
Kazunori Ueda

Waseda University, Tokyo, Japan

High-level Programming Languages

and Systems

for Cyber-Physical Systems

Halmstad Summer School of Cyber-Physical Systems, July 17-21, 2017

Background

 Cyber-physical systems (CPS, 2000’s–) = systems with
computational and physical components

 Hybrid systems (1990’s–) = dynamical systems with
continuous and discrete behavior

2

CPS

Hybrid
systems

Dynamical
systems

Various aspects:
 embedded systems, IoT,

sensor network, big data,
social/network infrastructure,
distributed computing, security, …

Computational foundations for
 interacting with the physical world (= implementing CPSs)
 modeling, simulation and verification

Computing/modeling paradigms for CPSs

 Key issue
= modeling of, and interfacing with, the physical world

3

• Continuous
(+ discrete) domain

• Math with differential
(+ algebraic) equations

• Time

• Discrete domain

• Programming languages

• Algorithms

• Abstraction

Physical systems Computer systems

How to reconcile them with computing
abstraction of physical systems?

𝑑2𝑥

𝑑𝑡2
= 10

𝑥𝑡+1 = 1 − 𝑥𝑡
𝑦𝑡+1 = 2 𝑦𝑡

Computing/modeling paradigms for CPSs

 Edward A. Lee: “Cyber-Physical Systems: Are Computing
Foundations Adequate?”

NSF Workshop On Cyber-Physical Systems, October, 2006

4. Research directions
 Putting time into programming languages
 Rethinking the OS/programming split
 Rethink the hardware/software split
 Memory hierarchy with predictability
 Memory management with predictability
 Predictable, controllable deep pipelines

 Predictable, controllable, understandable concurrency
 Concurrent components
 Networks with timing

 Computational dynamical systems theory

4

Hybrid systems

 Systems whose states can make both continuous and
discrete changes

Examples:
 bouncing ball, billiard, . . .
 thermostat + air conditioner + room
 traffic signals + roads + cars

In general:
Dynamical systems whose description involves
case analysis

 physical, biological, control, cyber-physical, etc.

 Relates to computer science, control engineering and apps.

 Programming language aspects rather unexplored

5

Challenges and questions

 Designing and implementing programming/modeling
languages for hybrid systems

 What are the basic notions and constructs?
cf. automata (concrete) vs. λ-calculus (abstract)

 Are they simple and accessible to non-specialists
(e.g., engineers outside CS) ?

 Language constructs are divided into

 those determining the underlying computational model
(primitives)

 those motivated by software engineering point of view
(user language)

6

Modeling frameworks for hybrid systems

 Hybrid Automata and other “hybrid” models
(Petri nets, I/O automata, Process Algebra, etc.)

 Modeling languages and tools with equations and updates

 Modelica, Acumen, Ptolemy, Hybrid Language, …

 Constraint-based languages and tools
(domain = functions over time)

 iSAT (Boolean+arithmetic constraint solver)

 Hybrid CC (hybrid concurrent constraint language)

 CLP(F) (constraint LP over real-valued functions)

 Kaleidoscope ’90 (discrete time)

 HydLa (constraint hierarchy)

7

L. P. Carloni et al, Languages and Tools for Hybrid Systems Design,
Foundations and Trends in Electronic Design Automation, Vol.1 (2006), pp.1-193.

Constraint Programming (CP)

 A declarative programming paradigm in which a problem is
described using equations/inequations over continuous or
discrete domains

8

 Variables: x1, ..., x5

 Domain: 1 xi  5
 Constraints:

if i  j then
 xj  xi

 xj  xi + | j i |
 xj  xi  | j i |

Q

Q

Q

Q

Q

x1 x2 x3 x4 x5

Constraint Programming (CP)

 Features and essence

 No algorithms: CP languages are often called modeling
languages

 Developed in AI and Logic Programming communities

 where the central interest has been constraint
satisfaction and constraint propagation

 many libraries for mainstream languages

 CP languages are mostly based on Logic
Programming

 Another view of CP: computing with partial information

 by means of symbolic execution

9

Constraint Programming (CP)

 Different flavors and applications

 Constraint satisfaction problems (CSPs)
 Domains: finite, real, interval, ...

 SMT (satisfiability modulo theories)
 complex combination of logical connectives
 usually not compute most general solutions

 (Constraint-based) Concurrency
(a.k.a. Concurrent Constraint Programming)

Communication: telling and asking of constraints
Synchronization: ⇒ (also for conditionals)
Composition: ∧
Hiding: ∃ (also for fresh name creation)

10

11Early history of constraint-based concurrency

Single Idea:
Dataflow

Synchronization

* Guarded Horn Clauses;
not to be confused with
Glasgow Haskell Compiler (1990s)

Relational Language

Concurrent Prolog PARLOG

GHC *

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCNCHR

Originated by process interpretation of logic programs

Kazunori Ueda: Logic/Constraint Programming and Concurrency:
The Hard-Won Lessons of the Fifth Generation Computer Project.

