|ICLP’01 tutornal
A Close Look at

Constraint-Based Concurrency

Kazunori Ueda

Waseda University
Tokyo, Japan

Copyright (C) 2001 Kazunori Ueda

Talk Outline

¢ Constraint-based concurrency (CBC)
—Essence of constraint-based communication
—Relation to name-based concurrency

¢ Type systems and analyses for CBC
—modes (directional types) and linear types
¢ Strict linearity and its implications

¢ Capabllities: types for strict linearity with
sharing

ICLP’01, Paphos, November 27, 2001

Papers

¢ Resource-Passing Concurrent Programming.
In Proc. Fourth Int. Symp. on Theoretical Aspects
of Computer Software, LNCS 2215, Springer, 2001,
pp. 95-126.

¢ Concurrent Logic/Constraint Programming: The
Next 10 Years.

n The Logic Programming Paradigm: A 25-Year

Perspective, Apt, K.R. et al. (eds.), Springer, 1999,

0P.53-71.

¢ For other papers see bhibliography.

ICLP’01, Paphos, November 27, 2001

Talk Outline

¢ Constraint-based concurrency (CBC)
—Essence of constraint-based communication
—Relation to name-based concurrency

¢ Type systems and analyses for CBC
—modes (directional types) and linear types

¢ Strict linearity and its implications

¢ Capabllities: types for strict linearity with
sharing

ICLP’01, Paphos, November 27, 2001

Constraint-Based Concurrency

¢ Concurrency formalism & language based on

—single-assignment (write-once) channels
and

—constructors
cf. name-based concurrency
¢ Also known as
—concurrent logic programming
—concurrent constraint programming (CCP)

¢ Born and used as languages (early 1980’s);
then recognized and studied as formalisms

ICLP’01, Paphos, November 27, 2001

Name-Based Concurrency

¢ Syntax of the (asynchronous) tecalculus

P::=Xy.P (output — send y along x)
X(y).P (input — receive y from x)
0 (Inaction)
P|P (parallel composition)
()P ylleligle)
[Xx=y] P (match)
P (replication)

¢ Structural congruence
— P = P|IP — [x=xX]P E P

—X)(P|Q) = P|(X)Q IfxisnotfreeinP

ICLP’01, Paphos, November 27, 2001

Name-Based Concurrency

¢ Reduction semantics of the t=calculus

X(y).P | x2.Q - P{zly}| Q
P o P’
PIQ - P"|Q
P o P’
)P - (V)P
P P L P P
Q - Q

ICLP’01, Paphos, November 27, 2001

Q Q

Single-Assignment Channels

¢ Also known as logical variables

¢ Can be written at most once

—Dby telling a constraint (= partial information)
on the value of the channel (unification)

ee.g., tell S=[read(X)|S’]
¢ Reading Is non-destructive

—Dby asking if a certain constraint is entailed
(term matching)

ec.g., ask LALK'(S=[A|S’])
—covers both input and match in the m-calculus

ICLP’01, Paphos, November 27, 2001

Single-Assignment Channels

¢ The set of all published constraints (tells)
forms a constraint store.

¢ Since reading Is non-destructive, constraint
store IS monotonic.

— Still, it's amenable to garbage collection
because of its highly local nature.

¢ The use of constraints for message passing
doesn’t necessarily involve consistency
techniques.

ICLP’01, Paphos, November 27, 2001

Constraint-Based Communication

¢ Asynchronous

—tell Is an independent process (as in the
asynchronous 1t-calculus)

¢ Polyadic (“many-place”)

—constructors provide built-in structuring and
encoding mechanisms

—essential in the single-assignment setting
4
4

ICLP’01, Paphos, November 27, 2001

Constraint-Based Communication

¢ Mobile — channel mobillity in the sense of the
T-calculus

—Channels
e can be passed using another channel
e can be fused with another channel
eare first-class (processes aren’t)
—availlable since 1983 (Concurrent Prolog)

ICLP’01, Paphos, November 27, 2001

Constraint-Based Communication

\ 4
4

&
¢ Non-strict

—“Constraint-based” means computing with
partial information

—Yielded many programming idioms, including
e (streams of)* streams
edifference lists
e messages with reply boxes

ICLP’01, Paphos, November 27, 2001

The Language (traditional LP syntax)

