
ICLP’01 tutorial
A Close Look at
Constraint-Based Concurrency

Kazunori Ueda
Waseda University

Tokyo, Japan

Copyright (C) 2001 Kazunori Ueda

ICLP'01, Paphos, November 27, 2001

Talk Outline

Constraint-based concurrency (CBC)
–Essence of constraint-based communication
–Relation to name-based concurrency

Type systems and analyses for CBC
–modes (directional types) and linear types

Strict linearity and its implications
Capabilities: types for strict linearity with
sharing

ICLP'01, Paphos, November 27, 2001

Papers

Resource-Passing Concurrent Programming.
In Proc. Fourth Int. Symp. on Theoretical Aspects
of Computer Software, LNCS 2215, Springer, 2001,
pp. 95-126.
Concurrent Logic/Constraint Programming: The
Next 10 Years.
In The Logic Programming Paradigm: A 25-Year
Perspective, Apt, K.R. et al. (eds.), Springer, 1999,
pp.53-71.
For other papers see bibliography.

ICLP'01, Paphos, November 27, 2001

Talk Outline

Constraint-based concurrency (CBC)
–Essence of constraint-based communication
–Relation to name-based concurrency

Type systems and analyses for CBC
–modes (directional types) and linear types

Strict linearity and its implications
Capabilities: types for strict linearity with
sharing

ICLP'01, Paphos, November 27, 2001

Constraint-Based Concurrency

Concurrency formalism & language based on
–single-assignment (write-once) channels

and
–constructors
cf. name-based concurrency

Also known as
–concurrent logic programming
–concurrent constraint programming (CCP)

Born and used as languages (early 1980’s);
then recognized and studied as formalisms

ICLP'01, Paphos, November 27, 2001

Name-Based Concurrency

Syntax of the (asynchronous) π-calculus
P ::= xy .P (output – send y along x)

| x(y) .P (input – receive y from x)
| 0 (inaction)
| P |P (parallel composition)
| (y)P (hiding)
| [x=y]P (match)
| !P (replication)

Structural congruence
– !P ≡≡≡≡ P | !P – [x=x] P ≡≡≡≡ P
– (x)(P | Q) ≡≡≡≡ P | (x)Q if x is not free in P

ICLP'01, Paphos, November 27, 2001

Name-Based Concurrency

Reduction semantics of the π-calculus

P → P’
P | Q → P’ | Q

P → P’
(y)P → (y) P’

Q ≡ P P → P’ P’ ≡ Q’
Q → Q’

x(y) .P | xz .Q → P {z / y} | Q

ICLP'01, Paphos, November 27, 2001

Single-Assignment Channels

Also known as logical variables
Can be written at most once
–by tell ing a constraint (= partial information)

on the value of the channel (unification)
e.g., tell S=[read(X)|S’]

Reading is non-destructive
–by ask ing if a certain constraint is entailed

(term matching)
e.g., ask ∃∃∃∃ A ∃∃∃∃ S’(S=[A|S’])

–covers both input and match in the π-calculus

ICLP'01, Paphos, November 27, 2001

Single-Assignment Channels

The set of all published constraints (tells)
forms a constraint store.
Since reading is non-destructive, constraint
store is monotonic.
–Still, it’s amenable to garbage collection

because of its highly local nature.
The use of constraints for message passing
doesn’t necessarily involve consistency
techniques.

ICLP'01, Paphos, November 27, 2001

Constraint-Based Communication

Asynchronous
– tell is an independent process (as in the

asynchronous π-calculus)
Polyadic (“many-place”)
–constructors provide built-in structuring and

encoding mechanisms
–essential in the single-assignment setting

Mobile
Non-strict

ICLP'01, Paphos, November 27, 2001

Constraint-Based Communication

Asynchronous
Polyadic
Mobile – channel mobility in the sense of the
π-calculus
–Channels

can be passed using another channel
can be fused with another channel
are first-class (processes aren’t)

–available since 1983 (Concurrent Prolog)
Non-strict

ICLP'01, Paphos, November 27, 2001

Constraint-Based Communication

Asynchronous
Polyadic
Mobile
Non-strict
– “Constraint-based” means computing with

partial information
–Yielded many programming idioms, including

(streams of)* streams
difference lists
messages with reply boxes

ICLP'01, Paphos, November 27, 2001

The Language (traditional LP syntax)

