HydLa: A High-Level Language for Hybrid Systems

April 2012

Kazunori Ueda, Waseda University and NII
(with thanks to my students)

Three interrelated groups
Three cross-cutting concerns
Hybrid systems

- Systems whose states can make both continuous and discrete changes

Examples:
- bouncing ball, billiard, . . .
- thermostat + air conditioner + room
- signal/crossing + roads/railroad + cars
- (in general) Continuous systems with some components whose properties are described using case analysis
 - physical, biological, control, cyber-physical, etc.

- Related to CS, control engineering and apps.
- Programming language aspects rather unexplored
Challenges from the PL perspective

◆ Establish a high-level language
 ● equipped with the notion of continuous time,
 ■ discrete-time systems could be dealt as infinite sequences
 ● equipped with the notion of continuous changes,
 ■ in the true sense
 ● that “correctly” handles uncertainties and errors of real values,
 ■ interval computation with conditional jumps
 ● equipped with constructs for abstraction and parallel composition.

Constraint Programming

- A declarative paradigm in which a problem is described using (in)equations over continuous or discrete domains
 - requires no algorithms: constraint programming languages are often called modeling languages
 - the essence is computing with partial information
 - while AI+OR communities are most interested in constraint satisfaction
- Declarative description of hybrid systems
 = constraint programming of functions over time
 - logical implication (entailment) provides a mechanism for conditionals and synchronization

Example: $\Box(e\text{-stop} = 1 \Rightarrow speed' = -4.0)$
 -ask
 -tell
Existing Modeling Frameworks

- (more or less) procedural / state-based
 - Hybrid {Automata, Petri nets, I/O automata, Process Algebra} (models)
 - KeYmaera (languages)
- Constraint-based \((\text{domain} = \text{functions over time})\)
 - Hybrid CC (hybrid concurrent constraint language)
 - CLP(F) (constraint logic programming over real-valued functions)
 - Kaleidoscope ’90 (discrete time)
 - HydLa (constraint hierarchy)

HydLa: Overview and Features (1/2)

- **Declarative** (\Leftrightarrow procedural)
 - Minimizes new concepts and notations by employing popular math and logical notations
 - Describes systems using logic and hierarchy

- **Constraint-based**
 - Basic idea: defines **functions over time** using constraints including ODEs, and solves initial value problems
 - cf. streams and lists are defined by difference equations
 - Handles **partial information** properly
 - interval constraints fit well within HydLa
Features constraint hierarchies

- It’s difficult to describe systems so that the constraints are consistent and well-defined.

Example: bouncing ball, billiard, . . .

- A ball normally falls by gravity (default), while it obeys the collision equation when it bounces (exception).

- Frame problems occur in the description of complex systems

- Want to define these properties concisely
Example 1: Sawtooth function

INIT $\iff 0 \leq f < 1$.
INCREASE $\iff \Box(f' = 1)$.
DROP $\iff \Box(f- = 1 \Rightarrow f = 0)$.
INIT, (INCREASE \ll DROP).

- Describes properties at time 0
- Time argument is implicit
 $\Box(f' = 1)$ means $\forall t \geq 0 (f'(t)=1)$
- Family of sawtooth functions with the slope 1 and the range $[0, 1)$
- The value of f at a specific time point is just $[0, 1)$ but all functions reach all values $[0, 1)$ and oscillate.
Example 2: Bouncing Ball

INIT \iff ht = 10 \land ht' = 0.
PARAMS \iff \Box(g = 9.8 \land c = 0.5).
FALL \iff \Box(ht'' = -g).
BOUNCE \iff \Box(ht- = 0 \Rightarrow ht' = -c \times (ht'-)).

INIT, PARAMS, (FALL \ll BOUNCE).