.= set of R’s

:=A :-|B

.= multiset of G’s
=T,=T, | A

= p(Tq, ..., T), p*=
.= (as In first-order logic)

= - B

ICLP’01, Paphos, November 27, 2001

O 4 > O W X1»U T

The Language (alternative syntax)

P ::=setof R’s

R ::= ITI(A . B)

B ::= multiset of G’s
G::=T,=T, | A
Ai=p(Tqy, ..., T), P#E=

T .= (as In first-order logic)

Q::=B,P

ICLP’01, Paphos, November 27, 2001

The Language

set of R’s

I0(A . B)

multis\e*<f\i3’s

=T,=T, | A

G W |XO| T
||

Ai=p(Tq, ..., T,

T ::= (as In first-order logic

Q::=B,P

ICLP’01, Paphos, November 27, 2001

Reduction Semantics

¢ Concurrency
(B,C,P) - (B,C'",P)
(B,UB,,C,P) - (B,UB,,C',P)

¢ Tell

<{t1 — t2}1C’ P> = <¢’C U {tl = tz}’P>

ICLP’01, Paphos, November 27, 2001

Reduction Semantics

¢ Concurrency
(B,C,P) - (B,C'",P)

(B,UB,,C,P) - (B,UB,,C',P)

¢ Tell

<{t1 = tz}’C’ P> — <§”1C U{tl = t2}1P>

ICLP’01, Paphos, November 27, 2001

Reduction Semantics (cont’d)

¢ Ask

({b},C,P U{h:~|B})
- (B,CU{b=h},PU{h:~|B})

if E |FO(C = Dvars(h)(b = h))
(and vars(h,B)Nvars(b,C) = @

ICLP’01, Paphos, November 27, 2001

Reduction Semantics (cont’d)

¢ Ask

({b},C,P U{h:~|B})
- (B,CU{b=h},PU{h:~|B})

if E = 0(C = Dvars(h)(b = h))j

and vars(h,B)Nvars(b,C) = ¢

ICLP’01, Paphos, November 27, 2001

Relation to Name-Based Concurrency

¢ Predicates (names of recursive procedures)
can be regarded as global names of
conventional (destructive) channels.

—the only source of arbitration in CBC

¢ Variables are local names of write-once
channels.

¢ Constructors are global, non-channel names
for composing messages with reply boxes,
streams, and other data structures.

ICLP’01, Paphos, November 27, 2001

Channels in CBC and NBC

¢ Write-once channels allow buffering with the
aid of stream constructors

—e.g., S=[read(X)|S’] (S’: continuation)

¢ Channels in the asynchronous 1t-calculus are
multisets of messages from which input
operations remove messages

—e.g., a(y).Qlab - Q{b/y}

—Being a multiset is another source of
arbitration

ICLP’01, Paphos, November 27, 2001

Channels in CBC and NBC

¢ CBC and NBC get closer with type systems:
—mode (= directional type) system for CBC
—linear types for the 1r-calculus

¢ Both guarantees that only one process holds
a write capability and use it once

—hence they leave no sharp difference in non-
destructive and destructive read,

—except that CBC still allows multicasting and
channel fusion

ICLP’01, Paphos, November 27, 2001

Communication in CBC and NBC

¢In CBC,
—tell subsumes two operations
eoutput e.g., X=3, X=[push(5)|X]
efusion (of two channel names) e.g., X=Y
—ask subsumes two operations
einput (synchronization and value passing)
ematch (checking of values)

¢ However, match in moded CBC doesn’t allow
the checking of channel equality (cf. L)

ICLP’01, Paphos, November 27, 2001

Channels iIn CBC Are Local Names

¢ Fallacy: constraint store Is global, shared,

single-assignment memory

¢ Channels are created as fresh local names

that cannot be forged by the third party

—the locality could be made explicit Iin
configurations

¢ A new channel can be exported and
Imported only by using an existing chan

—e.g., p([create(S)|X’]) :- | server(S),

ICLP’01, Paphos, November 27, 2001

nel

0(X7).

Talk Outline

\ 4

¢ Type systems and analyses for CBC
—modes (directional types) and linear types

¢ Strict linearity and its implications

¢ Capabllities: types for strict linearity with
sharing

ICLP’01, Paphos, November 27, 2001

/O Modes: Motivations

¢ Our experience with concurrent logic
languages (Flat GHC) shows that logical
variables are used mostly as cooperative
communication channels with statically

established protocols (point-to-point,
multicasting)

¢ Non-cooperative use may cause collapse of
the constraint store

—e.g., X=1 LU X=2] 1#2 entalils anything!

