
HydLa: A High-Level Language for Hybrid
Systems

Kazunori Ueda1, Shota Matsumoto1, Akira Takeguchi1, Hiroshi Hosobe2, and
Daisuke Ishii2

1 Department of Computer Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

{ueda,matsusho,takeguchi}@ueda.info.waseda.ac.jp
2 National Institute for Informatics

2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
hosobe@nii.ac.jp, dsksh@acm.org

1 HydLa, A Hybrid Constraint Language

We have been working on the design and implementation of HydLa, a modeling
language for hybrid systems [5]3. The principal feature of HydLa is that it em-
ploys constraint-based formalisms both in the modeling and reliable simulation of
hybrid systems. We take this approach for two reasons: one is that a constraint-
based formalism is non-procedural but yet provides the language with control
structures including synchronization and conditionals that are expressive enough
to model hybrid systems, and the other is it allows us to handle uncertainties or
partial information in a smooth way. Rather few tools for hybrid systems fully
exploit constraint-based formalisms. The closest previous work was Hybrid cc
[2][3], but HydLa differs in that its implementation ensures the correctness of
simulation results. Another constraint-based approach was CLP(F), constraint
logic programming over real-valued functions [4]. Both CLP(F) and HydLa aim
at rigorous simulation and handle intervals, but they have very different control
structures.

HydLa programs are sets of constraint modules that describe static and/or
dynamic properties of systems using (among others) ordinary differential equa-
tions, implication, and a temporal operator. Constraint modules form constraint
hierarchies [1] that define priorities between constraints. In determining the set
of trajectories by constraint satisfaction, a maximal consistent subset of the set
of constraint modules is taken that satisfies the requirements of HydLa’s declara-
tive semantics [5]. Implication and constraint hierarchy govern the change of the
set of effective constraints over time. Constraint-based modeling allows high-level
description but can easily cause over- and under-constrainedness, but constraint
hierarchy provides us with a concise mechanism that makes trajectories well-
defined.

3 The English version of [5] appears in Appendix of this paper.



2 Kazunori Ueda et al.

INIT <=> h=10 /\ h’=0 /\ timer=0.
PARAMS <=> exT=3 /\ volume>3 /\ volume<10 /\ [](exT’=0 /\ volume’=0).

TIME <=> [](timer’=1).
RESET <=> [](timer- >=volume+exT => timer=0).

BURN <=> [](timer- <volume => h’’=1).
FALL <=> [](timer- >=volume => h’’=-2).

ASSERT(h>=0).

INIT, PARAMS, BURN, FALL, TIME<<RESET.

Fig. 1. Hot-air balloon model in HydLa

2 An Example Model

Figure 1 describes a model of a hot-air balloon going up by using multiple fuel
tanks. Each fuel tank lasts volume time units and changing it takes exT time
units. Uppercase names stand for constraint modules, x’ stands for the time
derivative of x, [] stands for the always temporal operator, and the postfix minus
sign of x- stands for the left limit of x, where each variable is interpreted as a
function of time. The first six lines are module definitions: INIT defines initial
values of h and timer; PARAMS defines the values of the two parameters exT
and volume; TIME and RESET define the continuous and discrete changes of the
variable timer, respectively; BURN and FALL define the two modes of operations.
TIME<<RESET means TIME is superseded by RESET when they contradict. Other
modules are not superseded by any other modules and are always in effect.
Note that the initial value of volume is given as an interval constraint. Figure 2
shows possible trajectories of the height h, where volume = 3.0, 3.1, . . . , 10.0.
The actual output from HydLa represents an infinite number of trajectories by
using the symbolic parameter pvolume (see Section 4), and the trajectories of
Fig. 2 were sampled for the purpose of drawing.

Although HydLa is a language for reliable simulation, it comes with an as-
sertion construct as shown in Fig. 1 that can be used for checking simple global
properties.