Science of Computer Programming, 2017

12Constraint-based concurrency

factorial(X,Y) :- X=:=0 | Y:=1.
factorial(X,Y) :- X > 0 |

X1:=X–1, factorial(X1,Y1), Y:=X*Y1.

factorial(M,N)

M=5 N=120

constraints on
immutable variables

constraint store

causality

Constraint-based concurrency

 Inverter accepting a sequence of input data

nots([], Y) :- true | Y=[].

nots([0|X],Y0) :- true | Y0=[1|Y], nots(X,Y).

nots([1|X],Y0) :- true | Y0=[0|Y], nots(X,Y).

 Discrete event systems can be represented using possibly
infinite lists.

 e.g., [0,1,1,0,1|A]

13

. . . 1 0 1 1 0 . . . 0 1 1 0 1

nots

14Constraint-based concurrency

 Constraints imposed by “nots(X,Y)”:

Observed Published Rest

X=[0,1,1,0,1] Y=[1,0,0,1,0] (none)

X=[0,1,1,0,1|X’] Y=[1,0,0,1,0|Y’] nots(X’,Y’)

(none) (suspending) nots(X,Y)

X=[2|_] (reduction failure)

X=[0|_], Y=[0|_] (Inconsistency)

X=[] Y=[] (none)

Constraint Programming for hybrid systems

 Declarative description of hybrid systems
= constraint programming of functions over time

 cf. constraint programming over infinite sequences

 Many features are inherited from constraint-based
concurrency

 Implication (⇒) for synchronization and conditionals

 Conjunction (∧) for parallel composition

 Existential quantification (∃) for hiding

(e-stop = 1 ⇒ speed’ = – 4.0)

(ask) (tell)

15

Challenges from the language perspective

 Establish a high-level programming/modeling language

 equipped with the notion of continuous time,

 equipped with the notion of continuous changes,

 that properly handles uncertainties and errors of real
values,

 that properly handles conditional branch under
uncertainties and errors of real values,

 equipped with constructs for abstraction and parallel
composition.

 etc.

 Establish semantical foundations

 Establish implementation technologies

16

Rigorous simulation

 Computers were born for numerical simulation, and
simulation (in a broad sense) is still an important application
of high-performance computers for the design and analysis
of all kinds of systems.

 “How (much) can we trust these simulation results?”

 For some simple problems, ordinary simulation with a
standard tool cannot yield a single significant digit.

17

Rigorous simulation

 Simulation of hybrid systems is particularly hard and can
easily go qualitatively wrong (due to conditional branch).
A technique for rigorous simulation is very important.

 Some CPSs are safety-critical or mission-critical also.

18

Collision of three bodies

Small errors make
big differences!

Collision avoidance model

Rigorous simulation vs. verification

 Most research on hybrid systems aims at verification as
decision problems

 yes/no answer (i.e., whether it works)

 possibly with counterexamples (i.e., why it doesn’t work)

 Rigorous simulation will require less from you and tell you
more

 no proof skills (cf. interactive theorem solving)

 no proof goals (cf. automatic verifier)

 still can be used to prove something (e.g., W. Tucker’s
proof on Lorenz attractors, R. E. Moore Prize 2002)

 (often visualized) trajectories (i.e., how it works)

 error margin (i.e., how safe it is)

19

HydLa : Overview and features (1/4)

 The field of hybrid systems comes with many notations,
concepts and techniques; rather difficult to get into.

 Our challenge is to see whether a rather simplistic
formalism can address various aspects of hybrid systems

 Goals:
 Identifying computational mechanisms
 Modeling and understanding systems that are not large

but may exhibit problematic behavior

 Non-goals (currently):
 Modeling large-scale systems

20

HydLa : Overview and features (2/4)

 Declarative (↔ Procedural)

 Minimizes new concepts and notations by employing
popular mathematical and logical notations

 =, ≤, +, ×,
𝑑

𝑑𝑥
, ∧, ⇒, ⇔ ,…

 Describes systems as logical formulae with hierarchy

 No algorithmic constructs such as states and state
changes, iteration, transfer of control, etc.

 Still, it turns out that the semantics comes with large
design space, e.g.,

 how to compare two uncertain values?

 what continuity should we assume?

21

HydLa : Overview and features (3/4)

 Constraint-based

 Basic idea: defines functions over time using constraints
including ODEs, and solves initial value problems

 cf. streams are defined by difference equations

 Handles partial (incomplete) information properly

 Intervals (e.g., 𝑥 ∈ [1.0, 3.5]) fit well within the
constraint-based framework

 Allows modeling and simulation of parametric hybrid
systems

 Symbolic computation based on consistency checking

 Powered by numerical techniques

22

HydLa : Overview and features (4/4)

 Features constraint hierarchies (Alan Borning, 1992)

 Motivation: It’s often difficult to describe systems so
that the constraints are consistent and well-defined.

Examples: bouncing ball (, billiard, . . .)

 A ball normally obeys the law of gravity (default),
while it obeys the collision equation when it bounces
(exception).

 The frame problem (McCarthy and Hayes, 1960s)
occurs in the description of complex systems.