ICLP’01, Paphos, November 27, 2001

The Mode System of Moded Flat GHC

¢ Assigns polarity (+/-) structures to the
arguments of processes so that the write
capability of each part of data structures Is
held by exactly one process

¢ Unlike standard types in that modes are
resource-sensitive

¢ Moding rules are given in terms of mode
constraints (cf. inference rules)

¢ Can be solved (mostly) as unification over
mode graphs (feature graphs with cycles)

ICLP’01, Paphos, November 27, 2001

An Electric Device Metaphor

¢ Signal cables may have
various structures (arrays
of wires and pins), but

—the two ends of a cable, ‘
viewed from outside,

;
should have opposite ¥4 /

polarity structures, and

—a plug and a socket
should have opposite
polarity structures

when viewed from goal = device
outside variable = cable

ICLP’01, Paphos, November 27, 2001

Modes as Functions

¢ Given a “position” (of any procedure, of arbitrary
depth), a mode function will answer the 1/O
mode of that position.
m: P,yom — 110, Out }
P, setof paths of the form
<p, 1><f;, 1,>...<f ,1.> (n=0)
e.g.: <append, 2><., 2><., 1>
o P :setof paths of the form
<f,,1;>...<f ;1> (n=0)
em(p): mode at p
em/p: modes at and below p (P, — {In, out })

ICLP’01, Paphos, November 27, 2001

Mode Constraints on a Well-Moding m

¢ Constructors occur at input positions

¢ Non-linear head variables occur at fully input
positions (to check if they hold identical values)

¢ The two arguments of a unification body goal
(tell) have complementary modes

¢ Variable occurring at p,, ..

Pri1s - P (DOdy) satisfies

—R({m/p,, ..., m/p, })

., P (head) and

(k=0)

—R({m/py, M/py.y, ..., MIp,}) (k>0)

where R(S) =

q PTerm S

(s(g) =out S’

ICLP’01, Paphos, November 27, 2001

S\{s}(s’(q) =in))

Principles Behind the Constraints

¢ A variableisacable or a hub.
Sq
815 z Z] S,
— S0 S)
R{S1,8,}) = s1=5; -
¢ Constraint for connectivity U
— ts;
_) O si=s;
— —> R({Sp:S1:55:S3})

S;1 S,

ICLP’01, Paphos, November 27, 2001

Principles Behind the Constraints

¢ Clause heads and body goals have opposite
polarities, so do their arguments.

1)
O

ICLP’01, Paphos, November 27, 2001

Principles Behind the Constraints

¢ Goal-head connection

source
(caller) U

O
(callee) @ @ @
sink ﬂ

unification

ICLP’01, Paphos, November 27, 2001

Resolution Principle

S, /@ S,
g

S e=

—
S

R({s}0S,) O R({s}OS,)

ICLP’01, Paphos, November 27, 2001

Resolution Principle

S, /@ S,
—
g g

R({s}0S,) O R({s}OS,)
= R(S;USy)

ICLP’01, Paphos, November 27, 2001

Moding: Implications and Experiences

¢ A process can pass a (variable containing) write
capability to somebody else, but cannot
duplicate or discard It.

¢ Two write capabilities cannot be compared

¢ Read capabillities can be copied, discarded and
compared

—cf. Linearity system

¢ Extremely useful for debugging — pinpointing
errors and automated correction (!)

\ 4

ICLP’01, Paphos, November 27, 2001

Moding: Implications and Experiences

¢ Encourages resource-conscious programming
by giving weaker mode constraints to variables
with exactly two occurrences

— A singleton variable constrains the mode of Its
position to fully input or fully output.

— A variable with three or more occurrences
constrain the modes of more positions.

¢ Weaker constraints lead to more generic
(= more polymorphic) programs

—

well-moded Ill-moded
(well-typed) (ill-typed)

ICLP’01, Paphos, November 27, 2001

Theorems

¢ Unification degenerates to assignment to a
variable.

¢ (Subject Reduction) A well-moding m is
preserved by reduction

¢ (Groundness) When a program terminates
successfully, every variable is bound to a
constructor.