3 Nondeterministic Simulation Algorithm

We have been developing Hyrose, an implementation of HydLa’s nondeterminis-
tic simulation algorithm given in [6]. The principles of Hyrose are (i) to guarantee
the accuracy of answers and (ii) to be able to compute all possible trajectories so
that it can be used for reasoning about hybrid systems. Simulation proceeds by
successive constraint satisfaction of alternating point phases (PP, a.k.a. jump)
and interval phases (IP, a.k.a. flow), where phase change is triggered either by
the discharging of constraints from implicational constraints or the change of



HydLa: A High-Level Language for Hybrid Systems 3

0 5 10 15 20 25 30
0

10

20

30

40

50

time

h

Fig. 2. Trajectories of a hot-air balloon

maximal consistent set of modules. An important feature of the HydLa’s simu-
lation algorithm is that it allows models containing symbolic parameters whose
values are possibly specified as interval constraints. Uncertainty expressed this
way may cause nondeterminism in the truth/falsity of the antecedent of an im-
plicational constraint, in which case the simulation algorithm splits the interval
into subintervals that make the antecedent uniformly true and those that make
the antecedent uniformly false, and subsequent simulation may pursue all those
alternatives. In this way, the algorithm automatically performs case analysis and
classifies possible trajectories into qualitatively equivalent groups.

4 Simulating the Hot-Air Balloon Model

Hyrose is currently based on symbolic computation, though it also employs
interval computation to be able to compare two concrete or parametric val-
ues rigorously. Figure 3 shows a fragment of the execution result (for 30 time
units) of the hot-air balloon model without the ASSERT check. It shows the
third point phase at time 3 + pvolume and the third interval phase of time
(3 + pvolume, 3 + 2 · pvolume) of the case pvolume ∈ [9/2, 21/4), where t is
the current time and pvolume is a symbolic parameter introduced by Hyrose to
represent the initial values of volume. For this model, Hyrose returned a total of
six cases which differed only in the number of phases within the simulation time.
Hyrose’s automatic case analysis can handle multiple symbolic parameters for
this example, while the power of automatic case analysis depends on the under-
lying constraint solver (which can be chosen from Mathematica and REDUCE
currently). Figure 4 shows five qualitatively different cases that may happen in
5 time units of simulation with volume ∈ (1, 3) and exT ∈ (2, 4). Zones marked
as “assertion failed” violate the constraint h ≥ 0. “PPn” means that n point
phases have been encountered in the simulation.



4 Kazunori Ueda et al.

#---------3---------
---------PP---------
time : 3+pvolume
exT : 3
h : 1/2*(2+6*pvolume+pvolume^2)
timer : 0
volume : pvolume
exT’ : 0
h’ : -6+pvolume
timer’ : UNDEF
volume’ : 0
h’’ : -2

---------IP---------
time : 3+pvolume -> 3+2*pvolume
exT : 3
h : 1/2*(47+18*pvolume+(-18)*t+t^2)
timer : -3+(-1)*pvolume+t
volume : pvolume
exT’ : 0
h’ : -9+t
timer’ : 1
volume’ : 0
h’’ : 1

#---------parameter condition---------
pvolume : [9/2, 21/4)

Fig. 3. Output from Hyrose (fragment)

������
1 3

2

4

�
�
�

3/2

3

2
431+

		
���������������

		����������������

		


		�
		�

5 15, 15( )−

Fig. 4. Classifying two-dimensional parameter space



HydLa: A High-Level Language for Hybrid Systems 5

Other applications of hybrid systems with parameters or uncertainties include
analysis of systems with singular points and sensitivity analysis. Hyrose is still
in its initial stage and the size of the systems it can handle is limited by the
underlying constraint solver, but it is beginning to show the viability of HydLa’s
constraint-based simulation algorithm and is gaining a role complementary to
other tools aiming at simulating and analyzing large hybrid systems.

Acknowledgments We are indebted to the other members of the HydLa group
for their contribution to the implementation and daily discussions. This research
is partially supported by Grant-In-Aid for Scientific Research ((B) 23300011),
JSPS, Japan.

References

1. Borning, A., Freeman-Benson, B. and Wilson, M., Constraint Hierarchies. Lisp and
Symbolic Computation, Vol. 5, No. 3, 1992, pp. 223–270.

2. Carlson, C. and Gupta, V., Hybrid cc with Interval Constraints, in Proc. HSCC’98,
LNCS 1386, Springer-Verlag, 1998, pp. 80–94.

3. Gupta, V., Jagadeesan, R., Saraswat, V., and Bobrow, D., Programming in Hybrid
Constraint Languages, in Hybrid Systems II, LNCS 999, Springer-Verlag, 1995,
pp. 226–251.