 We can’t enumerate all possible exceptions

 Want to define these properties concisely and in a
modular manner.

23

Example 1 : Sawtooth function

INIT  f = 0.

INCREASE  (f ’ = 1).

DROP  (f– = 1  f = 0).

INIT, (INCREASE < DROP).

 Describes properties at time 0.

 Time argument is implicit:

(f ’= 1) means t  0 (f ’(t)=1)

 f– stands for the left-hand limit
of f.

24

t

0

24

rules

guard

priority

<

Example 1b : Sawtooth function

INIT  0  f < 1.

INCREASE  (f ’ = 1).

DROP  (f– = 1  f = 0).

INIT, (INCREASE < DROP).

 Describes properties at time 0.

 Family of sawtooth functions with
the slope 1 and the range [0, 1)

 Value of f at a specific time point
is just known to be [0, 1), but all
trajectories reach all values in [0, 1) and oscillate.

25

t

0

25

rules

guard

priority

<

Example 2 : Bouncing ball

INIT  ht = 10  ht’ = 0.

PARAMS  (g = 9.8  c = 0.5).

FALL  (ht’’ = –g).

BOUNCE  (ht– = 0  ht’= –c(ht’–)).

INIT, PARAMS, (FALL < BOUNCE).

 When the ball is not on the ground,
{INIT, PARAMS, FALL, BOUNCE} is maximally consistent.

 When the ball is on the ground,
{INIT, PARAMS, BOUNCE} is maximally consistent.

 At each time point, HydLa adopts a maximally consistent set
of rules that respects constraint priority.

26

<

Demo

 HyLaGI (HydLa Guaranteed Implementation) and
webHydLa
 http://webhydla.ueda.info.waseda.ac.jp/
 http://www.ueda.info.waseda.ac.jp/hydla/

27

Constraint hierarchy

 Constraint hierarchy specified by “<<“ determines possible
combination of rules

where rules with highest priority are “required” constraints

 Basic HydLa (next slide) considers a partially ordered set of
“set of rules” induced from the constraint hierarchy.

28

INIT, PARAMS, (FALL << BOUNCE)

{INIT, PARAMS, FALL, BOUNCE}

{INIT, PARAMS, BOUNCE}

Syntax of Basic HydLa

(program) P ::= (RS, DS)

(rule sets) RS ::= poset of sets of R

(definitions) DS ::= set of D’s with different LHSs

(definition) D ::= R  C

(constraint) C ::= A | C  C | G  C | C | x . C

(guard) G ::= A | G  G

(atomic A ::= E relop E
constraint)

(expression) E ::= ordinary expression | E’ | E–

29

= function from R to C

Syntax of Basic HydLa: Comments

 A program is a pair of

 partially ordered set of “sets of rules” (RS) and

 rule definitions (DS).

Example of RS:

{INIT, PARAMS, BOUNCE} ≺ {INIT, PARAMS, FALL, BOUNCE}

 How to derive RS from << is beyond Basic HydLa.

 HydLa / Basic HydLa is a language scheme in which the
underlying constraint system is left unspecified.

 x . C realizes dynamic creation of variables.

Example: creation and activation of new timers

  is eliminated at runtime using Skolem functions.

30

Semantics of Basic HydLa

 Declarative semantics (Ueda, Hosobe, Ishii, 2011)
 What trajectories does a HydLa program denote?

 Operational semantics
(Shibuya, Takata, Ueda, Hosobe, 2011)
 How to compute the trajectories of a given HydLa

program?

 Unlike many other programming languages, declarative
semantics was designed first, since
 completeness of the operational semantics can’t be

expected and
 diverse execution methods are to be explored.

31

Declarative semantics of Basic HydLa

 The purpose of a HydLa program is to define the constraints
on a family of trajectories.

𝑥(𝑡) = 𝑥𝑖 𝑡 𝑖≥1 (𝑡 ≥ 0)

 Declarative semantics, first attempt

𝑥 𝑡 ⊨ (𝑅𝑆, 𝐷𝑆)

 Works fine for programs not containing  in the
consequents of conditional constraints G  C
[JSSST ’08].

Example: systems with a fixed number of components and
without delays

32

Declarative semantics of Basic HydLa

 Not only trajectories, but also effective constraint sets
defining the trajectories, change over time.

 Reason 1: Maximally consistent sets may change.

 Reason 2: Conditional constraints may discharge their
consequents.

 When the consequent of a constraint starts with ,
whether it’s in effect or not depends on whether the
corresponding guard held in the past

 Declarative semantics (refined)

33

𝑄(𝑡) : rule definitions
with dynamically added
consequents

𝑥, 𝑄 ⊨ (𝑅𝑆, 𝐷𝑆)

Preliminary: -closure

 We identify a conjunction of constraints with a set of
constraints.

 We regard a set of constraints as a function over time.

 A constraint C in a program is regarded as a function
C(0) = C,
C(t) = { } (t>0) .

 -closure * : Unfolds (or unboxes) the topmost -formulas
dynamically and recursively.