◆ When the ball is not on the ground,
 \{INIT,PARAMS,FALL,BOUNCE\} is maximally consistent
◆ When the ball is on the ground,
 \{INIT,PARAMS,BOUNCE\} is maximally consistent
◆ Basic HydLa defines a program as the pair of (i) a poset of rule sets and (ii) rule definitions.
Syntax of Basic HydLa

<table>
<thead>
<tr>
<th>(program)</th>
<th>(P ::= (RS, DS))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(rule sets)</td>
<td>(RS ::=) poset of sets of (R)</td>
</tr>
<tr>
<td>(definitions)</td>
<td>(DS ::=) set of D’s with different LHS</td>
</tr>
<tr>
<td>(definition)</td>
<td>(D ::= R \leftrightarrow C)</td>
</tr>
</tbody>
</table>
| (constraint) | \(C ::= A \mid C
\& C \mid G \rightarrow C \mid \square C \mid \exists x. C \) |
| (guard) | \(G ::= A \mid G
\& G \) |
| (atomic constraint) | \(A ::= E \ relop \ E \) |
| (expression) | \(E ::= normal \ exp. \mid E' \mid E- \) |
A program is a pair of
- poset of “sets of rules” (RS) and
- rule definitions (DS).

Example: \{INIT,PARAMS,BOUNCE\}
\[\prec\] \{INIT,PARAMS,FALL,BOUNCE\}

- How to derive RS from \(\prec\) is beyond Basic HydLa

HydLa / Basic HydLa is a language scheme in which the underlying constraint system is left unspecified

\(\exists x \ . \ C\) realizes dynamic creation of variables
- Example: creation and activation of new timers
- \(\exists\) is eliminated at runtime using Skolem functions
Semantics of Basic HydLa

- **Declarative semantics** (Ueda, Hosobe, Ishii, 2011)
 - What trajectories does a HydLa program denote?

- **Operational semantics** (Shibuya, Takata, Ueda, Hosobe, 2011)
 - How to compute the trajectories of a given HydLa program?

- Unlike many other programming languages, declarative semantics should come first since
 - completeness of the operational semantics can’t be expected and
 - diverse execution methods could be explored
The purpose of a HydLa program is to define the constraints on a family of trajectories.

\[\bar{x}(t) = \{x_i(t)\}_{i \geq 1} (t \geq 0) \]

Declarative semantics, first attempt

\[\bar{x}(t) \models (RS, DS) \]

Works fine for programs not containing \(\square \) in the consequents of conditional constraints \(G \Rightarrow C \) [JSSST ’08].

Example: Systems with a fixed number of components and without delays
Declarative Semantics of Basic HydLa

- Not only trajectories, but also constraint sets defining the trajectories, change over time
 - Reason 1: change of maximally consistent sets
 - Reason 2: conditional constraints may discharge consequents (history sensitive)
 - When the consequent of a constraint starts with \square, whether it’s in effect or not depends on whether the corresponding guard held in the past
- Declarative semantics (refined)

\[
\langle \bar{x}, Q \rangle \models (RS, DS)
\]

$Q(t)$: module definitions with dynamically added consequents
We identify a **conjunction** of constraints with a **set** of constraints.

We regard a set of constraints as a function over time.

A constraint C in a program is regarded as a function $C(0) = C$, $C(t) = \{ \} \ (t>0)$.

□-closure: Unfolds the topmost □-formulas dynamically and recursively.

Example: $C = \{f=0, \square\{f'=1\}\}$

$$C^*(0) = \{f=0,f'=1,\square\{f'=1\}\}$$

$$C^*(t) = \{f'=1\} \ (t>0)$$
Declarative Semantics

\[\langle \vec{x}, Q \rangle \models (MS, DS) \iff (i) \land (ii) \land (iii) \land (iv) \]