::= set of R’s

::= A :- | B

::= multiset of G’s

::= T1=T2 | A

::= p(T1, ..., Tn), p ≠≠≠≠ ‘=’

::= (as in first-order logic)

::= :- B

P

R

B

G

A

T

Q

(program)

(program clause)

(body)

(goal)

(non-unif. atom)

(term)

(goal clause)

ICLP'01, Paphos, November 27, 2001

The Language (alternative syntax)

::= !∀∀∀ ∀ (A . B)

::= B, PQ(goal clause)

::= set of R’s

::= multiset of G’s

::= T1=T2 | A

::= p(T1, ..., Tn), p ≠≠≠≠ ‘=’

::= (as in first-order logic)

P

R

B

G

A

T

Q

(program)

(program clause)

(body)

(goal)

(non-unif. atom)

(term)

(goal clause)

ICLP'01, Paphos, November 27, 2001

The Language

::= !∀∀∀∀ (A . B)

::= B, PQ(goal clause)

::= set of R’s

::= multiset of G’s

::= T1=T2 | A

::= p(T1, ..., Tn), p ≠ ‘=’

::= (as in first-order logic)

P

R

B

G

A

T

Q

(program)

(program clause)

(body)

(goal)

(non-unif. atom)

(term)

(goal clause)

rewrite rule with
ask, choice,
reduction & hiding

tell

parallel
composition

ICLP'01, Paphos, November 27, 2001

Reduction Semantics

PCBBPCBB
PCBPCB

,,,,
,,,,

2121

11

′′→
′′→

UU

PttCPCtt },{,,},{ 2121 =→= Uφ

Concurrency

Tell

ICLP'01, Paphos, November 27, 2001

Reduction Semantics

unguarded constraint is made observable

send t2 through t1
/ fuse t1 with t2

defines an mgu
unless collapsed

PCBBPCBB
PCBPCB

,,,,
,,,,

2121

11

′′→
′′→

UU

PttCPCtt },{,,},{ 2121 =→= Uφ

Concurrency

Tell

ICLP'01, Paphos, November 27, 2001

Reduction Semantics (cont’d)

 }|:{,},{ BhPCb −U

}|:{},{, BhPhbCB −=→ UU

()()








=

=∃⇒∀=
φ),(),(

)(|
CbBh

hbhCE
 vars vars

vars
Iand

if

Ask

ICLP'01, Paphos, November 27, 2001

Reduction Semantics (cont’d)

syntactic equality theory
over finite terms (can be
generalized) h matches b under C

ask done and constraints
were received by h’s args

 }|:{,},{ BhPCb −U

}|:{},{, BhPhbCB −=→ UU

()()








=

=∃⇒∀=
φ),(),(

)(|
CbBh

hbhCE
 vars vars

vars
Iand

if

Ask

ICLP'01, Paphos, November 27, 2001

Relation to Name-Based Concurrency

Predicates (names of recursive procedures)
can be regarded as global names of
conventional (destructive) channels.
– the only source of arbitration in CBC

Variables are local names of write-once
channels.
Constructors are global, non-channel names
for composing messages with reply boxes,
streams, and other data structures.

ICLP'01, Paphos, November 27, 2001

Channels in CBC and NBC

Write-once channels allow buffering with the
aid of stream constructors
–e.g., S=[read(X)|S’] (S’: continuation)

Channels in the asynchronous π-calculus are
multisets of messages from which input
operations remove messages
–e.g.,
–Being a multiset is another source of

arbitration

}/{|.)(ybQbaQya →

ICLP'01, Paphos, November 27, 2001

Channels in CBC and NBC

CBC and NBC get closer with type systems:
–mode (= directional type) system for CBC
– linear types for the π-calculus

Both guarantees that only one process holds
a write capability and use it once
–hence they leave no sharp difference in non-

destructive and destructive read,
–except that CBC still allows multicasting and

channel fusion

ICLP'01, Paphos, November 27, 2001

Communication in CBC and NBC

In CBC,
–tell subsumes two operations

output e.g., X=3, X=[push(5)|X’]

fusion (of two channel names) e.g., X=Y

–ask subsumes two operations
input (synchronization and value passing)
match (checking of values)

However, match in moded CBC doesn’t allow
the checking of channel equality (cf. Lπ)

ICLP'01, Paphos, November 27, 2001

Channels in CBC Are Local Names

Fallacy: constraint store is global, shared,
single-assignment memory
Channels are created as fresh local names
that cannot be forged by the third party
– the locality could be made explicit in

configurations
A new channel can be exported and
imported only by using an existing channel
–e.g., p([create(S)|X’]) :- | server(S), p(X’).

