
Gentle Introduction to LMNtal:
Language Design and Implementation

— GT from a PL perspective

Kazunori Ueda

Waseda University, Tokyo, Japan

ICGT 2024, Twente, July 10, 2024

2
LMNtal (pronounce: “elemental”)

L = “logical” links

M = multisets/membranes

N = nested nodes

ta = transformation

l = language

m

n

m

t a

l

l l

“node-labelled,
open, hierarchical,

and undirected
port multigraph

(or multihypergraph)”

More info about LMNtal in the LMNtal webpage,
WMC 2004 (LNCS 3365), RTA 2008 (LNCS 5117),
TCS 410 (2009), ICGT 2019/2023, GitHub, etc.

◆ Project LMNtal (pronounce “elemental”)

⚫ A “unifying” computational model + language + system
based on (a class of) graph rewriting

⚫ Now 4th-generation implementation

⚫ >100,000 LOC involving many people over the years
⚫ Features verification (model checking) since 2007

⚫ Provides LaViT, an IDE with visualizers

Ready to use; very low entry barrier

http://www.ueda.info.waseda.ac.jp/lmntal/

⚫ open-source from GitHub

3
LMNtal: a unifying language

K. Ueda, Theoretical Computer Science 410, 2009

K. Ueda et al., Proc. ICTAC 2009, LNCS 5684

What do we mean by “unifying” ?

Unify various programming concepts, e.g.:

◆ data and functions

◆ processes and messages

◆ data structures and process structures

⚫ Most declarative languages are awkward in handling
non-tree (= non-algebraic) data structures

⚫ Pointers in imperative languages are error-prone

◆ synchronous and asynchronous communication

◆ programming and modeling

◆ computation and verification

4

(they just react!)

What do we mean by a “PL perspective”?

◆ The primary concern is to have

⚫ inductively defined syntax and

⚫ syntax-directed semantics (= structural operational semantics)

for graphs and graph transformation

⚫ Analogy:
proof theory (vs. model theory) in mathematical logic

◆Other PL concerns and interests include:

⚫ composition

⚫ abstraction

⚫ encoding (of other calculi)

5

GT from a PL perspective, diagrammatically
6

?

GT from a PL perspective, diagrammatically
7

≅

◆ Structures found in organization (of any kind) and human
knowledge have one or both of the following:
⚫ connectivity

◼ network, graphs,
human relationships, ...

⚫ hierarchy
◼ companies,

addresses,
domain names, ...

8
Hierarchical (hyper)graphs: Motivations

m
m

a

l
l l

n

t

100

100

100

10

10

RQ: Can we have a concise programming language
that allows us to represent and manipulate them
simultaneously and in a direct, safe manner?

Example: List concatenation (a la Interaction Nets)

[]

6

.

7

.

8

.

9

. []

a

1

.

2

.

3

.

5

.

4

. =b

a . a. a [] =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a

.

[]

: append

: cons

: nil

a(X0,Y,Z0), '.'(A,X,X0) :- '.'(A,Z,Z0), a(X,Y,Z) a(X0,Y,Z0), '[]'(X0) :- Y=Z0

9

Example: List concatenation (a la Interaction Nets)

1

.

2

.

3

.

5

.

4

. =b

6

.

7

.

8

.

9

. []

= 

10

a . a. a [] =

A A
Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

a(X0,Y,Z0), '.'(A,X,X0) :- '.'(A,Z,Z0), a(X,Y,Z) a(X0,Y,Z0), '[]'(X0) :- Y=Z0

append in LMNtal

append(X0,Y,Z0), '[]'(X0) :- Y=Z0

append(X0,Y,Z0), '.'(A,X,X0) :- '.'(A,Z,Z0), append(X,Y,Z)

◆ Constructors ('.' and '[]') are in relational form, but
LMNtal provides a term (or functional) notation:

'[]'(X0) ≡ X0=Y, '[]'(Y) ≡ X0='[]’
'.'(A,X,X0) ≡ X0=Y, '.'(A,X,Y) ≡ X0='.'(A,X)

append(X0,Y,Z0), X0='.'(A,X) :- Z0='.'(A,Z), append(X,Y,Z)

Z0 = append('.'(A,X),Y) :- Z0 = '.'(A,append(X,Y))

11

Expand (E9) Embed

12

Diagrammatic representation of computation

c

i o

m

+

i o

+

c m

s

X
X

mm

g

m

X

m

m

X

m

Y Y

Z

Y Y

i o
X0

Y0

X

Y

A

hub formed by
membrane

n-to-1 comm.

cyclic structures

asynchronous -calculus

map function

b

nn

nn

n

right

S

L2

L1

AL0

S1

channel formed by
membrane

closed unary
function

operation

buffer
header

send

receive

protected by
membrane

unprotected

LMNtal in a nutshell

◆ A rule-based concurrent language for expressing and
rewriting connectivity and hierarchy

◆ Unifying model of 𝑋-calculi (𝑋 = 𝜆, 𝜋, ambient, etc.) and
multiset rewriting

◆ Computation is manipulation of diagrams

⚫ Links express 1-to-1 connectivity

⚫ Membranes express hierarchy and locality

⚫ Allows programming with sets and graphs and
programming by self-organization

⚫ Well-defined notion of atomic actions

13

Historical Background

◆ Logic Programming (early 1970’s)
⚫ Procedural interpretation of logical formulae (ℎ ⇐ 𝐵)

◆ Concurrent Logic Programming (early 1980’s)
⚫ Process interpretation of logical formulae
⚫ Channel mobility using logical variables

◆ Constraint-Based Concurrency (late 1980’s)
⚫ Generalization of data domains (FD, multisets, . . .)