ICLP’01, Paphos, November 27, 2001

Linearity: An Observation (cf. LNCS 1068)

¢ In (concurrent) logic programs, many of the
program variables have exactly two
occurrences.

—Example:
append([], Y,Z) - true | Z=Y.
append([A]X],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).
— Counter-example:

p(...X...) :- true | r(...X...), p(...X...).

ICLP’01, Paphos, November 27, 2001

An Observation

¢ Another example: quicksort

gsort(Xs,Ys) :- | gsort(Xs,Ys,[]).
gsort(][],Ys0O,Ys) :- | Ys=YsO.
gsort(| X|Xs],Ys0,Ys3) :- |

part(X,Xs,S,L), gsort(S,Ys0,Ysl),
Ys1=[X]Ys2], gsort(L,Ys2,Ys3).
part(_,[1.S.L) :- | S=[1, L=11.
part(A,[X]Xs],S0O,L) :- |
SO0=[X]S], part(A,Xs,S,L).
part(A,[X]Xs],S,L0) :- |
LO=[X]|L], part(A,Xs,S,L).

ICLP’01, Paphos, November 27, 2001

An Observation

¢ Another example: quicksort

gsort(Xs,Ys) :- | gsort(Xs,Ys,[]).
gsort(][],Ys0O,Ys) :- | Ys=YsO.
gsort([X|Xs],Ys0,Ys3) :- |

part(X,Xs,S,L), gsort(S,Ys0,Ysl),
Ys1=[X]Ys2], gsort(L,Ys2,Ys3).
part(_,[1.S.L) :- | S=[1, L=11.
part(A,[X]Xs],SO,L) :- |
SO0=[X]S], part(A,Xs,S,L).
part(A,[X]Xs],S,L0) :- |
LO=[X]|L], part(A,Xs,S,L).

ICLP’01, Paphos, November 27, 2001

Another Observation

gsort(Xs,Ys) :- | gsort(Xs,Ys,[]).
gsort(][],Ys0O,Ys) :- | Ys=YsO.
gsort([X]Xs],Ys0,Ys3) :- |

part(X,Xs,S,L), gsort(S,Ys0O,Ysl),
Ys1=[X]Ys2], gsort(L,Ys2,Ys3).
¢ Virtually all variables with =3 channel
occurrences (nonlinear variables) are used
for simple, one-way communication
¢ Many variables with exactly two occurrences

(linear variables) have quite complex
communication protocols

ICLP’01, Paphos, November 27, 2001

Linearity Analysis

¢ Statically distinguishes between shared and
nonshared data structures

—shared : possibly referenced by two or more
pointers (when assignments are done by
pointer sharing)

—nonshared : referenced by only one pointer

e Nonshared structures can be recycled as soon
as read by the sole reader (complile-time
garbage collection), as long as writers have no
access to structure elements any more

ICLP’01, Paphos, November 27, 2001

Linearity Annotations

¢ We annotate all constructors in the body
goals of program+goal clauses
(cf. 1-bit reference counting)

f1C , ,) or f°C , ,)
not shared possibly shared

¢ Closure conditions:
— 0. gD L) NO
—f1(... g“C.) .. OK

ICLP’01, Paphos, November 27, 2001

Linearity Annotations

¢ Example:
- p([1,2,3],X), q([1,2,3],Y).

—The 14 constructors can be given “1” Iif the
lists are created separately, and should be
given “w” If the lists are shared.

¢ The annotations are dynamic (as reference
counters are), but are to be compiled away
by static linearity analysis

ICLP’01, Paphos, November 27, 2001

Extending Operational Semantics

- . pG. X)) Lo X=t o gl XL
— - ... p(...T..)) .. . g(...t..)
- .o p(..tll)) ..
p(... X...) :- | q(... X...), r(... X...).
- .qC..t.),r(..t.) ..
¢ X nonlinear —» change the annotations in the
termt to "w"

¢ X linear - retain the original annotations

ICLP’01, Paphos, November 27, 2001

Linearity System

¢ Deals with the sharing aspects of programs

¢ Assigns linearity (nonshared/shared)
structures to the arguments of processes so
that as many parts of data structures as
possible are guaranteed to be “nonshared”

¢ Unlike standard types in that linearities are
resource-sensitive

¢ Can be solved (mostly) as unification over
linearity graphs (feature graphs with cycles)

ICLP’01, Paphos, November 27, 2001

Output of klint v2

9@@6Nbde %0

' - node mal n:
' - pode mal n:
: - node mal n:
' - nodedef 1
' - nodedef 2
: - nodedef 3

qui cksort (1, 3).
gsort(1, 3,-3).

part(++ 1,-1,-1).
(+, :_-2| 111) .