Example: C = {f=0,{f’=1}}

C*(0) = {f=0, f’=1, {f’=1}}
C*(t) = {f’=1} (t>0)

34

maximality

satisfiability

⇒-closure

-closure

extensiveness

Declarative semantics 35

(iv)𝑄(𝑅)(𝑡) at each 𝑡 is the smallest set satisfying (i)-(iii)

𝑥, 𝑄 ⊨ 𝑅𝑆, 𝐷𝑆 ⇔ i ∧ ii ∧ iii ∧ (iv) , where

i ∀𝑡∀𝑅(𝑄 𝑅 𝑡 = 𝑄 𝑅 ∗ 𝑡)

ii ∀𝑡∀𝑅(𝐷𝑆∗ 𝑅 𝑡 ⊆ 𝑄 𝑅 ∗ 𝑡)

iii ∀𝑡∃𝐸 ∈ 𝑅𝑆 (
(𝑥 𝑡 ⇒ 𝑄 𝑅 𝑡 | 𝑅 ∈ 𝐸)

∧ ¬∃𝑥
′
∃𝐸′ ∈ 𝑅𝑆 (

∀𝑡′ < 𝑡 (𝑥
′
𝑡′ = 𝑥 𝑡′)

∧ 𝐸 ≺ 𝐸′

∧ 𝑥
′
𝑡 ⇒ 𝑄 𝑅 𝑡 𝑅 ∈ 𝐸′})

∧ ∀𝑑∀𝑒∀𝑅 ∈ 𝐸 (
𝑥 t ⇒ 𝑑 ∧ (𝑑 ⇒ 𝑒 ∈ 𝑄 𝑅 𝑡)

⇒ 𝑒 ⊆ 𝑄(𝑅)(𝑡)))

Example 3 : Absence of back propagation

P = ((℘({D,E,F}), ⊊), DS)

DS= { D  y = 0,

E  (y’ = 1  x’ = 0),

F  (y = 5  x = 1) }

a. y(t) = t, x(t) = 1 satisfies D, E, F at 0 ≤ t.

b. y(t) = t, x(t) = 2 satisfies D, E, F at 0 ≤ t < 5 and D, E at t = 5.
It again satisfies D, E, F at t ≥ 5.

c. y(t) = t, x(t) = 2 (t < 5), x(t) = 1 (t ≥ 5) satisfies D, E, F at
0 ≤ t < 5 and D, F at t = 5. It again satisfies D, E, F at t ≥ 5.

36

All of a., b. and c. satisfy local maximality and
hence satisfy P.

Example 4 : Bouncing Ball, revisited

P =(RS, DS)

RS=({{I,C,B},{I,C,F,B}},{{I,C,B} ≺ {I,C,F,B}})

DS={ I  ht=10  ht’=0,

C  (g=9.8  c=0.5),

F  (ht’’= –g),

B  (ht–=0ht’=–c(ht’–))}

 ht and ht’ are not differentiable when bouncing

 However, to solve ODEs on ht and ht’, right continuity of ht
and ht’ at the bouncing must be assumed

 To determine ht at the bouncing, left continuity of ht must
be assumed as well. (cf. ht’ is determined from B.)

 Trajectories with differential constraints should assume
both right and left continuity with appropriate priority.

37

Example 5 : Behaviors defined without ODEs

P = (RS, DS)

RS = ({{A,C}, {A,B,C}}, {{A,C} ≺ {A,B,C}})

DS = { A  f=0  (f’ = 1),

B  (g=0),

C  (f=5  a.(a=0  (a’=1)

 (a=2  g=1))) }

 g is an impulse function that fires at time 7 (= 5+2).

 an example of non-right-continuous functions

(0.9<a  a<1.1)  (a’=b)

 a is a set of all smooth trajectories with the range (0.9, 1.1) .
Could be used for specification but not for modeling.

38

Example 6 : Zeno behavior

P =(RS, DS)

RS=({{I,Pa,B},{I,Pa,F,B}},{{I,Pa,B} ≺ {I,Pa,F,B}})

DS={ I  ht=10  ht’=0,

Pa  (g=9.8  c=0.5),

F  (ht’’= –g),

B  (ht–=0ht’=–c(ht’–))} This doesn’t

 This doesn't define a trajectory after the Zeno time.

 A rule for defining the trajectory after Zeno:

(ht–=0  ht’–=0  (ht=0))

 Checking of the guard condition would require a
technique not covered by the current operational
semantics.