ICLP'01, Paphos, November 27, 2001

Talk Outline

Constraint-based concurrency
–Essence of constraint-based communication
–Relation to name-based concurrency

Type systems and analyses for CBC
–modes (directional types) and linear types

Strict linearity and its implications
Capabilities: types for strict linearity with
sharing

ICLP'01, Paphos, November 27, 2001

I/O Modes: Motivations

Our experience with concurrent logic
languages (Flat GHC) shows that logical
variables are used mostly as cooperative
communication channels with statically
established protocols (point-to-point,
multicasting)
Non-cooperative use may cause collapse of
the constraint store
–e.g., X=1 ∧∧∧∧ X=2 ∧∧∧∧ 1≠≠≠≠2 entails anything!

ICLP'01, Paphos, November 27, 2001

The Mode System of Moded Flat GHC

Assigns polarity (+/–) structures to the
arguments of processes so that the write
capability of each part of data structures is
held by exactly one process
Unlike standard types in that modes are
resource-sensitive
Moding rules are given in terms of mode
constraints (cf. inference rules)
Can be solved (mostly) as unification over
mode graphs (feature graphs with cycles)

ICLP'01, Paphos, November 27, 2001

An Electric Device Metaphor

Signal cables may have
various structures (arrays
of wires and pins), but
– the two ends of a cable,

viewed from outside,
should have opposite
polarity structures, and

– a plug and a socket
should have opposite
polarity structures
when viewed from
outside.

goal = device
variable = cable

ICLP'01, Paphos, November 27, 2001

Modes as Functions

Given a “position” (of any procedure, of arbitrary
depth), a mode function will answer the I/O
mode of that position.

m : PAtom → { in, out }
PAtom : set of paths of the form

<p, i><f1, i1> ... <fn , in> (n ≥≥≥≥ 0)
e.g.: <append, 2>< . , 2>< . , 1>
PTerm : set of paths of the form

<f1, i1> ... <fn , in> (n ≥≥≥≥ 0)
m(p): mode at p
m/p : modes at and below p (PTerm → { in, out })

ICLP'01, Paphos, November 27, 2001

Mode Constraints on a Well-Moding m
Constructors occur at input positions
Non-linear head variables occur at fully input
positions (to check if they hold identical values)
The two arguments of a unification body goal
(tell) have complementary modes
Variable occurring at p1, ..., pk (head) and
pk+1, ..., pn (body) satisfies
–R({m/p1, ..., m/pn }) (k=0)
–R({m/p1, m/pk+1, ..., m/pn }) (k>0)
where R(S) = ∀∀∀∀ q ∈∈∈∈ PTerm ∃∃∃∃ s ∈∈∈∈ S

(s(q) = out ∧∧∧∧ ∀ ∀∀∀ s’∈∈∈∈ S {s }(s’(q) = in))

ICLP'01, Paphos, November 27, 2001

Principles Behind the Constraints

A variable is a cable or a hub.

Constraint for connectivity

R({s1, s2 }) ⇔ s1= s2

s2s1

R({s0,s1,s2,s3 })
s1 s2

s1= s2

s0

s1

s2

s3

ICLP'01, Paphos, November 27, 2001

Principles Behind the Constraints

Clause heads and body goals have opposite
polarities, so do their arguments.