= (-,[])-

= (-, [[2]3]]).

9@@6LJnear|ty W80

; | N mal N:
- 11 n main:
- |1 n maln:
- |1 ndef 1
- |1 ndef 2

qui cksort (1, 2).
gsort(1, 2, 2).

part(** 1,1,1).
= (2, [[**]1]]).
= (2, [[*"12]]).

ICLP’01, Paphos, November 27, 2001

Talk Outline

¢

\ 4

¢ Strict linearity and its implications

¢ Capabllities: types for strict linearity with
sharing

ICLP’01, Paphos, November 27, 2001

Linear Variables Are Dipoles (15t step)

¢ Insertion sort
sort([], S) - | S=]].
sort([X|LO],S) :- | sort(LO,S0), insert(X,S0,S).
insert(X,[1, R) - | R=[X].
insertCX,[Y|L], R) :- XY | R=[X,Y]L].
insert(X,[Y|LO],R) :- X=>Y | R=[Y]|L],
iInsert(X,LO,L).
¢ From now on we disallow monopole
(singleton) variables

ICLP’01, Paphos, November 27, 2001

Polarizing Constructors (2"d step)

¢ Insertion sort
sort([], S) - | S=[].
sort([X|LO],S) :- | sort(LO,S0), insert(| X|S0],S).
iInsert([X], R) - | R=[X].
insert([X,Y|L], R) :- XY | R=[X,Y]|L].
iInsert([X,Y|LO],R) :- X=>Y | R=[Y]|L],
iInsert(| X|LO],L).
¢ Linear constructors are also dipoles; the two
occurrences of a linear constructor are two
polarized instances of the same constructor.

ICLP’01, Paphos, November 27, 2001

Strict Linearity

¢ A program clause is called strictly linear if all
variables and constructors are dipoles.

— Constructors can now be regarded as
channels that convey fixed values (and more
iImportantly, resources) from head to body.

¢ A further step towards resource-conscious
programming

ICLP’01, Paphos, November 27, 2001

Polarizing Constructors (cont’d)

¢ Are Initial constructors and variables
monopoles?

.- sort([3,1,4,1,5,9],X).

¢ A strictly linear (and symmetric) version Is:
main([3,1,4,1,5,9],X) :- | sort(|3,1,4,1,5,9],X).

which will be reduced finally to
main([3,1,4,1,5,9],X) :- | X=1]1,1,3,4,5,9].

ICLP’01, Paphos, November 27, 2001

Programming Under Strict Linearity

¢ Append
append([],Y,Z2) - | Z=Y.
append([A]X],Y,Z0) :- |
Z0=[A|Z], append(X,Y,Z2).
¢ Strictly linear version
append([].Y,Z,U) - | Z=Y, U=[].
append([A]X],Y,Z0,U) - |
Z0=[A]|Z], append(X,Y,Z,U).
¢ The former Is a slice of the latter.

ICLP’01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

¢ Stack server
stack([], D) :- | true.
stack([push(X)|S],D) :- | stack(S,[X|D])).
stack([pop(X)|S], [YID]) :- | X=Y, stack(S,D).
¢ Strictly linear version (15t attempt)
stack([](2), D) - | Z=[](D).
stack([push([X|*],Y)|S],D) - |
Y=[push(*,”)|*], stack(S,[X]|D]).

stack([pop(X)|S]. [YID]) - |
X=[pop(LY|*DI*1, stack(S,D).

ICLP’01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

¢ Stack server
stack([], D) :- | true.
stack([push(X)|S],D) :- | stack(S,[X|D])).
stack([pop(X)|S], [YID]) :- | X=Y, stack(S,D).
¢ Strictly linear version (2" attempt)
stack([](2), D) - | Z=[](D).
stack([push([X|*],2)|S],D) - |
Z=|push((*,*)|*™], stack(S,[X]|D]).
stack([pop(X,2)|S], [YIDD - |
X=[Y|*], Z=[pop(*,*)]|*], stack(S,D).