◆ CHR (Constraint Handling Rules) (early 1990’s)
⚫ Allows multisets of goals in rule heads
⚫ An expressive multiset rewriting language
⚫ Many applications (esp. constraint solvers)

14

Models and languages
with multisets and symmetric join

◆ (Colored) Petri Nets
◆ Production Systems and RETE match
◆ Graph transformation formalisms
◆ CCS, CSP
◆ Concurrent logic/constraint programming
◆ Linda
◆ Linear Logic languages
◆ Interaction Nets
◆ Chemical Abstract Machine, reflexive CHAM, Join Calculus
◆ Gamma mode
◆ Maude
◆ Constraint Handling Rules (CHR)
◆ Mobile ambients
◆ P-system, membrane computing
◆ Amorphous computing
◆ Bigraphical Reactive Systems

15

Models and languages
with membranes + hierarchies

◆ (Colored) Petri Nets
◆ Production Systems and RETE match
◆ Graph transformation formalisms *
◆ CCS, CSP
◆ Concurrent logic/constraint programming
◆ Linda *
◆ Linear Logic languages
◆ Interaction Nets
◆ Chemical Abstract Machine, reflexive CHAM, Join Calculus
◆ Gamma model
◆ Maude
◆ Constraint Handling Rules
◆ Mobile ambients
◆ P-system, membrane computing
◆ Amorphous computing
◆ Bigraphical Reactive Systems

16

* : some versions
feature hierarchies

◆ Statecharts
◆ Seal calculus
◆ Kell calculus
◆ Brane calculi
◆  calculus

Example: N-to-1 stream/channel communication

c(A,X,X0), { i(X0), o(Y0), $p } :-

{ i(X), o(Y), $p}, c(A,Y,Y0)

i o
X0

Y0

X

⚫ The number of free links of { } remain unchanged

Y

A

membrane

17

context with
free links

Demo: Fullerene (C60)

/* icosahedron */

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-

p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4),

p(L2,L3,H1,T1,H0), p(L4,L5,H2,T2,H1),

p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9),

dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1).

/* icosahedron -> fullerene */

p(L0,L1,L2,L3,L4) :-

c(L0,X0,X4), c(L1,X1,X0), c(L2,X2,X1), c(L3,X3,X2), c(L4,X4,X3).

18

Elements of LMNtal (1+2)

1+2. Labelled nodes (called atoms) with ordered links

⚫ Origin: atomic formula 𝑝 𝑡1, … , 𝑡𝑛 in first-order logic

⚫ An atom has its own arity (degree), and its links are
totally ordered (cf. graphs in graph theory)

◼ a.k.a. “(node of) port graph”, “hyperedge”

⚫ Links are linear, zero-assignment logical variables

◼ linear = occurring twice (1-to-1 communication)
◼ zero-assignment = not instantiated to terms
◼ logical (a.k.a. immutable) = link identity changes

after message sending (cf. -calculus)
◼ not directed (like chemical bonds)

19

Elements of LMNtal (1+2) (cont’d)

⚫ Links are used for :

(a) representing (private) communication channels

(b) forming complex data structures (i.e., graphs)

(c) finding partners in rewriting

✓O(1) if linked

✓can be O(n) if not linked

(d) representing hyperlinks (using membranes (p.21))

⚫ HyperLMNtal (2011) features hyperlinks as an
independent construct

20

Elements of LMNtal (3)

3. Membranes (to represent first-class multisets)

⚫ Not many languages feature multisets (or forests) as
first-class citizens

⚫ Used for :

◼ representing records (a.k.a. feature structures, KVS)

◼ representing graph nodes with variable degrees

◼ localization and management of computation

✓ cf. ambients, join calculus, Unix processes

◼ creating and managing fresh local names

21

Elements of LMNtal (4)

4. Rewrite rules

⚫ Can be placed in a membrane to realize

◼ local reaction

◼ mobility of autonomous processes

⚫ Key design issue: proper handling of free links
(a.k.a. open/half/dangling edges, loose ends, and
links with boundary/exterior vertices)

◼ Recall: LMNtal handles open graphs
(a.k.a. semigraphs)

◼ design of context handling is the key

23

Syntax: preliminaries

◆ Two presupposed syntactic categories:

⚫ X : link names (linear (1-to-1) & local)

◼ In concrete syntax, start with capital letters

⚫ p : atom names (nonlinear & global)

◼ Works as node labels

◼ In concrete syntax, use identifiers different from
links (e.g., cons, 314, ‘+’, “string”)

◆ Atom names are uninterpreted, except for ‘=’
(called a connector)

24

Syntax of LMNtal processes

◆𝑃 ::= 𝟎 (null)

| 𝑝(𝑋1, … , 𝑋𝑚) (𝑚 ≥ 0) (atom)

| 𝑃, 𝑃 (molecule)

| {𝑃} (cell)

| 𝑇 :− 𝑇 (rule)

◆ Link condition: Each link name in 𝑃 occurs at most twice
and each link name in a rule occurs exactly twice.