39

Execution algorithm and

implementation

40

HyLaGI: A symbolic simulator

• C++ (frontend) and Mathematica (backend), 27kLOC
• KV library[1] for interval computation
• Optimized computation by exploiting the locality of

constraints
• webHydLa[2] for visualization

41

Bouncing ball on a
ground with a hole

Electrical circuit

t

iy

x

[1] http://verifiedby.me/
[2] http://webhydla.ueda.info.waseda.ac.jp/

Rigorous tools for hybrid systems 42

Tool Approach

Acumen Validated Numerical Simulation

Flow* Taylor model + Domain contraction

dReach/dReal Interval Constraint Propagation + Bounded
Model Checking with Unrolling + SMT Solving

SpaceEx Template Polyhedra & Support functions

KeYmaera &
KeYmaera X

Symbolic Theorem Prover based on
differential invariants

HyLaGI Symbolic + Affine Arithmetic +
Interval Newton method

1. conditions that starts to hold “after” some time point
 need to compute the greatest lower bound of a time

interval

2. initial values given as intervals
 could be divided into a subinterval

that entails a guard and another
that does not entail the guard

3. systems with symbolic parameters
 needs symbolic computation

Execution algorithm of HydLa should handle:

A  x=0.
B   (y=1).

C   (x’=1 ∧ (x>3  y=2)).

A, (B << C).

ht=11

ht= 9

ht=10

ht=15

(ceiling)

x, y

x

y

3

2

1

t

43

Operational semantics

 For simulation, we need to consider a class of “computable”
trajectories.

 Computable trajectories: those that have possibly
parametric equational closed forms
 ODEs without closed-form solutions are to be over-

approximated by parametric equational closed forms.

44

Execution algorithm

each phase updates
the maximal
consistent set and
simulation time T

SS (store set) : set of
possible stores

>1

>1

をやり直す 解軌道の分岐:

SSの要素から1つ
非決定的に選び、

Phaseの実行を
やり直す

compute

Point Phase (PP)

compute

Interval Phase (IP)

compute poset

of constraints

end time?

yes
no

end

|SS|

=1
=0

=1
=0

|SS|

failure: choose
the next

candidate set
and redo PP or

IP

branch of trajectory:
nondeterministically
choose one element
from SS and redo PP

or IPan element of
SS represents a
result of
execution of PP
or IP

tries the top
candidate first

PARAMSINIT

BOUNCE

INIT

FALL BOUNCE

PARAMS

45

Closure calculation repeatedly checks the antecedents of
conditional constraints

IP computes the next jump time (minimum of the following):
1. a conditional constraint becomes effective

2. a conditional constraint becomes ineffective
3. a ruled-out constraint becomes consistent with effective ones
4. the set of effective constraints becomes inconsistent

Algorithm for Point Phase and Interval Phase

Calculate
deductive
closure

Find the next
jump time

Calculate
deductive
closure

PP IP

46

compute

Point Phase (PP)

compute

Interval Phase (IP)

compute
poset of

constraints

end
time?

yes
no

end

|SS|

=1
=0

=1
=0

|SS|
>1

>1

Where’s nondeterminism?

 Choice of maximally consistent set of rules

 Calculating deductive closure
 Guard (g ⇒ ⋯) may hold or may not hold depending on

parameter values
(e.g., will the thrown ball reach the wall?)

 We calculate a “strengthened” constraint store for each
case

 Finding the next possible jumps time
 Reason of the next jump may depend on parameter

values
(e.g., will the ball hit the wall or the floor first?)

 Together with each jump time, calculate a strengthened
constraint store which causes that jump first

47

48Example: Bouncing ball with ceiling

INIT ⇔ 9 ≤ y ≤ 11 ∧ y' = 10.
FALL ⇔ □(y'' = –10).
BOUNCE ⇔ □(y– = 15 ⇒

y' = –(4/5) * y'–).

INIT, (FALL << BOUNCE).

y

t

9 < 𝑦(0) < 11
𝑑𝑦

𝑑𝑡
0 = 10

15

𝑑2𝑦

𝑑𝑡2
𝑡 = −10

 Thrown towards ceiling from some unknown height

y': dy/dt
y–: left limit of y
□: ∀t ≥ 0HydLa

Symbolic execution of HydLa models

 Use symbolic parameters to handle uncertainties
 Includes ODE solving, Quantifier Elimination (for

consistency checking and case splitting), optimization
problem (for computing time of discrete change)

49

Case 2 (touch)

𝑦 0 = 10
y: 10𝑡 − 5𝑡2 + 10

Case 3 (collide)

10 < 𝑦 0 < 11

y: 15 − 10𝑦 0 ...

Case 1 (fall)

9 < 𝑦 0 < 10
y: 10𝑡 − 5𝑡2 + 𝑦(0)

Result plots

y

t

9 < 𝑦(0) < 11
𝑑𝑦

𝑑𝑡
0 = 10

15

𝑑2𝑦

𝑑𝑡2
𝑡 = −10

Bouncing ball on a ground with a hole 50

50

y

x

-7

0

10

7 10floor

bottom
(y' := – 4/5×y')

left
(x' := –x')

right
(x' :=  x')

0 ≤ x'(0) ≤ 20

y'(0) = 0

y''(t) = –10

(y' :=  4/5×y')

In which case can
a ball reach here?

Uncertainty in the initial
value of x'

51

INIT <=> y = 10  y' = 0  x = 0  0 ≤ x' ≤ 20.
FALL <=> □(y'' = –10).
BOUNCE <=> □(y– = – 7  (x– ≤ 7  x– ≥ 10)  y– = 0

=> y' = –(4/5) * y'–).
XCONST <=> □(x'' = 0).
XBOUNCE <=> □((x– = 7  x– = 10)  y– < 0 => x' = –x'–).