ICLP'01, Paphos, November 27, 2001

Principles Behind the Constraints

Goal-head connection

sink

source

unification

(caller)

(callee)

ICLP'01, Paphos, November 27, 2001

Resolution Principle

s

R({s } ∪ S1) ∧ R({s } ∪ S2)

s

S1 S2

ICLP'01, Paphos, November 27, 2001

Resolution Principle

R({s } ∪ S1) ∧ R({s } ∪ S2)
⇒ R(S1∪ S2)

S1 S2

ICLP'01, Paphos, November 27, 2001

Moding: Implications and Experiences

A process can pass a (variable containing) write
capability to somebody else, but cannot
duplicate or discard it.
Two write capabilities cannot be compared
Read capabilities can be copied, discarded and
compared
–cf. Linearity system

Extremely useful for debugging – pinpointing
errors and automated correction (!)
Encourages resource-conscious programming

ICLP'01, Paphos, November 27, 2001

Moding: Implications and Experiences

Encourages resource-conscious programming
by giving weaker mode constraints to variables
with exactly two occurrences
– A singleton variable constrains the mode of its

position to fully input or fully output.
– A variable with three or more occurrences

constrain the modes of more positions.
Weaker constraints lead to more generic
(= more polymorphic) programs

well-moded ill-moded
(well-typed) (ill-typed)

ICLP'01, Paphos, November 27, 2001

Theorems

Unification degenerates to assignment to a
variable.
(Subject Reduction) A well-moding m is
preserved by reduction
(Groundness) When a program terminates
successfully, every variable is bound to a
constructor.

ICLP'01, Paphos, November 27, 2001

Linearity: An Observation (cf. LNCS 1068)

In (concurrent) logic programs, many of the
program variables have exactly two
occurrences.
–Example:

append([], Y,Z) :- true | Z=Y.
append([A|X],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
–Counter-example:

p(...X...) :- true | r(...X...), p(...X...).

ICLP'01, Paphos, November 27, 2001

An Observation

Another example: quicksort
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1),
Ys1=[X|Ys2], qsort(L,Ys2,Ys3).

part(_,[],S,L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A≥≥≥≥X |

S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S,L0) :- A<X |

L0=[X|L], part(A,Xs,S,L).

ICLP'01, Paphos, November 27, 2001

An Observation

Another example: quicksort
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1),
Ys1=[X|Ys2], qsort(L,Ys2,Ys3).

part(_,[],S,L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A≥≥≥≥X |

S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S,L0) :- A<X |

L0=[X|L], part(A,Xs,S,L).

ICLP'01, Paphos, November 27, 2001

Another Observation

qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).
qsort([],Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1),
Ys1=[X|Ys2], qsort(L,Ys2,Ys3).

Virtually all variables with ≥≥≥≥ 3 channel
occurrences (nonlinear variables) are used
for simple, one-way communication
Many variables with exactly two occurrences
(linear variables) have quite complex
communication protocols

ICLP'01, Paphos, November 27, 2001

Linearity Analysis

Statically distinguishes between shared and
nonshared data structures
–shared : possibly referenced by two or more

pointers (when assignments are done by
pointer sharing)

–nonshared : referenced by only one pointer
Nonshared structures can be recycled as soon
as read by the sole reader (compile-time
garbage collection), as long as writers have no
access to structure elements any more

ICLP'01, Paphos, November 27, 2001

Linearity Annotations

We annotate all constructors in the body
goals of program+goal clauses
(cf. 1-bit reference counting)

Closure conditions:
–fω(... g1(...) ...) ー NO
–f 1(... gω(...) ...) ー OK

f 1(, ,) or fω(, ,)
not shared possibly shared

ICLP'01, Paphos, November 27, 2001

Linearity Annotations

Example:
:- p([1,2,3],X), q([1,2,3],Y).

–The 14 constructors can be given “1” if the
lists are created separately, and should be
given “ ω” if the lists are shared.

The annotations are dynamic (as reference
counters are), but are to be compiled away
by static linearity analysis

ICLP'01, Paphos, November 27, 2001

Extending Operational Semantics

X nonlinear → change the annotations in the
term t to “ω”
X linear → retain the original annotations

:- ... p(... X ...) ... X= t ... q(... X ...)
→ :- ... p(... t ...) q(... t ...)

:- ... p(... t ...) ...
p(... X ...) :- | q(... X ...), r(... X ...).

→ :- ... q(... t ...), r(... t ...) ...

