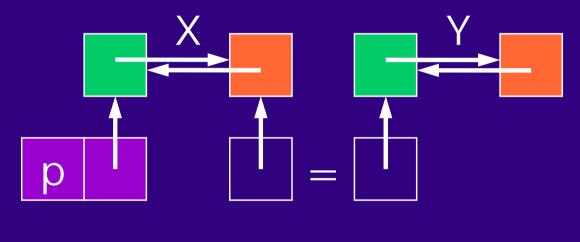
N-ary constructor and predicate: N+1 units
Arguments should point to variables or voids
-e.g., p(X): 3 units, p(*): 3 units, p(1): 4 units

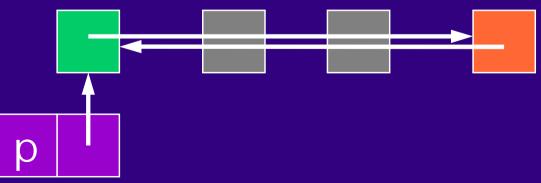


-Typing can reduce dereferencing and space

Constant-Time Property

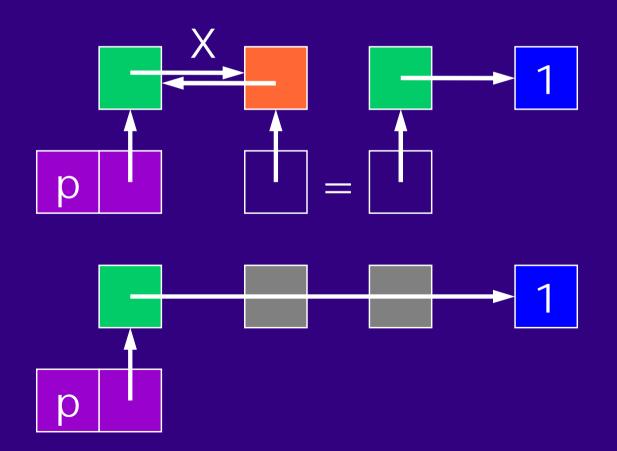
All entities are accessed by dereferencing exactly twice (yes, two is the magic number).





Constant-Time Property

All entities are accessed by dereferencing exactly twice (yes, two is the magic number).



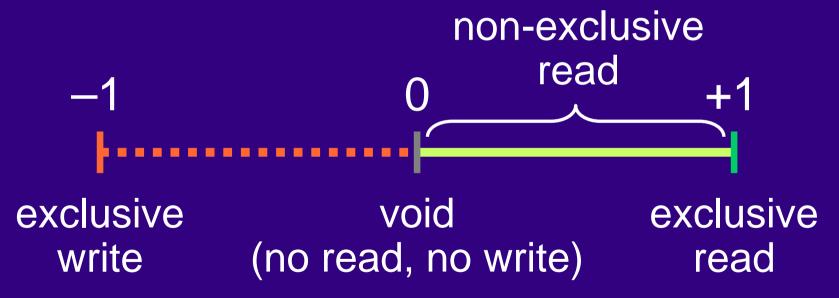
 Constraint-based concurrency Essence of constraint-based communication -Relation to name-based concurrency Type systems and analyses -modes (directional types) and linear types Strict linearity and its implications Capabilities: types for strict linearity with sharing

Sharing under Strict Linearity

Goals:

- 1. To allow *concurrent* access to shared resource
 - e.g., large arrays used for table lookup
- 2. To recover linearity after concurrent access
 - Can () get back to 1?
- Two ways of concurrent access
 - multiplicative = full access to disjoint parts
 - already supported by mode+linearity
 - additive = read access to the whole structure

 Mode {*in*,*out*} and linearity {*nonshared*, *shared*} can be unified and generalized in a simple setting, the [-1,+1] capability system.



In Pursuit of Symmetry

 What's the meaning of (-1,0) capabilities?
 Example: concurrent read read(X0,X) :- | read(X0,X) :- | read1(X0,X1), read2(X0,X2), join(X1,X2,X).

- -Suppose read receives X0 with exclusive read capability 1 (1(p)=+1) and split it into two non-exclusive capabilities, α and $1-\alpha$.
- -Then these capabilities will be returned through X1 (- α) and X2 (α -1)
 - because they cannot be disposed

Example: concurrent read (cont'd) read(X0,X) :- |

read1(X0,X1), read2(X0,X2), join(X1,X2,X).

 $-X1(-\alpha)$ and X2 $(\alpha-1)$ become logically the same as X0 (they must alias unless read *n* diverges or deadlocks)

-Then the two aliases are joined by a clause with a nonlinear head:

join(A,A,B) : - | B = A.

• The capabilities of the three args sum up to **O**.

Capability Annotations

 We annotate all constructors in (initial or reduced) goal clauses.