⚫ Free link of 𝑃 = link occurring only once

⚫ 𝑃 is closed = has no free links

25

Not in
Flat LMNtal

26
Syntax of LMNtal process templates

◆𝑇 ::= 𝟎 (null)

| 𝑝(𝑋1, … , 𝑋𝑚) (𝑚 ≥ 0) (atom)

| 𝑇, 𝑇 (molecule)

| {𝑇} (cell)

| 𝑇 :− 𝑇 (rule)

| @𝑝 (rule context)

| $𝑝 𝑋1, … , 𝑋𝑚 𝐴] (𝑚 ≥ 0) (process context)

| 𝑝(∗𝑋1, … ,∗𝑋𝑚) (𝑚 ≥ 0) (aggregate)

◆ (residual args) 𝐴 ::= [] (empty)

| ∗𝑋 (bundle)

Not in
Flat LMNtal

Lists, trees, bags (cells)
27

3

.

2

.

7

.

5

. []

*

+

5

2 a

ans

'.' (3,B,A), '.' (2,C,B),
'.' (7,D,C), '.' (5,E,D), '[]' (E)

- or -
A = '.' (3, '.' (2, '.' (7, '.' (5,'[]'))))
A = [3 | [2 | [7 | [5 | []]]]
A = [3, 2, 7, 5]

ans(A),
'+' (B,C,A), '*' (D,E,B),
2(D), a(E), 5(C)

- or -

ans('+' ('*' (2, a), 5))
ans = 2*a+5

A B C D E

ans

+

2

3

5

ans(A),
{+A, 2, 3, 5}

- or -

ans({2, 3, 5})
ans={2, 3, 5}

A

B C

D E

A

'.'(A1,X1,X0), '.'(A2,X2,X1), '.'(A3,X3,X2), '[]'(X3)

≡ '.'(A1, '.'(A2, '.'(A3, '[]')), X0)

≡ X0=Y, '.'(A1, '.'(A2, '.'(A3, '[]')),Y)

≡ X0= '.'(A1, '.'(A2, '.'(A3, '[]')))

≡ X0=[A1,A2,A3]

28
Term notation

f(X),3(X) ≡ f(3) ≡ 3(f) ≡ f =3 ≡ 3= f ≡
f

3

expand using =

remove the final arg
and fold the rest

fold again

list notation

◆ Port graphs

◆Multisets

... are graphs with “less” edges (another important direction!)

29
(Port) graphs and multisets

2

.

3

.

5

.

7

. []

100 100 100 10 10

*

+

b

a x

answeratom bond (link)

molecule (process)

OH H

OH H

OH H

threaded tree

skip list

How about “standard” graphs?

◆ Edge-labeled directed (multi)graph

◆ Node-labeled directed (multi)graph
(with several other
alternatives depending
on applications)

◆ Attributed graphs in a similar manner

30

König et al., LNCS 10800

++ + +
+ +

+ +

a a

b

b

.

.

.

.

+- - +- +
- +

p
q r s

◆ Hyperlinks (blue or curved) handled separately from
ordinary links

31
Hypergraph extension (HyperLMNtal)

100

100

100

10

10
*

+

x

answer

*

y

100

100

100

10

10

A hyperlink can be regarded as a
collection of unary atoms with a private

name (and an optional attribute)

multiset

term graph λ𝑓. λ𝑥. 𝑓(𝑓𝑥)

How to associate “variable names” and data?

◆ Scalars: x=20, y=8 - or - x(20), y(8)

◆ Records: x=date(2024,july,10)

◆ Lists: x=[2,3,5,7]

◆Multisets: x={n(2),n(2),n(3)} (cf. x={2,2,3})

◆ A name and its value are connected by a link, which means
that each value has one free link (i.e., is unary)

⚫ Each value can be regarded as linked to its owner
(cf. Rust)

32

Representing algorithms

◆ Euclid’s algorithm

m=20, n=8.
m=$x, n=$y :- $x>$y | m=$x-$y, n=$y.
m=$x, n=$y :- $x<$y | m=$x, n=$y-$x.

⚫ The algorithm uses no procedure/function names
(can be considered as reaction between data)

◆ LMNtal allows us to give identical names to two or more
data (useful for symmetric algorithms)

n=20, n=8.
n=$x, n=$y :- $x>$y | n=$x-$y, n=$y.

33

34
Demo: Factorial

n(1), n(2), n(3), n(4), n(5).

n($a), n($b) :- n($a*$b).

n(A), $a[A], n(B), $b[B] :- n(E), '*'(C,D,E), $a[C], $b[D].

n 4

n 3

n 5

n 2

n 1

n 4

n *

5

n 2

n 1
3

n *

5

n 2

n
3

*

41

n 15

n 2

n *

41

n 120
Arithmetics is
handled by
built-in rulesets

Numbers are
unary atoms
(= atom with
a single link)

◆ Given a 300ml jug and
a 500ml jug, get 400ml of water

◆ Allowed operations:

⚫ Empty a jug

⚫ Fill up a jug with tap water

⚫ Move a jug’s water to the other until it’s emptied

⚫ Move a jug’s water until the other jug is filled up

35

Fill up

the 500
Move to

the 300

？

500300500300500300

400ml500ml300ml

Demo: Water jug problem)

Five philosophers spend their lives thinking and eating. They
share a common dining room where there is a circular table
surrounded by five chairs, each belonging to one philosopher.
In the center of the table there is a large bowl
of spaghetti, and the table is laid with five
forks. On feeling hungry, a philosopher
enters the dining room, its in his own chair,
and picks up the fork on the left of his plate.
Unfortunately, the spaghetti is so tangled
that he needs to pick up and use the fork
on his right as well. When he has finished,
he puts down both forks, and leaves the room.