INIT, (FALL << BOUNCE), (XCONST << XBOUNCE).
ASSERT(! (y ≥ 0  x ≥ 10)).

Bouncing ball on a ground with a hole

Search when the ball reaches the goal zone

52

INIT <=> y = 10 ∧ y' = 0 ∧ x = 0 ∧ 0 ≦ x' ≦ 20.
FALL <=> □(y'' = -10).
BOUNCE <=> □(y- = -7 | (x- ∧ 7 | x- ≧ 10)

∧ y- = 0 => y' = -(4/5) * y'-).
XCONST <=> □(x'' = 0).
XBOUNCE <=> □((x- = 7 | x- = 10) ∧ y- < 0 => x' = -x'-).

INIT, FALL << BOUNCE, XCONST << XBOUNCE.
ASSERT(!(y ≧ 0 ∧ x ≧ 10)).

Bouncing ball on a ground with a hole

Search when the ball reaches the goal zone

Successfully simulated with automatic case analysis
(50 cases including unreachable ones)

(up to 20 seconds, six discrete changes)

Bouncing ball on a ground with a hole (1/9)
53

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

[1.36027, 1.40428]

Bouncing ball on a ground with a hole (2/9)
54

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

[1.82244, 1.90375]

Bouncing ball on a ground with a hole (3/9) 55

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

(1.90375, 2.02803]

Bouncing ball on a ground with a hole (4/9) 56

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

[2.643, 2.71964)

Bouncing ball on a ground with a hole (5/9) 57

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

[2.71964, 4.94975]

Bouncing ball on a ground with a hole (6/9) 58

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

(5.33196, 5.42326)

Bouncing ball on a ground with a hole (7/9) 59

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

5.42326

Bouncing ball on a ground with a hole (8/9) 60

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

(5.42326, 6.56241]

Bouncing ball on a ground with a hole (9/9) 61

y

x

-7

0

10

7 10floor

bottom

left right

0 20

x'(0) =

5 10 15

[7.07107, 20]

Instantaneous events

 Hybrid systems handle discrete events
 as abstraction of quick physical change

(e.g., collision)
 to represent computational aspects

(e.g., controller)

 Superdense time allows multiple events at the same time

 (𝑡, 𝑛)
 𝑡: real
 𝑛 = 0, 1, 2, … : event number at time 𝑡

 In our constraint-based framework, what can we do with
the standard notion of time?

62

Modeling behaviors with symbolic purturbation

 Simultaneous collision

 Collision
+ pushing at 1 ≤ 𝑡 ≤ 3.5

63

[1], Fig.8-9 [1], Fig.11-12 (equal mass)
[1], Fig.14 (different mass)

[1], Fig.15

 Masses with friction

[1], Fig.28

[1] Edward Lee, Constructive Models of Discrete and
Continuous Physical Phenomena, IEEE Access, Vol.2, 2014

Representing computational aspects

 Solution 1: Form a network of constraints

 Solution 2: use ∃

64

N := {n0 .. n5}.
F := {f0 .. f5}.
[](f0 = 1 & n0 = n & f = f5).

n = 3.
{ [](N[i] > 0 => F[i+1] = F[i] * N[i] & N[i+1] = N[i] - 1),

[](N[i] <= 0 => F[i+1] = F[i] & N[i+1] = N[i])
| i in {1..|F|-1} }.

F(0, y) <=> y=1.
F(x, y) & x>0 <=> ∃z.(y = n*z & F(x-1, z))

Cooperation of

symbolic and numeric techniques

65

Shota Matsumoto and Kazunori Ueda: Proc. TIME 2016, pp.4-11, Oct. 2016

Discrete change is often hard(er) to compute 66

 First continuous change

𝑥2 𝑡 = −
−8 + 7𝑒𝑡 − 2𝑡 − 𝑡 ∗ 𝑥1 0

𝑒𝑡

 Mathematica cannot
symbolically solve

𝑥2 𝑡 = 0

 We need to handle it with
interval numerical methods

1.9 ≤ x1 0 ≤ 1.9001

x2 0 = 1

x1

x2

v2

v1

1 (v1 → close & v2 → open)

0 (v2 → close)

-1 (v1 → open)

1 (v1 → close)

𝑑𝑥1

𝑑𝑡
= −𝑥1 + 3 (v1: open)

𝑑𝑥1

𝑑𝑡
= −𝑥1 − 2 (v1: closed)

𝑑𝑥2

𝑑𝑡
= 𝑥1 − 𝑥2 − 5

(v2: open)
𝑑𝑥2

𝑑𝑡
= 𝑥1 (v2: closed)

Exmple: water level control

Interval arithmetic 67

Arithmetic defined on intervals of reals

• e.g.