ICLP'01, Paphos, November 27, 2001

Linearity System

Deals with the sharing aspects of programs
Assigns linearity (nonshared / shared)
structures to the arguments of processes so
that as many parts of data structures as
possible are guaranteed to be “nonshared”
Unlike standard types in that linearities are
resource-sensitive
Can be solved (mostly) as unification over
linearity graphs (feature graphs with cycles)

ICLP'01, Paphos, November 27, 2001

Output of klint v2
%%% Mode %%%
:- mode main:quicksort(1,3).
:- mode main:qsort(1,3,-3).
:- mode main:part(++,1,-1,-1).
:- modedef 1 = (+,[[-2|1]]).
:- modedef 2 = (-,[]).
:- modedef 3 = (-,[[2|3]]).

%%% Linearity %%%
:- lin main:quicksort(1,2).
:- lin main:qsort(1,2,2).
:- lin main:part(**,1,1,1).
:- lindef 1 = (?,[[**|1]]).
:- lindef 2 = (?,[[**|2]]).

ICLP'01, Paphos, November 27, 2001

Talk Outline

Constraint-based concurrency
–Essence of constraint-based communication
–Relation to name-based concurrency

Type systems and analyses
–modes (directional types) and linear types

Strict linearity and its implications
Capabilities: types for strict linearity with
sharing

ICLP'01, Paphos, November 27, 2001

Linear Variables Are Dipoles (1st step)

Insertion sort
sort([], S) :- | S=[].
sort([X|L0],S) :- | sort(L0,S0), insert(X,S0,S).
insert(X,[], R) :- | R=[X].
insert(X,[Y|L], R) :- X ≤ Y | R=[X,Y|L].
insert(X,[Y|L0],R) :- X > Y | R=[Y|L],

insert(X,L0,L).

From now on we disallow monopole
(singleton) variables

ICLP'01, Paphos, November 27, 2001

Polarizing Constructors (2nd step)

Insertion sort
sort([], S) :- | S=[].
sort([X|L0],S) :- | sort(L0,S0), insert([X|S0],S).
insert([X], R) :- | R=[X].
insert([X,Y|L], R) :- X ≤ Y | R=[X,Y|L].
insert([X,Y|L0],R) :- X > Y | R=[Y|L],

insert([X|L0],L).

Linear constructors are also dipoles; the two
occurrences of a linear constructor are two
polarized instances of the same constructor.

ICLP'01, Paphos, November 27, 2001

Strict Linearity

A program clause is called strictly linear if all
variables and constructors are dipoles.
–Constructors can now be regarded as

channels that convey fixed values (and more
importantly, resources) from head to body.

A further step towards resource-conscious
programming

ICLP'01, Paphos, November 27, 2001

Polarizing Constructors (cont’d)

Are initial constructors and variables
monopoles?
:- sort([3,1,4,1,5,9],X).

A strictly linear (and symmetric) version is:
main([3,1,4,1,5,9],X) :- | sort([3,1,4,1,5,9],X).

which will be reduced finally to
main([3,1,4,1,5,9],X) :- | X = [1,1,3,4,5,9].

ICLP'01, Paphos, November 27, 2001

Programming Under Strict Linearity

Append
append([],Y,Z) :- | Z=Y.
append([A|X],Y,Z0) :- |

Z0=[A|Z], append(X,Y,Z).

Strictly linear version
append([],Y,Z,U) :- | Z=Y, U=[].
append([A|X],Y,Z0,U) :- |

Z0=[A|Z], append(X,Y,Z,U).

The former is a slice of the latter.

ICLP'01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

Stack server
stack([], D) :- | true.
stack([push(X)|S],D) :- | stack(S,[X|D]).
stack([pop(X)|S], [Y|D]) :- | X=Y, stack(S,D).

Strictly linear version (1st attempt)
stack([](Z), D) :- | Z=[](D).
stack([push([X|*],Y)|S],D) :- |

Y=[push(*,*)|*], stack(S,[X|D]).
stack([pop(X)|S], [Y|D]) :- |

X=[pop([Y|*])|*], stack(S,D).

ICLP'01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

Stack server
stack([], D) :- | true.
stack([push(X)|S],D) :- | stack(S,[X|D]).
stack([pop(X)|S], [Y|D]) :- | X=Y, stack(S,D).

Strictly linear version (2nd attempt)
stack([](Z), D) :- | Z=[](D).
stack([push([X|*],Z)|S],D) :- |

Z=[push(*,*)|*], stack(S,[X|D]).
stack([pop(X,Z)|S], [Y|D]) :- |

X=[Y|*], Z=[pop(*,*)|*], stack(S,D).