4. Hickey, T. J. and Wittenberg, D. K., Rigorous Modeling of Hybrid Systems Using
Interval Arithmetic Constraints, in Proc. HSCC 2004, LNCS 2993, Springer-Verlag,
2004, pp. 402–416.

5. Ueda, K., Hosobe, H. and Ishii, D., Declarative Semantics of the Hybrid Con-
straint Language HydLa, Computer Software, Vol. 28, No. 1, 2011, pp. 306–311 (in
Japanese). The English version appears in Appendix of this paper.

6. Shibuya, S., Takata, K., Hosobe, H. and Ueda, K., An Execution Algorithm for
the Hybrid System Modeling Language HydLa, Computer Software, Vol. 28, No. 3,
2011, pp. 167–172 (in Japanese), available online at
https://www.jstage.jst.go.jp/article/jssst/28/3/28 3 3 167/ article/.



Appendix:

Declarative Semantics of the Hybrid Constraint
Language HydLa ?

Kazunori Ueda1, Hiroshi Hosobe2, and Daisuke Ishii3

1 Department of Computer Science and Engineering, Waseda University
2 National Institute of Informatics

3 University of Nantes

Abstract. Hybrid systems are dynamical systems with continuous evo-
lution of states and discrete evolution of states and governing equations.
We have been working on the design and implementation of HydLa, a
constraint-based modeling language for hybrid systems, with a view to
the proper handling of uncertainties and the integration of simulation
and verification. HydLa’s constraint hierarchies facilitate the description
of constraints with adequate strength, but its semantical foundations
are not obvious due to the interaction of various language constructs.
This paper gives the declarative semantics of HydLa and discusses its
properties and consequences by means of examples.

A.1 Introduction

Hybrid systems are dynamical systems with continuous evolution of states and
discrete evolution of states and governing equations. We have been developing a
modeling framework of hybrid systems based on the notion of Constraint Pro-
gramming. Our goal is to establish a constraint-based paradigm in which (i) to
describe diverse phenomena found in physical, cyber-physical, and biological sys-
tems using logical formulae involving equations and inequations and (ii) to solve
or verify them using search techniques represented by constraint propagation.

Our motivation has been to establish, in the field of hybrid systems, a declar-
ative programming paradigm that directly handles as source programs high-level
description of problems in mathematical and logical formulas, as opposed to tra-
ditional formalisms based on automata and Petri Nets [4][1]. A similar approach
was first taken by Hybrid CC [3], and we have made a lot of experiments on Hy-
brid CC programming. However, we found that it was not necessarily straight-
forward to specify constraints that a system consisting of alternate discrete and
continuous phases should satisfy, and this lead us to design a new language that
enables a concise description of hybrid systems.
? This is an English translation of the paper that appeared in Computer Software,

Vol. 28, No. 3 (2011), pp.167–172, available online at
https://www.jstage.jst.go.jp/article/jssst/28/1/28 1 1 306/ article/.



Appendix: Declarative Semantics of HydLa 7

INIT ⇔ ht=10 ∧ ht’=0.

PARAMS ⇔ ¤(g=9.8 ∧ c=0.5).

FALL ⇔ ¤(ht’’=-g).

BOUNCE ⇔ ¤(ht- =0 ⇒ ht’= -c*(ht’-)).

INIT, PARAMS, (FALL << BOUNCE).

Fig.A.1. A bouncing ball

Since the basic design of HydLa was established in 2008 [9], we studied the
details of the language through the description of a number of examples [5],
developed a simulation algorithm [8] and a prototype implementation, and ex-
plored technologies for implementing discrete changes with guaranteed accuracy
[6]. All those studies contributed to the clarification of the essence and subtle
points of the HydLa language specification. Based on those experiences, this pa-
per formulates the declarative semantics of the core of HydLa, and discusses its
descriptive power and properties by means of examples.

A.2 Overview of HydLa

HydLa is a declarative language for hybrid systems. Its objective is to allow
one to provide the mathematical formulation of a given problem with minimal
modification and to simulate or analyze them. For the design principles and
related work of HydLa, the readers are referred to [9].

Dynamical systems that HydLa aims to handle are in general represented
as a countable number of real-valued functions x1(t), x2(t), . . . (t ≥ 0) that
include integer-valued functions as a special case. A HydLa program imposes
constraints on the behavior of those functions (hereafter called trajectories) that
may cause continuous or discrete changes over time. The declarative semantics
of a HydLa program P is defined as a satisfaction relation between trajectories
x(t) = {xi(t)}i≥1 and P , or equivalently, the set of all x(t)’s that satisfy P .