Shortcoming: explosion of interval width

Solve by handling symbolic parameters

𝑎, 𝑏 + 𝑐, 𝑑 = 𝑎 + 𝑐, 𝑏 + 𝑑
𝑎, 𝑏 − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐]

original
solution

wrapping
box

𝑋 ≔ −1, 1
𝑓 𝑥 := 𝑥 − 𝑥
𝑓 𝑋 = 𝑋 − 𝑋
= −1, 1 − −1, 1
= [−2, 2]

Cause1: Wrapping Effect Cause2: Dependency problem

Symbolic vs. numerial methods 68

NumericalSymbolic

Disadvantage
Accumulation of errors

Advantage
Retains parametric info

Advantage
Handles vast class of models

Disadvantage
Growth of size

of math formulae
tradeoff

Cooperation of symbolic and numeric methods

 Use affine arithmetic (AA) to approximate complex formulae
 to reduce computational cost
 while retaining linear terms of parameters

 Use interval Newton method and mean-value theorem to
compute discrete change rigorously
 to handle systems that are hard to compute symbolically
 while retaining linear terms of parameters

69

Cooperation of symbolic and numeric methods 70

Compute discrete changes
by solving (in)equalities

Compute continuous changes
by solving ODEs

Compute time of events
by computing zero crossing
of functions

Over-approximate
by affine arithmetic
(+ reduction)

Compute Zero crossing
by interval Newton

Refine solution
by mean value thm

: cooperation
with numerical
methods

: symbolic

Affine Arithmetic

 Extended version of Interval Arithmetic
 Expresses uncertainty in affine form

 Each 𝜀𝑖 represents uncertainty just in the same manner
as symbolic parameters in symbolic execution

 Each 𝑥𝑖 (𝑖 > 0) represents the effect of 𝜀𝑖, while
𝑥0 represents the center

71

𝑋 = 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛

−1 ≤ 𝜀𝑖 ≤ 1

Affine form

[1] de Figueiredo, L. H. and Stolfi, J.: Numerical Algorithm, 37 (1–4), 147–158, 2004

Affine Arithmetic

 Affine forms represent zonotopes, a polygon with parallel
opposite edges

 Symbolic parameters 𝜀𝑖 retain first-order dependencies
between uncertain values

72

𝑋 = 5 + 𝜀1 − 𝜀2 + 𝜀3
𝑌 = 5 + 𝜀1 + 𝜀2 + 0.5𝜀3

𝑋 = [2, 8]
𝑌 = [2.5, 7.5]

Over-approximation by Affine Arithmetic 73

We use affine arithmetic to over-approximate
symbolic formulas

 It reduces computational cost for complex formulas

 Number of preserved parameters can be reduced

Example

𝑓 𝑥 ≔ 𝑥 + 1 2 − 2𝑥
𝑋 ≔ 0 + 0.1 𝜀1 = −0.1, 0.1

𝑓 𝑋 = 1 + 0.1𝜀1
2 − 0.2 𝜀1

= 2 1 + 0.1𝜀1 − 0.995 + 0.005 𝜀2 − 0.2 𝜀1
= 2 + 0.2𝜀1 − 0.2 𝜀1 − 0.995 + 0.005 𝜀2
= 1.005 + 0.005𝜀2 (= 1, 1.01)

cancelled by
preserved dependency

Computation of Event Time

 Goal: compute the solution of 𝑓 𝑡, 𝑝 = 0 w.r.t. 𝑡 that
preserves the linear terms of the parameters 𝑝

 Assume that the guard is described by a single equation:
𝑔 𝑥 = 0

Step 1. Substitute solution of ODEs into 𝑔 𝑥
and obtain 𝑓 𝑡, 𝑝

Step 2. Solve 𝑓 𝑡, 𝑝 = 0 by interval Newton method
and obtain solution interval 𝑇

Step 3. Obtain linear over-approximation 𝐹 𝑡, 𝑝
that encloses 𝑓 𝑡, 𝑝 in 𝑇 using mean value thm

Step 4. Compute zero-crossing of 𝐹 𝑡, 𝑝 symbolically

74

Step 1. Substitution of Trajectory 75

Event time is the positive minimal time satisfying the guard.

Trajectory : 𝑥 = −0.5 + 0.2 𝑡2 ∧ 𝑦 = −0.3 + sin 3𝑡 +
Guard: 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1 = 0

Substitute

Obtain 𝑓 𝑡, 𝜀

tx

y

Step 2. Interval Newton Method] 76

Extended version of Newton method

Features:

• Computes over-approximated zero-crossing of 𝑓 𝑡, 𝜀

• Converges quadratically

• Guarantees existence and uniqueness of solution

[3] Moore, R. E., Kearfott, R. B., Cloud. M. J.: Society for Industrial and Applied Mathematics, 2009.