ICLP’01, Paphos, November 27, 2001

Linearizing Server Processes (Hard)

¢ Strictly linear version

stack([](2), D) - | Z=11(D).

stack([push(|X|*1],Y)|S].D) - |
Y=[push(*,*)|*], stack(S,[X|D]).

stack([pop(X.2)|S]. [YID]) :- |
X=[Y|*], Z=[pop(*.*)|*]. stack(S,D).

—A server doesn’t want to keep envelopes

([| 1) or cover sheets (push/pop)

—“*7"(void) Is a non-constructor-non-variable
symbol with zero capabllity (no write, no read)

ICLP’01, Paphos, November 27, 2001

Polarizing Predicates (3" step)

¢ Insertion sort
sort([], S) :- | S=[], sort(*,*)
sort([X|LO],S), insert(*,*) :- |
sort(LO,S0), insert(|X|S0],S).
—cf. CHR, cc(multiset)

¢ Goals with void arguments are free goals
waiting for habitants

—can be considered as implicitly given

ICLP’01, Paphos, November 27, 2001

Resource Aspect of Values

¢ Standard counting under the untyped setting
—Void: 1 unit
—Variable: 1 unit per occurrence

—N-ary constructor and predicate: N+1 units
e Arguments should point to variables or voids

—e.g., p(X): 3 units, p(*): 3 units, p(1): 4 units

__>1

! ! }

| | |

—Typing can reduce dereferencing and space

ICLP’01, Paphos, November 27, 2001

Constant-Time Property

¢ All entities are accessed by dereferencing
exactly twice (yes, two Is the magic number).

T%l

ICLP’01, Paphos, November 27, 2001

Constant-Time Property

¢ All entities are accessed by dereferencing
exactly twice (yes, two Is the magic number).

ol

o] 7 _

_>1

ICLP’01, Paphos, November 27, 2001

Talk Outline

¢ Constraint-based concurrency
—Essence of constraint-based communication
—Relation to name-based concurrency

¢ Type systems and analyses
—modes (directional types) and linear types

¢ Strict linearity and its implications

¢ Capabillities: types for strict linearity with
sharing

ICLP’01, Paphos, November 27, 2001

Sharing under Strict Linearity

¢ Goals:

1. To allow concurrent access to shared
resource

e €.9., large arrays used for table lookup
2. To recover linearity after concurrent access

e Can wgetbackto 17

¢ Two ways of concurrent access

—multiplicative = full access to disjoint parts
e already supported by mode+linearity

—additive = read access to the whole structure

ICLP’01, Paphos, November 27, 2001

Let’'s Take a Reciprocal

¢ Mode {in,out} and linearity { ,
shared} can be unified and generalized in a
simple setting, the [-1,+1] capability system.

non-exclusive

read
-1 0 N +1
besssnnnnnnnnnnnss . -
exclusive void exclusive
write (no read, no write) read

¢ cf. Weighted reference counting

ICLP’01, Paphos, November 27, 2001

In Pursuit of Symmetry

¢ What's the meaning of (—1,0) capabillities?
¢ Example: concurrent read
read(X0,X) :- |
read1(X0,X1), read2(X0,X2), join(X1,X2,X).
—Suppose read receives X0 with exclusive
read capabllity 1 (1(p)=+1) and split it into
two non-exclusive capabillities, a and 1—-a.
—Then these capabillities will be returned
through X1 (—a) and X2 (a—1)
e because they cannot be disposed

ICLP’01, Paphos, November 27, 2001

In Pursuit of Symmetry

¢ Example: concurrent read (cont’d)
read(X0,X) :- |
read1(X0,X1), read2(X0,X2), join(X1,X2,X).
— X1 (—a) and X2 (a—1) become logically the
same as X0 (they must alias unless readn
diverges or deadlocks)

—Then the two aliases are joined by a clause
with a nonlinear head:

join(A,A,B) :- | B = A.
e The capabilities of the three args sum up to O.

ICLP’01, Paphos, November 27, 2001

Capability Annotations

¢ We annotate all constructors in (initial or
reduced) goal clauses.