In order to describe hybrid systems in a concise manner, the use of hierarchies
to represent defaults and exceptions will play an important role exactly as in
knowledge representation and object-oriented design. Consider a ball bouncing
on a floor. The change of the velocity of the ball is determined by the gravity most
of the time (default), while it is determined by the collision equation when the
ball hits the floor (exception). A mathematically concise way to describe solution
trajectories of such systems in a well-defined matter would be to introduce partial
order between candidate sets of equations that the system should satisfy and to
take a maximally consistent element of the partially ordered set (poset) of sets
of constraints. HydLa’s design principle is exactly based on this idea.

Figure A.1 shows the description of a bouncing ball in HydLa. The first four
lines are the definition of constraint modules. Constraint modules are program



8 Kazunori Ueda et al.

(program) P ::= (MS,DS )
(module set) MS ::= poset of sets of M
(definitions) DS ::= set of D whose elements have different left-hand sides
(definition) D ::= M ⇔ C
(constraint) C ::= A | C ∧ C | G ⇒ C | ¤C | ∃x.C

(guard) G ::= A | G ∧ G
(atomic

constraint) A ::= E relopE

(expression) E ::= ordinary expressions | E′ | E−

Fig.A.2. Syntax of the Basic HydLa.

units which are combined to form a set of constraints and to which priorities
may be given. In the right-hand side constraints, ’ stands for a time derivative,
the postfix minus sign stands for the left-side limit of a trajectory, and ¤ stands
for an always temporal operator. All the constraints stand for constraints at
time 0. However, since the constraints other than INIT start with ¤, they hold
at all time points on and after time 0. A constraint with an implication (such as
BOUNCE) is called a conditional constraint. A conditional constraint prefixed by
an ¤ imposes its consequent exactly when its antecedent (guard) holds.

The final line combines the four constraint modules. A comma stands for
composition without priorities, while << gives a higher priority to BOUNCE than
to FALL. In this example, all the four constraints are taken when the ball is in
the air, while {INIT, PARAMS, BOUNCE} will be taken as the maximally consistent
set when the ball hits the floor because FALL and BOUNCE become inconsistent.

This example is known to exhibit a Zeno behavior, an infinite number of
discrete changes within a finite amount of time, beyond which the simulation
normally does not proceed.

A.3 Basic HydLa

We consider the semantics of the Basic HydLa whose syntax is shown in Fig. A.2.
Basic HydLa simplifies HydLa [9] as follows:

1. For each time point, HydLa chooses a consistent set of constraint modules
that satisfies the priority constraint and that is maximal with respect to the
set inclusion relation between constraint modules. More specifically, from a
relative priority relation between constraint modules, HydLa first derives a
poset whose elements are admissible (with regard to constraint priorities)
sets of all the subsets of constraint modules [5], and then chooses a maximal
consistent element. Basic HydLa does not handle this derivation but assumes
that the “(irreflexive) poset of sets of constraint modules” is directly given
in a program together with the definitions of constraint modules. Default
constraints such as the continuity of trajectories (frame axioms, see Sec-
tion A.6.1) are to be explicitly specified within this poset. The constraints



Appendix: Declarative Semantics of HydLa 9

at the top of a constraint hierarchy should often be treated as required con-
straints that must be adopted, and whether to do so can be expressed ex-
plicitly within the poset.

2. Basic HydLa does not support the time shift (i.e. delay) operator ˆ. We can
use the feature explained in the next item instead.

3. To enable dynamic creation of trajectories, Basic HydLa introduces an exis-
tential quantifier ∃ for local variable creation. This enables us to dynamically
create a timer with which to represent a delay between the detection of some
condition and the issue of a new constraint.

4. Basic HydLa does not support program definitions since they can be simply
inlined.

5. For the same reason, Basic HydLa does not support the operator ∀ to gen-
erate a family of trajectories.

We assume that a Basic HydLa program (MS,DS ) satisfies
∪

MS ⊆ dom(DS ),
where

∪
MS is the set of modules appearing in MS and dom(DS ) is the set of

left-hand sides of DS. In the following, we consider a set DS of constraint module
definitions as a function from module names to constraints.