― C.A.R. Hoare (1978)

36
Demo: Dining philosophers (due to E. W. Dijkstra)

◆ A flock of mediocre philosophers would cause deadlock . . .

. . . but a perverse philosopher avoids deadlock!

◆ See how symmetry is reduced in state-space search.

37
Demo: Dining philosophers

Demo: Bubblesort
38

The left-hand side may match the middle of a list.

compare and swap if $x > $y

guard

3

.

2

.

7

.

5

. []

L=[$x , $y|L2] :- $x > $y | L=[$y, $x|L2].

typed process context

compare and swap if $x > $y

L L2

Structural congruence (≡)

(E1) 𝟎, 𝑃 ≡ 𝑃
(E2) 𝑃, 𝑄 ≡ 𝑄, 𝑃
(E3) 𝑃, 𝑄, 𝑅 ≡ (𝑃, 𝑄), 𝑅

(E4) 𝑃 ≡ 𝑃[𝑌/𝑋] if 𝑋 is a local link of 𝑃
(E5) 𝑃 ≡ 𝑃′ ⇒ 𝑃,𝑄 ≡ 𝑃′, 𝑄
(E6) 𝑃 ≡ 𝑃′ ⇒ {𝑃} ≡ {𝑃′}

(E7) 𝑋=𝑋 ≡ 𝟎
(E8) 𝑋=𝑌 ≡ 𝑌=𝑋
(E9) 𝑋=𝑌, 𝑃 ≡ 𝑃[𝑌/𝑋]

if 𝑃 is an atom and 𝑋 is a free link of 𝑃
(E10) 𝑋=𝑌, 𝑃 ≡ {𝑃}, 𝑋=𝑌

if exactly one of 𝑋 and 𝑌 is a free link of 𝑃

39

multisets

structural

connectors

Structural congruence, pictorially

(E7) 𝑋=𝑋 ≡ 𝟎
(E8) 𝑋=𝑌 ≡ 𝑌=𝑋
(E9) 𝑋=𝑌, 𝑃 ≡ 𝑃[𝑌/𝑋]

if 𝑃 is an atom and 𝑋 is a free link of 𝑃
(E10) 𝑋=𝑌, 𝑃 ≡ {𝑃}, 𝑋=𝑌

if exactly one of 𝑋 and 𝑌 is a free link of 𝑃

40

connectors

=
= =≡ ≡(E7) (E8)

= a

X
X Y X Y

Y X
a

Y≡ =
X Y X Y

=≡(E10)(E9)

Structural congruence, notes

(E1) 𝟎, 𝑃 ≡ 𝑃
(E2) 𝑃, 𝑄 ≡ 𝑄, 𝑃
(E3) 𝑃, 𝑄, 𝑅 ≡ (𝑃, 𝑄), 𝑅

(E4) 𝑃 ≡ 𝑃[𝑌/𝑋] if 𝑋 is a local link of 𝑃
(E5) 𝑃 ≡ 𝑃′ ⇒ 𝑃,𝑄 ≡ 𝑃′, 𝑄
(E6) 𝑃 ≡ 𝑃′ ⇒ {𝑃} ≡ {𝑃′}

(E7) 𝑋=𝑋 ≡ 𝟎
(E8) 𝑋=𝑌 ≡ 𝑌=𝑋
(E9) 𝑋=𝑌, 𝑃 ≡ 𝑃[𝑌/𝑋]

if 𝑃 is an atom and 𝑋 is a free link of 𝑃
(E10) 𝑋=𝑌, 𝑃 ≡ {𝑃}, 𝑋=𝑌

if exactly one of 𝑋 and 𝑌 is a free link of 𝑃

41

multisets

structural

connectors

admissible rule!

admissible rule!

implied by
“congruence”

Reduction semantics

P → P ’

42

𝑃, 𝑄 → 𝑃′, 𝑄

𝑃 → 𝑃′

{𝑃} → {𝑃′}

𝑄 ≡ 𝑃 𝑃 → 𝑃′ 𝑃′ ≡ 𝑄′

𝑄 → 𝑄′
(R3)

(R1) (R2)

𝑋=𝑌, 𝑃 → 𝑋=𝑌, {𝑃}(R4)

𝑋=𝑌, {𝑃} → {𝑋=𝑌, 𝑃}(R5)

if 𝑋 and 𝑌 are free links of 𝑃

if 𝑋 and Y are free links of (𝑋=𝑌, 𝑃)

𝑇𝜃, (𝑇 :− 𝑈) → 𝑈𝜃, (𝑇 :− 𝑈)(R6) 𝜃 is to instantiate process
& rule contexts and bundles.