-The annotations are to be compiled away

 $f^{1}(,,,)$ or $f^{\kappa}(,,,)$ exclusive $(0 < \kappa < 1)$ non-exclusive

Closure condition:

 $-f^{\kappa}(\dots g^{1}(\dots) \dots) - NO$ $-f^{1}(\dots g^{\kappa}(\dots) \dots) - OK$

Extending Operational Semantics

$$:= \dots p(\dots X \dots) \dots X = t \dots q(\dots X \dots)$$
$$\to := \dots p(\dots t \dots) \dots \dots q(\dots t \dots)$$

$$\begin{array}{c} :- \dots p(\dots t \dots) \dots \\ p(\dots X \dots) :- \mid q(\dots X \dots), r(\dots X \dots). \\ \rightarrow :- \dots q(\dots t \dots), r(\dots t \dots) \dots \end{array}$$

X nonlinear split the capabilities in the term *t* using any (e.g., random) numbers
X linear retain the original capabilities

 A capability is a function
 c: *P_{Atom}* → [-1,+1]

 Polymorphic w.r.t. non-exclusive capabilities because they decrease by repeated splitting
 − So all goals created at runtime are distinguished using suffixes

Capability Constraints (= Typing Rules)

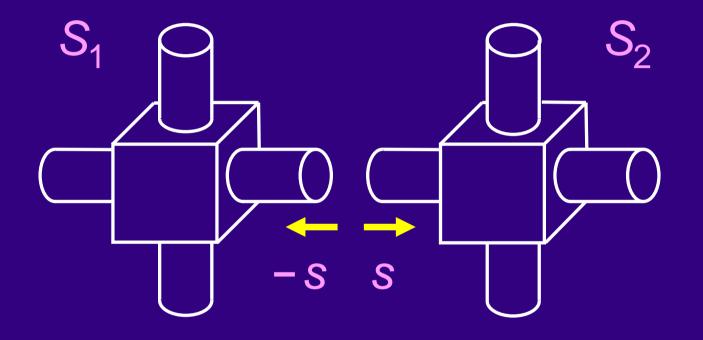
• For a unification goal (of the form $t_1 = t_2$), C/<=, 1> + C/<=, 2> = 0 \bullet For a variable occurring at p_1, \dots, p_k (head) and p_{k+1} , ..., p_n (body), $- c/p_1 - ... - c/p_k + c/p_{k+1} + ... + c/p_n = 0$ (*Kirchhoff's Current Law*) and exactly one of $\{-c/p_1, +c/p_{k+1}, \dots, +c/p_n\}$ is negative • For a nonlinear head variable at p, c/p > 0

Capability Constraints (= Typing Rules)

 A constructor f in head/body must find its partner with matching capability (>0) in body /head, respectively

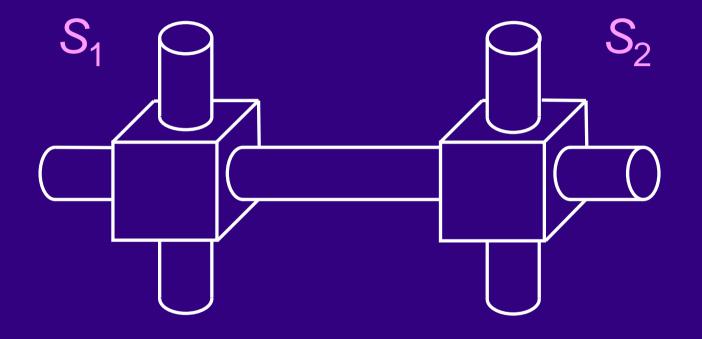
- If f is exclusive, only top-level capability match is required; the constructor name and the arguments can be changed
- -Otherwise, full match is required
- A void path has a zero capability
- A non-void path has a non-zero capability

Kirchhoff's Current Law



 $-s + \Sigma S_1 = 0 \land s + \Sigma S_2 = 0$

Kirchhoff's Current Law



$-s + \Sigma S_1 = 0 \land s + \Sigma S_2 = 0$ $\implies \Sigma(S_1 \cup S_2) = 0$

Example

p(X,Y,...):- | r(X,Y1), p(X,Y2,...), join(Y1,Y2,Y).p(X, Y, ...) :- | X = Y.join(A,A,B) : - | B=A.• Suppose $c/<r_{s,1}, 1> + c/<r_{s,1}, 2> = 0$ and $c/<p_{s_0}, 1> = 1$. Then $c/<p_{s_0}, 2> = 1$ holds, while all subgoals carry non-exclusive capabilities. -All capabilities distributed to the r's will be fully collected as long as all the r's return what they are given.

Properties

 Degeneration of unification to assignment Subject reduction Conservation of constructors -A reduction will not gain or lose any constructor in the goal Groundness Non-sharing of constructors at "exclusive" positions Partial solution to extended occur-check -detection of X = X (suicidal unification)

 \bullet Relating CCP and π -new calculus (γ , ρ , Fusion, Solo, ...) -encoding one in the other \bullet Variants of π with nicer properties (Linear) types in other computational models $-\pi$, λ , typed MM, session types, ... Linear languages -Linear Lisp, Lilac, Linear LP, ... Compile-time GC -Mercury, Janus, ... -compiling streams into message passing

Conclusions

 A strictly linear, polarized subset of Guarded Horn Clauses

- -retains most of the power of CBC
- allows resource sharing within the linear framework
- Capability type system supporting strict linearity
- A step towards a unified framework for nonsequential computing

Future Work

Type reconstructor Occur-check problem Time (as well as space) bounds Programming support -help (1) writing strictly linear programs or (2) reconstructing them from their slices Constructs for mobile/real-time/embedded computing + implementation

 Constraint-based type systems can make CBC a simple, powerful, and safe language for parallel, distributed, and real-time computing. Its role in CBC is analogous to, but probably more than, the role of type systems in the λ-calculus.