As shown in Fig. A.2, we restrict the guard constraints to atomic constraints
and their conjunctions. HydLa does not specify the class of constraints that can
be described in a program. In this sense, HydLa is a language scheme that pa-
rameterizes constraint systems. The reason why we allow only ¤ as a temporal
operator is that our syntax is targeted at the modeling of systems. Other tem-
poral operators such as 3 will be included in the specification language when
we construct a verification system that use HydLa as a modeling language.

A.4 Declarative Semantics of Basic HydLa

As shown in Section A.2, the declarative semantics of HydLa is defined as a
relation meaning that a given trajectory (or interpretation) satisfies a program
(or specification). The information to be maintained by the declarative semantics
depends on design criteria such as what class of programs it deals with and what
degree of compositionality (i.e., the ability to compose the overall semantics from
the semantics of components) it aims at. The semantics in [9] dealt with pro-
grams containing no ¤ operators in the consequents of conditional constraints.
Parameters and behaviors of systems with a finite number of components and no
delays can be described by constraints with ¤’s only in their prenex positions.
When those programs contain conditional constraints, their consequents hold
exactly when the antecedents hold, which means that a maximal consistent set
of constraints can be chosen at that time.

However, a constraint whose consequent includes an ¤ leaves the consequent
as a candidate for choice even after the corresponding antecedent ceases to hold.
If we have to judge which consequents of constraints should be chosen in the
future when the corresponding antecedents held, it would be a lookahead of
the future. Thus the choice of a maximal consistent set must be performed not



10 Kazunori Ueda et al.

when constraints are discharged but when the constraints are actually applied.
Therefore we further refine our semantics in the following way.

First, we identify a conjunction of constraints with a set of constraints; i.e.,
we view the syntax of a constraint in Fig. A.2 as

C ::= {A} | C ∪ C | {G ⇒ C} | {¤C} | {∃x.C},

and also allow an empty set. By Skolemization, we recursively eliminate exis-
tential quantifiers ∃ except for those occurring in the consequents of conditional
constraints.

Next, we consider constraint sets as functions of time. For example, a con-
straint C that occurs in a program is regarded as a function C(0) = C, C(t) = {}
(t > 0).

For a constraint C(t) that is a function of time, the ¤-closure C∗(t) is defined
as a function that satisfies the following properties:

– (Extension) ∀t(C(t) ⊆ C∗(t));
– (¤-closure) ∀t(¤a∈C∗(t) ⇒ ∀t′ ≥ t (a ⊆ C∗(t′)));
– (Minimality) For each t, C∗(t) is the minimum set that satisfies the above

two conditions.

For C = {f=0,¤{f’=1}} for example, we have C∗(0) = {f=0, f’=1, ¤{f’=1}},
C∗(t) = {f’=1} (t > 0).

The constraint set that determines a solution trajectory of a HydLa program
may change over time for two reasons: one is that a maximal consistent set may
change; the other is that the consequent of a conditional constraint is newly
added when its antecedent holds. The choice of a maximal consistent set in the
former case is performed independently at each time point. By contrast, when
the program has a constraint whose consequent begins with ¤, whether the
constraint is active or not depends on whether its antecedent has been activated
in the past ; hence the state of a system should maintain the activation history
of the antecedents. Therefore it is appropriate to consider a satisfaction relation
stating that a program P = (MS,DS ) is satisfied by a pair 〈x,Q〉 of a solution
trajectory x = x(t) and the constraint module definition Q = Q(M)(t) (M ∈
dom(DS )) recording the activation of antecedents. We define this relation as
shown in Fig. A.3.

The principle of the declarative semantics in Fig. A.3 is the consistency-based
adoption of constraints. It requires that, at each time point, a consistent set of
constraint modules with a maximal preference must be adopted and satisfied.