ICLP'01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

Strictly linear version
stack([](Z), D) :- | Z=[](D).
stack([push([X|*],Y)|S],D) :- |

Y=[push(*,*)|*], stack(S,[X|D]).
stack([pop(X,Z)|S], [Y|D]) :- |

X=[Y|*], Z=[pop(*,*)|*], stack(S,D).

–A server doesn’t want to keep envelopes
([|]) or cover sheets (push/pop)

– “* ” (void) is a non-constructor-non-variable
symbol with zero capability (no write, no read)

ICLP'01, Paphos, November 27, 2001

Polarizing Predicates (3rd step)

Insertion sort
sort([], S) :- | S=[], sort(*,*).
sort([X|L0],S), insert(*,*) :- |

sort(L0,S0), insert([X|S0],S).

–cf. CHR, cc(multiset)
Goals with void arguments are free goals
waiting for habitants
–can be considered as implicitly given

ICLP'01, Paphos, November 27, 2001

Resource Aspect of Values
Standard counting under the untyped setting
–Void: 1 unit
–Variable: 1 unit per occurrence
–N-ary constructor and predicate: N+1 units

Arguments should point to variables or voids
–e.g., p(X): 3 units, p(*): 3 units, p(1): 4 units

–Typing can reduce dereferencing and space
p p p

1

ICLP'01, Paphos, November 27, 2001

Constant-Time Property

p

X

=

p

All entities are accessed by dereferencing
exactly twice (yes, two is the magic number).

Y

ICLP'01, Paphos, November 27, 2001

Constant-Time Property

p

X
1

=

p

1

All entities are accessed by dereferencing
exactly twice (yes, two is the magic number).

ICLP'01, Paphos, November 27, 2001

Talk Outline

Constraint-based concurrency
–Essence of constraint-based communication
–Relation to name-based concurrency

Type systems and analyses
–modes (directional types) and linear types

Strict linearity and its implications
Capabilities: types for strict linearity with
sharing

ICLP'01, Paphos, November 27, 2001

Sharing under Strict Linearity

Goals:
1. To allow concurrent access to shared

resource
e.g., large arrays used for table lookup

2. To recover linearity after concurrent access
Can ω get back to 1?

Two ways of concurrent access
–multiplicative = full access to disjoint parts

already supported by mode+linearity
–additive = read access to the whole structure

ICLP'01, Paphos, November 27, 2001

Let’s Take a Reciprocal

Mode {in,out } and linearity {nonshared,
shared} can be unified and generalized in a
simple setting, the [–1,+1] capability system.

cf. Weighted reference counting

–1 0 +1

exclusive
read

exclusive
write

void
(no read, no write)

non-exclusive
read

ICLP'01, Paphos, November 27, 2001

In Pursuit of Symmetry

What’s the meaning of (–1,0) capabilities?
Example: concurrent read
read(X0,X) :- |

read1(X0,X1), read2(X0,X2), join(X1,X2,X).

–Suppose read receives X0 with exclusive
read capability 1 (1(p)=+1) and split it into
two non-exclusive capabilities, αααα and 1–αααα .

–Then these capabilities will be returned
through X1 (–αααα) and X2 (αααα –1)

because they cannot be disposed

ICLP'01, Paphos, November 27, 2001

In Pursuit of Symmetry

Example: concurrent read (cont’d)
read(X0,X) :- |

read1(X0,X1), read2(X0,X2), join(X1,X2,X).

–X1 (–αααα) and X2 (αααα –1) become logically the
same as X0 (they must alias unless readn
diverges or deadlocks)

–Then the two aliases are joined by a clause
with a nonlinear head:

join(A,A,B) :- | B = A.
The capabilities of the three args sum up to 0.

ICLP'01, Paphos, November 27, 2001

Capability Annotations

We annotate all constructors in (initial or
reduced) goal clauses.
–The annotations are to be compiled away

Closure condition:
–f κ(... g1(...) ...) ー NO
–f 1(... gκ(...) ...) ー OK

f 1(, ,) or f κ(, ,)
exclusive (0 < κ < 1) non-exclusive

ICLP'01, Paphos, November 27, 2001

Extending Operational Semantics

X nonlinear → split the capabilities in the
term t using any (e.g., random) numbers
X linear → retain the original capabilities

:- ... p(... X ...) ... X= t ... q(... X ...)
→ :- ... p(... t ...) q(... t ...)