𝑃 → 𝑃′

structural

connectors

Reduction semantics, notes

P → P ’

43

𝑃, 𝑄 → 𝑃′, 𝑄

𝑃 → 𝑃′

{𝑃} → {𝑃′}

𝑄 ≡ 𝑃 𝑃 → 𝑃′ 𝑃′ ≡ 𝑄′

𝑄 → 𝑄′
(R3)

(R1) (R2)

𝑋=𝑌, 𝑃 → 𝑋=𝑌, {𝑃}(R4)

𝑋=𝑌, {𝑃} → {𝑋=𝑌, 𝑃}(R5)

if 𝑋 and 𝑌 are free links of 𝑃

if 𝑋 and Y are free links of (𝑋=𝑌, 𝑃)

𝑇𝜃, (𝑇 :− 𝑈) → 𝑈𝜃, (𝑇 :− 𝑈)(R6) 𝜃 is to instantiate process
& rule contexts and bundles.

𝑃 → 𝑃′

structural

connectors

(R4)(R5) could be
“downgraded” to
standard library

Reduction semantics

◆ Can p(A,A) be reduced using p(X,Y) :- q(Y,X) ?

⚫ The LHS of the rule can’t be -converted to p(A,A)

⚫ However, because p(A,A) is equivalent to

p(X,Y), X=A, Y=A (X, Y fresh links), it can be reduced
as:

p(A,A)

≡ p(X,Y), X=A, Y=A

→ q(Y,X), X=A, Y=A

≡ q(A,A)

44

Process contexts

◆ Process(or graph)-level variables for :

⚫ migration (across membranes)

⚫ cloning and deletion (without tedious graph traversal)

◆ Two different families:

1. Untyped — to capture “the rest of the nodes”
(= “context”) of the enclosing membrane

2. Typed — to capture a graph with a specific “shape”
(= “type”), which is either

a. pre-defined (int, unary, ground, …) or

b. user-defined (by a grammar specified by “typedef”)

45

Representing the local context of a membrane
46

Free links matter!

{a(X), $p[X|*Y]} :-

a $p
X

a $p

X

a $p
X

a $p
X

{a(X), $p[|*Y]} :-

{a(X), $p[X,Y]} :- {a(X), $p[]} :-

*Y *Y

Y

Cloning and deletion

◆ cp(S,S1,S2), {+S, $p[|*P]} :-

{+S1, $p[|*P1]}, {+S2, $p[|*P2]},

cp(*P, *P1, *P2)

◆ rm(S), {+S, $a[|*X]]} :- rm(*X)

+cp
a

b

c

+
a

b

c

a

b

c+
cp

cp

47

rm +
a

b

c
rm

rm

Affinity with Proof-Net Cut Elimination [APLAS 2023]

◆ MELL (Multiplicative Exponential Linear Logic) (Girard)
= Multiplicative Linear Logic (MLL) + Exponential operators !, ?

◆ Proof Net = graphical representation of a sequent-calc. proof

48

Promotion box for the !-rule
to protect the inner items

Affinity with Proof-Net Cut Elimination [APLAS 2023]

◆ Cut elimination translates to proof net reduction

◆ Examples:

49

cut_elimination_nested@@
{'!'(A,B),$p1[A|*X]},{$p2[C|*X]},cut{+(B),+(C)}
:- {{'!'(A,B),$p1[A|*X]},$p2[C|*X],cut{+(A),+(B)}}.

cut_elimination_weakening@@
{'!'(A,B),$p[A|*X]},'?w’(C), cut{+(B),+(C)}
:- nlmem.kill({trash(A),$p[A|*X]},'?w').

Typed process contexts

◆ Process-level variables (wildcards) matching graphs with
specific “shape”

⚫ the shape is specified in a guard:

p(L), $n[L] :- int($n) | …

p($n) :- int($n) | …

⚫ can be considered as rule schemata

◆ Type hierarchy:

⚫ int, float, string ⊑ unary ⊑ ground

⚫ ‘<’ ⊑ int × int , ‘=’ ⊑ ground × ground

⚫ CSLMNtal supports typedef (CFG-based; cf. type graphs)

50

type constraint

connected graph
with given ‘roots’

Negative application conditions (NACs)

◆ As a concurrent language based on subgraph matching of
open graphs, NACs (non-existence or non-progress) are
supported in connection with membranes and/or contexts

◆ Comes in various forms:

⚫ Stability flag for termination detection { … }/ :- …

⚫ Membrane without a context (e.g., {a(X),b(Y)})

⚫ Checking of a context (e.g., $p ≠ 0) (e.g., $p ≠ (a,$q))

⚫ (to be supported in a general form as one of the
quantifiers [LOPSTR 2024])

51

Natural numbers in axiomatic set theory

◆Membrane computing supported as the other extreme

0 = ∅

1 = 0 = ∅
2 = 0,1 = ∅, {∅}
3 = 0,1,2 = {∅, ∅ , ∅, {∅} }

52

succ, {$p[]} :- {$p[], {$p[]}}.

succ, succ, succ, {}.
→ succ. succ. {{}}.
→ succ. {{{}}, {}}.
→ {{{}, {{}}}, {}, {{}}}.

Hello world! — I/O in declarative style

◆ Stream-based (or monadic) I/O

io.print_line(io.stdout,“Hello world!",io.free_port).