Condition (i) requires Q(M) to satisfy the ¤-closure property, and Condition
(ii) requires Q(M) = Q(M)∗ to be an extension of DS(M)∗. Now we look into
Condition (iii) closely. The order of the quantifiers at Line (s0) allows x to choose,
at each time point, a different set of candidate modules from the constraint
hierarchy. Line (s1) means that, at time t, x satisfies some set of candidate
modules in the constraint hierarchy. Lines (s2) mean that there is no trajectory
x′ that behaves exactly as x before t and satisfies a better candidate module set
than x at t. Lines (s3) mean that, when the antecedent of a chosen conditional



Appendix: Declarative Semantics of HydLa 11

〈x, Q〉 |= (MS,DS ) ⇔ (i)∧(ii)∧(iii)∧(iv), where

(i) ∀M (Q(M) = Q(M)∗);

(ii) ∀M (DS(M)∗ ⊆ Q(M));

(iii) ∀t∃E∈MS ( (s0)

(x(t) ⇒ {Q(M)(t) | M ∈ E}) (s1)

∧ ¬∃x′ ∃E′∈MS ( (s2)

∀t′ < t (x′(t′) = x(t′)) (s2)

∧ E ≺ E′ (s2)

∧ x′(t) ⇒ {Q(M)(t) | M ∈ E′}) (s2)

∧ ∀d∀e∀M ∈E ( (s3)

(x(t) ⇒ d) ∧ ((d ⇒ e) ∈ Q(M)(t)) ⇒ e ⊆ Q(M)(t))); (s3)

(iv) For each M and t, Q(M)(t) is the minimum set

that satisfies (i)–(iii).

Fig.A.3. Definition of 〈x, Q〉 |= P

constraint holds, Q is extended by expanding its consequent into the definition
of the corresponding module M in Q. If a member of the consequent (regarded
as a set of constraints) begins with ¤, it is further expanded by the ¤-closure
condition (i). Also, if it begins with ∃, the quantifier is eliminated by using a
Skolem function. Condition (iv) requires the minimality.

A.5 Examples

Using simple examples, we explain how the declarative semantics actually defines
solution trajectories and the constraint sets used to determine them.

Example 1: The first example shows how the arrival of a monotonically in-
creasing function at a certain threshold is reflected to another function with a
delay.

P1 = (MS1,DS1 )
MS1 = ({{A,C}, {A,B,C}}, {{A,C} ≺ {A,B,C}})
DS1 = { A ⇔ f=0 ∧ ¤(f’=1),

B ⇔ ¤(g=0),
C ⇔ ¤(f=5 ⇒ ∃a . (a=0 ∧ ¤(a’=1) ∧ ¤(a=2 ⇒ g=1)))}

Here, f is a function that expresses the current time, a is a timer invoked by f=5
as the trigger, and g is a pulse function that is usually 0 but momentarily becomes
1 two seconds after the invocation of the timer. The solution trajectory x ex-
presses those behaviors of f, a (whose Skolem function is also called a here), and



12 Kazunori Ueda et al.

g. Now we see all the constraints Q(∗)(t) =
∪
{Q(M)(t) | M ∈ dom(DS1)} that

are stored in Q. At 0 < t < 5, Q(∗)(t) consists of f’=1, g=0, and the constraint C
with the leftmost ¤ removed. At t = 5, a=0, ¤(a’=1), a’=1, ¤(a=2 ⇒ g=1), and
a=2 ⇒ g=1 are added to them. At 5 < t < 7, a=0, ¤(a’=1), and ¤(a=2 ⇒ g=1)
are removed. At t = 7, g=1 replaces g=0. At t > 7, g=1 is replaced by g=0
again; the other constraints that remain are f’=1, a’=1 and the two conditional
constraints.

Example 2: The declarative semantics presented in the previous section disal-
lows the propagation of constraints to the past. This may be obvious from the
construction of the semantics, but we confirm it by using an example since it is
an important property.

P2 = ((P({D, E, F}), (),DS2 )
DS2 = { D ⇔ y=0,

E ⇔ ¤(y’=1 ∧ x’=0),
F ⇔ ¤(y=5 ⇒ x=1)}

P2 leaves the initial value of x undefined. We check whether the constraint x=1
imposed by F at t = 5 propagates to the past by the effect of x’=0 in E. We
consider the following three cases as candidates for solution trajectories.

1. y(t) = t (t ≥ 0) and x(t) = 1 (t ≥ 0) satisfy all the constraints D, E, and F at
all times.

2. y(t) = t (t ≥ 0) and x(t) = 2 (t ≥ 0) satisfy all the constraints except at
t = 5 and satisfy D and E at t = 5.

3. y(t) = t (t ≥ 0), x(t) = 2 (t < 5), and x(t) = 1 (t ≥ 5) satisfy all the
constraints except at t = 5 and satisfy D and F at t = 5.