1. \(\forall M \ (Q(M) = Q(M)^*) \) \hspace{1cm} \(\Box \)-closure
2. \(\forall M \ (DS(M)^* \subseteq Q(M)^*) \) \hspace{1cm} extensiveness
3. \(\forall t \ \exists E \in MS \) \hspace{1cm} satisfiability

 \[(\vec{x}(t) \Rightarrow \{Q(M)(t) \mid M \in E\}) \]

 \[\land \neg \exists \vec{x}' \exists E' \in MS \] \hspace{1cm} maximality

 \[\land \forall t' < t (\vec{x}'(t') = \vec{x}(t')) \]

 \[\land E \prec E' \]

 \[\land \vec{x}'(t) \Rightarrow \{Q(M)(t) \mid M \in E'\} \]

4. \(\forall d \forall e \forall M \in E \) \hspace{1cm} \(\Rightarrow \)-closure

 \[(\vec{x}(t) \Rightarrow d) \land ((d \Rightarrow e) \in Q(M)(t)) \]

 \[\Rightarrow e \subseteq Q(M)(t)) \]

(iv) \(Q(M)(t) \) at each \(t \) is the smallest set satisfying (i)-(iii)
Example 3: Absence of back propagation

\[P = ((\text{Powerset}\{D,E,F\}, \varnothing), \ DS) \]

\[DS = \{ D \iff y = 0, \]
\[E \iff \Box(y' = 1 \land x' = 0), \]
\[F \iff \Box(y = 5 \Rightarrow x = 1) \} \]

a. \(y(t) = t, \ x(t) = 1 \) satisfies D, E, F at \(0 \leq t. \)

b. \(y(t) = t, \ x(t) = 2 \) satisfies D, E, F at \(0 \leq t < 5 \) and D, E at \(t = 5. \) It again satisfies D, E, F at \(t \geq 5. \)

c. \(y(t) = t, \ x(t) = 2 \) (\(t < 5 \)), \(x(t) = 1 \) (\(t \geq 5 \)) satisfies D, E, F at \(0 \leq t < 5 \) and D, F at \(t = 5. \) It again satisfies D, E, F at \(t \geq 5. \)

All of a., b. and c. satisfy local maximality and hence satisfy P.
Example 4: Bouncing Ball, revisited

\[P = (RS, DS) \]

\[RS = (\{\{I,Pa,B\}, \{I,Pa,F,B\}\}, \{\{I,Pa,B\} < \{I,Pa,F,B\}\}) \]

\[DS = \{ \begin{align*}
I & \Leftrightarrow ht=10 \land ht' = 0, \\
Pa & \Leftrightarrow \Box(g=9.8 \land c=0.5), \\
F & \Leftrightarrow \Box(ht'' = -g), \\
B & \Leftrightarrow \Box(ht- = 0 \Rightarrow ht' = -c\times(ht'-))
\end{align*} \]

- \(ht \) and \(ht' \) are not differentiable when bouncing

- However, to solve ODEs on \(ht \) and \(ht' \), right continuity of \(ht \) and \(ht' \) at the bouncing must be assumed

- To determine \(ht \) at the bouncing, left continuity of \(ht \) must be assumed as well. (cf. \(ht' \) is determined from B.)

- Trajectories with differential constraints should assume both right and left continuity with higher priority.
Example 5: Behaviors defined without ODEs

\[P = (RS, DS) \]
\[RS = (\{\{A,C\}, \{A,B,C\}\}, \{\{A,C\} < \{A,B,C\}\}) \]
\[DS = \{ A \leftrightarrow f=0 \land \Box(f' = 1), \]
\[B \leftrightarrow \Box(g=0), \]
\[C \leftrightarrow \Box(f=5 \Rightarrow \exists a.(a=0 \land \Box(a'=1) \land \Box(a=2 \Rightarrow g=1))) \} \]

- \(g \) is an impulse function that fires at time 7 (= 5+2).
 - an example of non-right-continuous functions

\[\Box(0.9<a \land a<1.1) \land \Box(a'=b) \]