◆ Further details:
https://www.ueda.info.waseda.ac.jp/lmntal/index.php?Library%20Reference#io

53

print_linefree_port stdout

“Hello world!”

print_linefree_port stdout

“world!”

print_line

“Hello ”

Initial stdout
port

Port after printing
one string

Port after printing
two strings

54

exe.
result

veri.
result

propertyLMNtal
program

LaViT & Unyo-Unyo & Graphene

SLIM
runtime +

model checker

LMNtal-Java 2002– Java 30kLOC compiler + runtime w/FLI
Unyo-Unyo 2006– Java 16kLOC execution visualizer
SLIM 2007– C++ 34kLOC faster runtime w/model checker
LaViT 2008– Java 27kLOC IDE w/state-space visualizer
Graphene 2014– Scala 2kLOC 2nd-generation visualizer

LMNtal-Java
runtime

frontend

backend

LMNtal VM
code (SSA)

LMNtal-Java
compiler

Implementation overview

Model checking in LMNtal: Motivations

◆ LMNtal is good at modeling systems which computer-aided
verification is concerned with, including
⚫ state transition systems (automata) and
⚫ concurrent systems.

◆ LMNtal is at the same time a full-fledged programming
language allowing infinite states.
⚫ No gap between modeling and programming languages

(cf. SPIN, nuSMV, . . .)
⚫ As a fine-grained concurrent language, supporting

verification is highly desirable

◆Why not build an integrated development and verification
environment?

55

56
LMNtal model checker

LMNtal
program

LMNtal
compiler SLIM

runtime

LTL formula
propositional

symbol definition

Büchi
automaton

intermediate
(VM) code

LTL2BA

{wSize(2), nMAX(3).
idMAX(3), sender{
n(0), nextId(0), ... p = error :- |

p is defined as
“an ‘error’ atom exists !”

[]!p

Property in LTL
“always not p”

OKcounterexample

◆ LaViT supports the understanding of models with and without
errors, not just bug catching
⚫ workbench for designing and analyzing models
⚫ complementary to fast, black-box checkers

◆ Hierarchical graphs feature built-in symmetry reduction

57
Model checking in LMNtal: Strengths

Unyo-Unyo Visualizer StateViewer (Tower of Hanoi)

Demo: The tower of Hanoi
58

poles(p([1,2,3,4,5,6,99]),p([99]),p([99])).

P1=p([$h1|$t1]), P2=p([$h2|$t2]) :- $h1<$t2 |
P1=p(T1), P2=p([$h1,$h2|$t2]).

Demo: Sliding window protocol (SWP)

◆ SWP: transmission protocol used in TCP

⚫ Sends data packets (up to window size) without waiting
for acknowledgment

◼ Rollbacks if some item seems lost

⚫ Channels may lose data and acks

59

sender receiver
data data

ack

unreliable
channel

may lose packets

□(send ⇒◇ack) ?

may lose packets

Coping with heavy structure and state explosion

◆ Managing the state space of graphs requires both space-
efficient graph representation and time-efficient isomorphism
checking. They are supported by:

⚫ Hashing with parallel hash-table

⚫ State encoding (serialization)

◼ Non-canonical encoding

◼ Canonical encoding (labelling)

⚫ Tree compression

⚫ Backward execution

⚫ Parallel state-space search

⚫ Partial-order reduction

60

Original >2KB

Encoded 70B

◆ Construct a state-space graph by stack-slicing parallel DFS
◆ Apply an DiVinE-like algorithm to search a counterexample
◆ Built by (i) analyzing the sequential model checker (25kLOC),

(ii) ensuring thread safety, and
(iii) improving scalability on many-core processors

◼ dynamic load balancing, parallel hash table
◼ introducing parallel memory allocator

61
Parallelizing the LMNtal model checker

apply si
to the orig-
inal graph

restore s’s graph
representation

from its string rep

if conflict, check
graph isomorphism parallel

Hash
tablefind a succes-

sor state s’i
generate

the diff si
if s’i is new, add its

string rep to hashtable

compute the
hash value of s’i

choose an
unexpanded
state s (DFS)

Critical Section

* M. Gocho, T. Hori and K. Ueda, Computer Software 28(4), pp.137-157, 2011

62
Speedup of the LMNtal parallel model checker

M. Gocho, T. Hori and K. Ueda, Computer Software, 28(4), 2011

stack slicing stack slicing with work stealing

AMD Opteron
(2.3GHz) 12-core x 4,
256GB of memory

now handles
>108 states

Extensions (almost orthogonal to each other)

◆ Hyperlinks (➔ HyperLMNtal)

◆ Contexts (wildcards)

⚫ HyperLMNtal (flexible handling of hyperlinks)

⚫ CSLMNtal (grammar-based context types)

◆ Rules for

⚫ “zero-step” (instantaneous) transition

⚫ “one-shot” use

⚫ meta-programming (“first-class” rules)

◆Modules and foreign language interface

◆Quantifiers [LOPSTR 2024]

◆ Static typing [PPDP 2024, LNCS 8865, etc.]

63

64
Lambda calculus, fine-grained [RTA 2008]

λ

λ

@

@

cp

)(.. xffxf )0(ss

@

@

s

0s

fv

fv fv

λ

λrm

xxf ..

Unique up to cp+rm’s equational theory
(= ACU : associativity & commutativity with unit)

: lambda

: apply

λ

@

Church Numeral Exponentiation

◆ Church numeral 2: 𝑓.𝑥 . 𝑓(𝑓𝑥)

◆ 32 : (((𝑚. λ𝑛. 𝑛 𝑚) 3) 2)

65

N = two :-
N = lambda(cp(F0, F1),

lambda(X, apply(F0, apply(F1, X)))).
N = three :-

N = lambda(cp(F0, cp(F1, F2)),
lambda(X, apply(F0, apply(F1, apply(F2, X))))).

res = apply(apply(apply(two, three), fv(succ)), fv(0)).