Case 1 is a solution since it obviously satisfies the maximality. Cases 2 and 3
obviously satisfy the maximality except at t = 5, and there are no better solu-
tions than these. Neither of them is worse than the other at t = 5, and there
are no other solutions that satisfy all the constraints; hence both of them are
maximal. In other words, any of Cases 1 to 3 is a result of “extending a solution
along the time axis so the maximality is satisfied,” and is therefore a solution to
P2.

A.6 Discussions on the Specification and the Semantics
of the Language

A.6.1 Differential Constraints

The basic principle of HydLa to utilize existing mathematical and logical no-
tations as much as possible suggests that the precise meaning of the notations
should also conform to mathematical conventions. For example, at the time point



Appendix: Declarative Semantics of HydLa 13

where a piecewise continuous trajectory causes a discrete change, we do not con-
sider the trajectory differentiable even if it is differentiable both from the left
and the right, and we do not deactivate the differential constraints at that time
point. We also assume only the right continuity and right differentiability at the
initial time.

For the reasons above, the priority of the differential constraints of a piece-
wise continuous function should in general be lower than that of the constraints
describing discrete changes. On the other hand, for a continuous trajectory after
a discrete change to be well-defined as an initial value problem of an ordinary
differential equation, we need to assume the right continuity at the time of the
discrete change. Since the differential constraints are deactivated when a discrete
change occurs, we also require left continuity to be able to decide the value of
a trajectory. Accordingly, HydLa assumes both the right and the left continuity
of trajectories described by differential constraints. Since these two continuity
constraints are automatically entailed whenever a trajectory is differentiable, we
assume them separately with a priority higher than differential constraints.

A.6.2 Expressive Power of HydLa

Although the primary purpose of HydLa is to describe piecewise continuous tra-
jectories, we can define various trajectories or sets of trajectories using HydLa’s
constraints and constraint hierarchies.

Trajectories defined without using differential equations. HydLa allows
us to describe trajectories without using differential constraints. For example, a
drifting parameter can be described by a constraint ¤(0.9<a ∧ a<1.1), which
represents the set of all trajectories whose range is (0.9, 1.1).

Note that a trajectory defined by the above constraint may not be continuous.
Hence, a trajectory defined by f=0 ∧ ¤(f’=1) is not guaranteed to satisfy f=a
between time 0.9 and 1.1. By adding a constraint ¤(a’=b) (we do not add any
constraint for b), a stands for a set of all continuous and differentiable trajectories
whose range is (0.9, 1.1), and is guaranteed to intersect with f.

A pulse function is another example defined without differential constraints.
An example of a pulse function is g of Example 1 (Section A.5). Pulse functions
play a significant role in representing the occurrences of events. Since pulse func-
tions are not right-continuous at the time of discrete changes, we conjecture that
a trajectory after the discrete change cannot be defined directly by a differen-
tial equation. The following example shows that our attempt to define a pulse
function b fails:

P3 = (MS3,DS3 )
MS3 = ({{G,J}, {G,H,J}}, {{G,J} ≺ {G,H,J}})
DS3 = { G ⇔ a=0 ∧ b=0 ∧ ¤(a’=1),

H ⇔ ¤(b’=0),
J ⇔ ¤(a- =1 ⇒ b=1) ∧ ¤(b- =1 ⇒ b=0)}



14 Kazunori Ueda et al.

Based on the discussion in Section A.6.1, between two sets of constraint modules
in MS3, there exist several sets with additional constraints on the continuity
including the right continuity of b. At t = 1, the set {G,H,J} is not satisfiable
but {G,J} with the right continuity of b is satisfiable, and b(1) = 1 holds from
the first constraint of J. However, then, the greatest lower bound of the time
when the guard of the second constraint of J holds is t = 1. The consequent
of the constraint b(t) = 0 is thus activated at t > 1 and contradicts the right
continuity. Now suppose we drop the assumption of the right continuity. Then it
turns that b(t) = c (t > 1) is consistent for all c 6= 1. Therefore, although there
exists a solution trajectory, HydLa fails to guarantee its uniqueness.