：solution interval

Step 2. Solution of Interval Newton Method

 Narrow enough along the time axis

77

t

𝑓(𝑡, 𝜀)

Step 2. Solution of Interval Newton Method 78

t

𝑓(𝑡, 𝜀)

𝜀

Interval Newton

Ideal solution

 Narrow enough along the time axis, but
 Not optimal along the parameter axis

Step 3. Refinement by Mean Value Theorem 79

Derive parametrized solution from solution interval

 Compute parametrized over-approximation of 𝑓 𝑡, 𝜀

By mean value theorem for multivariate function
𝑏, 𝑎 ⊆ 𝐼 ⇒ ℎ 𝑏 𝜖 ℎ 𝑎 + 𝛻ℎ 𝐼 ∙ (𝑏 − 𝑎)

ℎ 𝑥

𝑥𝑎

Within I, ℎ 𝑥 is surrounded
by the steepest slope and
the most moderate slope

that passes (𝑎, ℎ 𝑎)

𝐼

ℎ 𝑎

Step 3. Refinement by Mean Value Theorem 80

From ℎ 𝑏 𝜖 ℎ 𝑎 + 𝛻ℎ 𝐼 ∙ 𝑏 − 𝑎 ,

by replacing ℎ 𝑥 with 𝑓 𝑡, 𝜀 , we obtain

𝑓 𝑡, 𝜀 𝜖 𝑓 𝑇𝑚, 𝜀𝑚 +
𝜕𝑓 𝑇, −1, 1

𝜕𝑡
𝑡 − 𝑇𝑚 +

𝜕𝑓 𝑇, −1, 1

𝜕𝜀
(𝜀 − 𝜀𝑚)

= 𝑓 𝑇𝑚, 0 +
𝜕𝑓 𝑇, −1, 1

𝜕𝑡
𝑡 − 𝑇𝑚 +

𝜕𝑓 𝑇, [−1, 1]

𝜕𝜀
𝜀

=: 𝐹(𝑡, 𝜀)
Evaluated to intervals

𝑇𝑚 is midpoint of T

𝜀𝑚 = 0 is midpoint of 𝜀

remaining symbols

Step 3. Refinement by Mean Value Theorem 81

From ℎ 𝑏 𝜖 ℎ 𝑎 + 𝛻ℎ 𝐼 ∙ 𝑏 − 𝑎 ,

by replacing ℎ 𝑥 with 𝑓 𝑡, 𝜀 , we obtain

𝑓 𝑡, 𝜀 𝜖 𝑓 𝑇𝑚, 𝜀𝑚 +
𝜕𝑓 𝑇, −1, 1

𝜕𝑡
𝑡 − 𝑇𝑚 +

𝜕𝑓 𝑇, −1, 1

𝜕𝜀
(𝜀 − 𝜀𝑚)

= 𝑓 𝑇𝑚, 0 +
𝜕𝑓 𝑇, −1, 1

𝜕𝑡
𝑡 − 𝑇𝑚 +

𝜕𝑓 𝑇, [−1, 1]

𝜕𝜀
𝜀

=: 𝐹(𝑡, 𝜀)

Zero-crossing of 𝐹(𝑡, 𝜀) is computed analytically

Evaluated to intervals

𝑇𝑚 is midpoint of T

𝜀𝑚 = 0 is midpoint of 𝜀

Step 4. Compute parametrized zero-crossing 82

Zero crossing of 𝐹(𝑡, 𝜀) is

𝑡 = −
𝑓𝜕𝜀

𝑓𝜕𝑡
・𝜺 + 𝑇𝑚 −

𝑓 𝑇𝑚,0

𝑓𝜕𝑡

Refined solution
Interval Newton

abbreviation of
𝜕𝑓 𝑇,[−1,1]

𝜕𝑡

The solution preserves

the linear term of 𝜀

For System of Inequalities 83

If guards are described by inequalities,
we compute zero-crossings of each atomic condition

Guard : 𝑓1 𝑡 ≥ 0 ∧ 𝑓2 𝑡 ≥ 0 ∧ 𝑓3 𝑡 ≥ 0

𝑡

: zero-crossings
: time of event

The earliest time when

whole guard is satisfied

Evaluation by Examples

 Compared with naive interval arithmetic
 Preserve 6 symbolic parameters (4 for water level +

derivatives, time, additional)

84

Water Level Control

𝑡

𝑥1, 𝑥2

Error width of Water Level Control

 Error width converged in the proposed method

85

Execution time of Water Level Control

 Execution time is longer than naive interval arithmetic,
but did not explode

86

Bouncing Ball on Sine Wave

 Compared with naive interval arithmetic
 Preserved {5, 9, 13} parameters

87

𝑥

𝑦 Trajectory of particle

Sine-shaped floor

Error width of Bouncing Ball 88

1E-15

1E-12

1E-09

0.000001

0.001

1

1000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Su
m

 o
f

Er
ro

r
W

id
th

Step Number

Newton & Interval Affine & Newton & Mean e5

Affine & Newton & Mean e9 Affine & Newton & Mean e13

 Compared with naive interval arithmetic

Execution time of Bouncing Ball 89

0

5

10

15

20

25

30

1 4 7 10 13 16

Ex
ec

u
ti

o
n

 T
im

e(
s)

Step Number

Newton & Interval Affine & Newton & Mean e5

Affine & Newton & Mean e9 Affine & Newton & Mean e13

 Tradeoff between error width and execution time

Time for Q&A 90

Thanks for the attention!