H = apply(fv(succ), fv($i)) :- int($i) | H=fv($i +1).

λ

λ

@

@

cp

lambda(cp(F0, F1),
lambda(X, apply(F0, apply(F1, X))), N).

two

The Encoding (1/2)
66

H=apply(lambda(A,B), C) :- H=B, A=C.

lambda(A,B)=cp(C,D,L), {+L,$q} :-
C=lambda(E,F), D=lambda(G,H),
A=cp(E,G,L1), B=cp(F,H,L2),
{{+L1},+L2,sub(S)}, {super(S),$q}.

apply(A,B)=cp(C,D,L), {+L,$q} :-
C=apply(E,F), D=apply(G,H), A=cp(E,G,L1), B=cp(F,H,L2),
{+L1,+L2,$q}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},+L2,$q} :-
A=C, B=D, {{$p},$q}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},$q}, {+L2,top,$r} :-
C=cp(E,F,L3), D=cp(G,H,L4), {{+L3,+L4,$p},$q},
A=cp(E,G,L5), B=cp(F,H,L6), {+L5,+L6,top,$r}.

fv($u)=cp(A,B,L), {+L,$q} :- unary($u) |

A=fv($u), B=fv($u), {$q}.

graph copying
-reduction

✓

✓

✓

✓

✓

✓

67
The Encoding (2/2)

lambda(A,B)=rm :- A=rm, B=rm.

apply(A,B)=rm :- A=rm, B=rm.

cp(A,B,L)=rm, {+L,$q} :- A=rm, B=rm, {$q}.

cp(A,B,L)=rm, {{+L,$p},$q} :- A=rm, B=rm, {{$p},$q}.

A=cp(B,rm,L), {+L,$p} :- A=B, {$p}.

A=cp(rm,B,L), {+L,$p} :- A=B, {$p}.

rm=rm :- .

fv($u)=rm :- unary($u) | .

{{},$p,sub(S)}, {$q,super(S)} :- {$p,$q}.

A=cp(B,C) :- A=cp(B,C,L), {+L,top}.

{top} :- .

graph destruction

color management

✓

✓

✓: Eight essential rules
(the other rules are for tidying up and initialization)

68
Graphically (1/2)

@

λ

H

A B

C

H

C

H=apply(lambda(A,B), C) :- H=B, A=C.

A B

beta

cp cp() ()

69
Graphically (2/2)

cp

@ cp cp

@ @ cp

λ cp cp

λ λ

a_c

cp

cp cp cp

cp cp

c_c2 (mismatch)

cp

cp

c_c1 (match)

l_c

I’ll copy

you!

I’ll copy

you!

I’ll copy
you!

Oh, my
partner!

I’m the
original.

I’ll go anti-
clockwise.

I’ll go
clockwise.

The Key Idea

◆Which of c_c1 and c_c2 to apply?

◆ Existing methods used two colors or natural numbers to
label cp’s

◆We employ hierarchical colors (= local names)

⚫ whenever a cp encounters a , two cp’s are created to
copy the abstraction.

⚫ when all the new cp’s running anti-clockwise hit their
counterparts and disappear, the remaining cp’s become
cp’s.

70

71
Color (= local name) Management

◆ Colors are encoded using membranes.

+cp
top

cp

+cp

super

+
sub

super

super

cp

cp

+

sub

super

cp

+

+

72
The RHS of the rule

cp

λ λ

...

+
sub

cp

+

M

a freshly created color

super

parent color

l_c

I’ll go anti-
clockwise.

I’ll go
clockwise.

73
Promotion (Color Fusion) (cf. “retirement”)

+cp
top

super
super

cp
+

sub

super

cp

+

+cp
top

super

cp
+

super

cp

+

Good news: Promotion need not be
instantaneous; can be delayed safely.

No anticlock-
wise atoms

Lambda calculus, coarse-grained [IEEE Access 2021]

◆One-to-one translation of the textbook definition,
where ‘ground’ for hypergraphs follows ordinary links, then
copies/shares hyperlinks depending on how they occur

74

beta@@ R=app(lam(X,A),B) :- R=subst(A,X,B).
var1@@ R=subst($x,$x,N) :- hlink($x) | R=N.
var2@@ R=subs($x,$y,$n) :-

$x =$y, ground($n,1) | R=$x.
abs@@ R=subst(lam($x,M),Y,N):-

R=lam($x,subst(M,Y,N)).
app@@ R=subst(app(M1,M2),$x,$n) :-

hlink($x), ground($n,1) |
R=app(subst(M1,$x,$n),

subst(M2,$x,$n)).

λ𝑥. 𝐴 𝐵
→ 𝐴[𝑥 ↦ 𝐵]

Substitution with
no precaution on
variable capture

Petri Nets [LOPSTR 2024]

{token,-X1},{token,-X2}, {+Y1},{+Y2},{+Y3}. //places
{+X1,+X2,-Y1,-Y2,-Y3}. //transition

M<+>{token,-X,$p1}, {M<+> +X,N<+> -Y}, N<+>{+Y,$p2} :-
M<+>{-X,$p1}, {M<+> +X,N<+> -Y}, N<+>{token,+Y,$p2}.