- \(a \) is a set of all differentiable trajectories whose ranges are (0.9, 1.1) .
Example 6: Zeno behavior

\[P = (\text{MS}, \text{DS}) \]
\[\text{RS} = (\{\{I, Pa, B\}, \{I, Pa, F, B\}\}, \{\{I, Pa, B\} < \{I, Pa, F, B\}\}) \]
\[\text{DS} = \{ I \iff h_t=10 \land h_t'=-0, \]
\[\quad Pa \iff \Box(g=9.8 \land c=0.5), \]
\[\quad F \iff \Box(h_t''=-g), \]
\[\quad B \iff \Box(h_t-=0 \Rightarrow h_t'=-c\times(h_t'\-)) \}\]

- This doesn’t define a trajectory after the Zeno time.
- A rule for defining the trajectory after Zeno:

\[\Box(h_t-=0 \land h_t'\-=0 \Rightarrow \Box(h_t=0)) \]

- Checking of the guard condition would require a technique not covered by the current operational semantics.
Execution algorithm

each phase updates the maximal consistent set and simulation time T

SS (store set) : set of possible stores

failure: choose the next candidate set and redo PP or IP

an element of SS represents a result of execution of PP or IP

compute poset of constraints

compute Point Phase (PP)

compute Interval Phase (IP)

end time?

no

yes

branch of trajectory: nondeterministically choose one element from SS and redo PP or IP

tries the top candidate first

|SS| =0

|SS| =1

|SS| >1

=0

=1

end
Algorithm for Point Phase and Interval Phase

PP
- Calculate deductive closure

IP
- Calculate deductive closure
- Find the next jump time

Closure calculation repeatedly checks the antecedents of conditional constraints

IP computes the next jump time (minimum of the following):
1. a conditional constraint becomes effective
2. a conditional constraint becomes ineffective
3. a ruled-out constraint becomes consistent with effective ones
4. the set of effective constraints becomes inconsistent
Execution algorithm should handle:

1. conditions that starts to hold “after” some time point
 - need to compute the greatest lower bound of the time interval

 \[A \iff x=0. \]

 \[B \iff \square (y=1). \]

 \[C \iff \square (x'=1 \land (x>3 \implies y=2)). \]

 \[A, (B < C). \]

2. initial values given as intervals
 - could be divided into a subinterval that entails a guard and another that does not entail the guard

3. systems with parameters
 - needs symbolic computation
Hyrose: an implementation of HydLa

- implemented in C++
- 38,000 LOC
- Key features:
 - simulation with symbolic parameters
 - nondeterministic simulation

http://www.ueda.info.waseda.ac.jp/hydla/
Example: Bouncing ball with 5<ht<15

#-------Case 1-------
#-------1--------
-------PP-------
time : 1/7*10^(1/2)*pht^(1/2)
ht : pht
ht' : 0
ht'' : (-49)/5
-------IP-------
time : 0 -> 1/7*10^(1/2)*pht^(1/2)
ht : pht+(-49)/10*t^2
ht' : (-49)/5*t
ht'' : (-49)/5

#-------2-------
-------PP-------
time : 1/7*10^(1/2)*pht^(1/2)
ht : 0
ht' : 28/5*(2/5)^(1/2)*pht^(1/2)
ht'' : UNDEF
-------IP-------
...

#-------parameter condition--------
pht : (5, 2205/338)

#-------Case 2-------
...

#-------parameter condition--------
pht : [2205/338, 15]
Conclusion

- Defined Basic HydLa and gave a declarative semantics
 - now handles dynamically evolving systems
 - obtained through a lot of preliminary study
 (modeling examples, prototype implementation, etc.)

- Operational semantics is also developed
 - and evolved into a nondeterministic algorithm that allow uncertainties
 - however, completeness doesn’t hold even for a very small class of ODEs [Henzinger ’96]

- Modeling languages must be given a declarative semantics first to allow flexible execution

- Adopted simple notions of time and trajectory
 - adopting hybrid time is a topic of future work