:- ... p(... t ...) ...
p(... X ...) :- | q(... X ...), r(... X ...).

→ :- ... q(... t ...), r(... t ...) ...

ICLP'01, Paphos, November 27, 2001

Capability System

A capability is a function
c : PAtom → [–1,+1]

Polymorphic w.r.t. non-exclusive capabilities
because they decrease by repeated splitting
–So all goals created at runtime are

distinguished using suffixes

ICLP'01, Paphos, November 27, 2001

Capability Constraints (= Typing Rules)

For a unification goal (of the form t1 =s t2),
c/<=s,1> + c/<=s,2> = 0

For a variable occurring at p1, ..., pk (head)
and pk+1, ..., pn (body),

– c/p1 – ... – c/pk + c/pk+1 + ... + c/pn = 0
(Kirchhoff’s Current Law)

and exactly one of {–c/p1 , +c/pk+1, ..., +c/pn }
is negative
For a nonlinear head variable at p, c/p > 0

ICLP'01, Paphos, November 27, 2001

Capability Constraints (= Typing Rules)

A constructor f in head/body must find its
partner with matching capability (>0) in body
/head, respectively
– If f is exclusive, only top-level capability

match is required; the constructor name and
the arguments can be changed

–Otherwise, full match is required
A void path has a zero capability
A non-void path has a non-zero capability

ICLP'01, Paphos, November 27, 2001

Kirchhoff ’s Current Law

s

s+ΣS1 = 0 ∧ s+ΣS2 = 0

s

S1 S2

ICLP'01, Paphos, November 27, 2001

Kirchhoff ’s Current Law

S1 S2

s+ΣS1 = 0 ∧ s+ΣS2 = 0
⇒ Σ(S1 ∪ S2) = 0

ICLP'01, Paphos, November 27, 2001

Example

p(X,Y,...) :- | r(X,Y1), p(X,Y2,...), join(Y1,Y2,Y).
p(X,Y,...) :- | X=Y.
join(A,A,B) :- | B=A.

Suppose c/<rs.1,1> + c/<rs.1,2> = 0 and
c/<ps0

,1> = 1. Then c/<ps0
,2> = 1 holds, while

all subgoals carry non-exclusive capabilities.
–All capabilities distributed to the r’s will be

fully collected as long as all the r’s return
what they are given.

ICLP'01, Paphos, November 27, 2001

Properties

Degeneration of unification to assignment
Subject reduction
Conservation of constructors
–A reduction will not gain or lose any

constructor in the goal
Groundness
Non-sharing of constructors at “exclusive”
positions
Partial solution to extended occur-check
–detection of X=X (suicidal unification)

ICLP'01, Paphos, November 27, 2001

Related Work
Relating CCP and ππππ
–new calculus (γγγγ, ρρρρ, Fusion, Solo, ...)
–encoding one in the other

Variants of ππππwith nicer properties
(Linear) types in other computational models
–ππππ, λλλλ, typed MM, session types, ...

Linear languages
–Linear Lisp, Lilac, Linear LP, ...

Compile-time GC
–Mercury, Janus, ...
–compiling streams into message passing

ICLP'01, Paphos, November 27, 2001

Conclusions

A strictly linear, polarized subset of Guarded
Horn Clauses
– retains most of the power of CBC
–allows resource sharing within the linear

framework
Capability type system supporting strict
linearity
A step towards a unified framework for non-
sequential computing

ICLP'01, Paphos, November 27, 2001

Future Work

Type reconstructor
Occur-check problem
Time (as well as space) bounds
Programming support
–help (1) writing strictly linear programs or

(2) reconstructing them from their slices
Constructs for mobile/ real-time/embedded
computing + implementation

ICLP'01, Paphos, November 27, 2001

Final Remark

Constraint-based type systems can make
CBC a simple, powerful, and safe language
for parallel, distributed, and real-time
computing. Its role in CBC is analogous to,
but probably more than, the role of type
systems in the λλλλ-calculus.