—The annotations are to be compiled away

f1C , ,) or f°C , ,)

exclusive (0<K<1) non-exclusive

¢ Closure condition:
— ... g%(..)) NO
—f1(...g°C.) L) OK

ICLP’01, Paphos, November 27, 2001

Extending Operational Semantics

- . pG. X)) Lo X=t o gl X))
— - ... p(..T..)) ... I o [R e
- ... p(...t..) ...
p(... X...) - | (X...), r(... X...).
— - ...qC..t..), r(C...t..) ...

¢ X nonlinear - split the capabilities In the
term t using any (e.g., random) numbers

¢ X linear - retain the original capabilities

ICLP’01, Paphos, November 27, 2001

Capability System

¢ A capability is a function
C: Patom — [1,+1]
¢ Polymorphic w.r.t. non-exclusive capabilities
because they decrease by repeated splitting

—So all goals created at runtime are
distinguished using suffixes

ICLP’01, Paphos, November 27, 2001

Capability Constraints (= Typing Rules)

¢ For a unification goal (of the form t; =_t,),

¢ For a variable occurring at p,, ..., p, (head)

and p.., ..., p, (body),
—c/lp,—...—clpy,+clpy,, +...+clp, =0

(Kirchhoff’'s Current Law)

and exactly one of {~c/p,, +c/p,.,, ..., +c/p,}
IS negative

¢ For a nonlinear head variable at p, c/p >0

ICLP’01, Paphos, November 27, 2001

Capability Constraints (= Typing Rules)

¢ A constructor f In head/body must find its
partner with matching capabillity (> O) in body
[head, respectively

—If f I1s exclusive, only top-level capability
match Is required; the constructor name and
the arguments can be changed

—Otherwise, full match Is required
¢ A void path has a zero capabillity
¢ A non-void path has a non-zero capability

ICLP’01, Paphos, November 27, 2001

Kirchhoft’s Current Law

S

-

— —>

e

-

J oss U

-s+2S, =0

s+2S,=0

ICLP’01, Paphos, November 27, 2001

Kirchhoft’s Current Law

S /@ >)
—
U U
-s+2S, =0 0s+2S,=0
— 3(S,0S,)=0

ICLP’01, Paphos, November 27, 2001

Example

p(Xx,Y,...) - | r(X,Y1), p(X,Y2,...), join(Y1,Y2,Y).
pP(X,Y,...) - | X=Y.
join(A,A,B) :- | B=A.

Suppose c/<r_ 4,1> + c/<r_ ,,2> =0 and
c/<ps,,1>= 1. Then c/<pg ,2>=1 holds, while
all subgoals carry non-exclusive capabilities.

—All capabillities distributed to the r’s will be
fully collected as long as all the r’s return
what they are given.

ICLP’01, Paphos, November 27, 2001

Properties

¢ Degeneration of unification to assignment
¢ Subject reduction

¢ Conservation of constructors

— A reduction will not gain or lose any
constructor in the goal

¢ Groundness

¢ Non-sharing of constructors at “exclusive”
positions

¢ Partial solution to extended occur-check
—detection of X =X (suicidal unification)

ICLP’01, Paphos, November 27, 2001

Related Work

¢ Relating CCP and 1t
—new calculus (v, p, Fusion, Solo, ...)
—encoding one In the other

¢ Variants of rtwith nicer properties

¢ (Linear) types in other computational models
—TT, A, typed MM, session types, ...

¢ Linear languages
—Linear Lisp, Lilac, Linear LP, ...

¢ Compile-time GC

—Mercury, Janus, ...

—compiling streams Into message passing

ICLP’01, Paphos, November 27, 2001

Conclusions

¢ A strictly linear, polarized subset of Guarded
Horn Clauses

—retains most of the power of CBC

—allows resource sharing within the linear
framework

¢ Capabillity type system supporting strict
linearity

¢ A step towards a unified framework for non-
sequential computing

ICLP’01, Paphos, November 27, 2001

Future Work

¢ Type reconstructor
¢ Occur-check problem
¢ Time (as well as space) bounds

¢ Programming support

—help (1) writing strictly linear programs or
(2) reconstructing them from their slices

¢ Constructs for mobile/real-time/embedded
computing + iImplementation

ICLP’01, Paphos, November 27, 2001

Final Remark

¢ Constraint-based type systems can make
CBC a simple, powerful, and safe language
for parallel, distributed, and real-time
computing. Its role in CBC is analogous to,
but probably more than, the role of type
systems in the A-calculus.

ICLP’01, Paphos, November 27, 2001