75

Labelled ∀>0 quantifier

◆ “There are several pots, each with several geranium plants.
Some pots were broken because the geraniums filled the space
with their roots. New pots are prepared for the broken pots
with flowering geraniums and all the flowering geraniums are
moved to the new pots.” [Rensink et al. 2009]

76
Repotting the Geraniums [LOPSTR 2024]

Repotting the Geraniums [LOPSTR 2024]

{cracked, flowering, flowering, unflowering},
{cracked, flowering}, {uncracked, flowering},
{cracked, unflowering}.

M<+>{cracked, N<+>flowering, $p} :-
M<+>({cracked, $p}, {uncracked, N<+>flowering}).

77

Experiences

◆ Generalized data structures with more and less edges

◆ Concurrency with controllable granularity

◆ Graph-based model checking (up to 109 states)

⚫ with many implementation techniques

◆ Unified framework of computation and verification

◆ Visualization for understanding (cf. verifying) systems

78

Implementation (available from GitHub) >99% done
by students joining and graduating every year

Thank you for your attention!

Questions/suggestions welcome, e.g.,

“Can LMNtal express and execute 𝑋 ?”
“Why don’t you add feature 𝑌 ?”

“Could you help me encode my idea 𝑍 ?”

79

To try yourself, visit
http://www.ueda.info.waseda.ac.jp/lmntal/ and choose LaViT

	スライド 1: Gentle Introduction to LMNtal: Language Design and Implementation — GT from a PL perspective
	スライド 2: LMNtal (pronounce: “elemental”)
	スライド 3: LMNtal: a unifying language
	スライド 4: What do we mean by “unifying” ?
	スライド 5: What do we mean by a “PL perspective”?
	スライド 6: GT from a PL perspective, diagrammatically
	スライド 7: GT from a PL perspective, diagrammatically
	スライド 8: Hierarchical (hyper)graphs: Motivations
	スライド 9: Example: List concatenation (a la Interaction Nets)
	スライド 10: Example: List concatenation (a la Interaction Nets)
	スライド 11: append in LMNtal
	スライド 12: Diagrammatic representation of computation
	スライド 13: LMNtal in a nutshell
	スライド 14: Historical Background
	スライド 15: Models and languages with multisets and symmetric join
	スライド 16: Models and languages with membranes + hierarchies
	スライド 17: Example: N-to-1 stream/channel communication
	スライド 18: Demo: Fullerene (C60)
	スライド 19: Elements of LMNtal (1+2)
	スライド 20: Elements of LMNtal (1+2) (cont’d)
	スライド 21: Elements of LMNtal (3)
	スライド 23: Elements of LMNtal (4)
	スライド 24: Syntax: preliminaries
	スライド 25: Syntax of LMNtal processes
	スライド 26: Syntax of LMNtal process templates
	スライド 27: Lists, trees, bags (cells)
	スライド 28: Term notation
	スライド 29: (Port) graphs and multisets
	スライド 30: How about “standard” graphs?
	スライド 31: Hypergraph extension (HyperLMNtal)
	スライド 32: How to associate “variable names” and data?
	スライド 33: Representing algorithms
	スライド 34: Demo: Factorial
	スライド 35: Demo: Water jug problem)
	スライド 36: Demo: Dining philosophers (due to E. W. Dijkstra)
	スライド 37: Demo: Dining philosophers
	スライド 38: Demo: Bubblesort
	スライド 39: Structural congruence (ごうどう)
	スライド 40: Structural congruence, pictorially
	スライド 41: Structural congruence, notes
	スライド 42: Reduction semantics
	スライド 43: Reduction semantics, notes
	スライド 44: Reduction semantics
	スライド 45: Process contexts
	スライド 46: Representing the local context of a membrane
	スライド 47: Cloning and deletion
	スライド 48: Affinity with Proof-Net Cut Elimination [APLAS 2023]
	スライド 49: Affinity with Proof-Net Cut Elimination [APLAS 2023]
	スライド 50: Typed process contexts
	スライド 51: Negative application conditions (NACs)
	スライド 52: Natural numbers in axiomatic set theory
	スライド 53: Hello world! — I/O in declarative style
	スライド 54: Implementation overview
	スライド 55: Model checking in LMNtal: Motivations
	スライド 56: LMNtal model checker
	スライド 57: Model checking in LMNtal: Strengths
	スライド 58: Demo: The tower of Hanoi
	スライド 59: Demo: Sliding window protocol (SWP)
	スライド 60: Coping with heavy structure and state explosion
	スライド 61: Parallelizing the LMNtal model checker
	スライド 62: Speedup of the LMNtal parallel model checker
	スライド 63: Extensions (almost orthogonal to each other)
	スライド 64: Lambda calculus, fine-grained [RTA 2008]
	スライド 65: Church Numeral Exponentiation
	スライド 66: The Encoding (1/2)
	スライド 67: The Encoding (2/2)
	スライド 68: Graphically (1/2)
	スライド 69: Graphically (2/2)
	スライド 70: The Key Idea
	スライド 71: Color (= local name) Management
	スライド 72: The RHS of the rule
	スライド 73: Promotion (Color Fusion) (cf. “retirement”)
	スライド 74: Lambda calculus, coarse-grained [IEEE Access 2021]
	スライド 75: Petri Nets [LOPSTR 2024]
	スライド 76: Repotting the Geraniums [LOPSTR 2024]
	スライド 77: Repotting the Geraniums [LOPSTR 2024]
	スライド 78: Experiences
	スライド 79