Zeno behaviors Let us reinvestigate the bouncing ball example in Section A.2
based on the declarative semantics of Section A.4. Although the program in
Fig. A.1 specifies a unique solution trajectory until the Zeno time, after that, it
allows a trajectory that falls through the floor. We need some additional rules
to specify the behavior after the Zeno time [10]. In HydLa, we can define it as
¤(ht- =0 ∧ ht’- =0 ⇒ ¤(ht=0)), though checking the guard condition would
need a special simulation method, e.g., in [7].

The following program shows another method for detecting the Zeno time.
It checks the convergence of a function vmax that holds the velocity at the last
bounce.

¤(vmax’=0) <<
¤(ht’- !=ht’ ⇒ vmax=ht’)

∧ ¤(vmax- =0 ⇒ ¤(ht=0))

This example shows that the left limit operator - is also useful for a function
that only causes discrete changes.

A.7 Conclusions and Future Work

This paper gave the declarative semantics of HydLa, a hybrid constraint language
with hierarchical structure, described its mechanisms and consequences by means
of examples, and discussed the language features and expressive power.

The semantics given in this paper regards trajectories as functions over time.
On the other hand, the theory of hybrid systems often adopts hybrid time that
allows more than one discrete change at a single time point [2]. One of the
motivations of hybrid time is to model computation involving multiple steps
at the time of a single discrete change. However, because HydLa is constraint-
based, such evolution can be represented as constraint propagation rather than
state changes. Another motivation of hybrid time is to deal with the stability
and convergence of trajectories in a declarative framework. This would require
the extension of our semantics with hybrid time, which is a topic of future work.

We are currently working on the formulation and its implementation of a
simulation algorithm corresponding to our declarative semantics. The resulting



Appendix: Declarative Semantics of HydLa 15

system is planned to exploit the flexibility of constraint programming and the
affinity to interval computation.

Acknowledgments The design of HydLa has received constant feedback from
the theoretical and implementation work and daily discussions of the past and
present members of the HydLa group. This research is partially supported by
Grant-In-Aid for Scientific Research ((B) 20300013), JSPS, Japan.

References

1. David, R. and Alla, H.: On Hybrid Petri Nets, Discrete Event Dynamic Systems,
Vol. 11, No. 1–2 (2001), pp. 9–40.

2. Goebel, R., Sanfelice, R. G., Teel, A. R.: Hybrid Dynamical Systems, IEEE Control
Systems Magazine, Vol. 29, No. 2 (2009), pp. 28–93.

3. Gupta, V., Jagadeesan, R., Saraswat, V. and Bobrow, D.: Programming in Hybrid
Constraint Languages, in Hybrid Systems II, LNCS 999, Springer-Verlag, 1995,
pp. 226–251.

4. Henzinger, T. A.: The Theory of Hybrid Automata, in Proc. LICS’96, 1996,
pp. 278–292.

5. Hirose, K., Otani, J., Ishii, D., Hosobe, H. and Ueda, K.: Modeling techniques of
Hybrid Systems using Constraint Hierarchies, in Proc. 26th Annual Conference of
Japan Society for Software Science and Technology, 2D-2, 2010 (in Japanese).

6. Ishii, D., Ueda, K., Hosobe, H., Goldsztejn, A: Interval-based Solving of Hybrid
Constraint Systems, in Proc. ADHS’09, pp. 144–149, 2009.

7. Ohno, Y., Ishii, D. and Ueda, K.: A Method of Deriving Zeno States in Hybrid
Systems using Formula Manipulation and Quantifier Elimination, in Proc. 22nd
Annual Conference of the Japanese Society for Artificial Intelligence, 1D1-3, 2008
(in Japanese).

8. Shibuya, S., Takata, K., Hosobe, H. and Ueda, K.: An Execution Algorithm for
the Hybrid System Modeling Language HydLa, Computer Software, Vol. 28, No. 3
(2011), pp. 167–172 (in Japanese), available online at
https://www.jstage.jst.go.jp/article/jssst/28/3/28 3 3 167/ article/.

9. Ueda, K., Ishii, D. and Hosobe, H.: Constraint-based Hybrid System Modeling
Language HydLa, in Proc. 5th Symposium on System Verification, Research Cen-
ter for Verification and Semantics, AIST, 2008, pp. 1–6 (in Japanese).

10. Zheng, H., Lee, E. A., Ames, A. D.: Beyond Zeno: Get on with It!, in Proc. HSCC
2006, LNCS 3927, Springer-Verlag, pp. 568–582, 2006.


