
GCM 2021
Graph Computation Models

12th International Workshop

Pre-Proceedings

Berthold Hoffmann and Mark Minas, Editors

Bremen, München, June 2021



ii

Table of Contents

Session 1: Grammars and Term Rewriting

Tikhon Pshenitsyn.
Grammars Based on a Logic of Hypergraph Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Roy Overbeek and Jörg Endrullis.
From Linear Term Rewriting to Graph Rewriting with Preservation of Termination . . . . . 27

Session 2: Applications

Nicolas Behr, Bello Shehu Bello, Sebastian Ehmes, and Reiko Heckel.
Stochastic Graph Rewriting For Social Network Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fabrizio Romano Genovese, Jelle Herold, Fosco Loregian, and Daniele Palombi.
A Categorical Semantics for Hierarchical Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Okan Özkan and Nick Würdemann.
Resilience of Well-structured Graph Transformation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Session 3: Programming

Naoki Yamamoto and Kazunori Ueda.
Engineering Grammar-based Type Checking for Graph Rewriting Languages . . . . . . . . . . . 93

Brian Courtehoute and Detlef Plump.
A Small-Step Operational Semantics for GP 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



iii

Preface

This volume contains the proceedings of the Twelfth International Workshop on Graph Com-
putation Models (GCM 2021)1. Due to the restrictions related to Covid-19, GCM 2021 will be
held as an online workshop on June 22, 2021.
Graphs are common mathematical structures that are visual and intuitive. They constitute a
natural and seamless way for system modelling in science, engineering and beyond, including
computer science, biology, business process modelling, etc. Graph computation models con-
stitute a class of very high-level models where graphs are first-class citizens. The aim of the
International GCM Workshop series is to bring together researchers interested in all aspects of
computation models based on graphs and graph transformation. It promotes the cross-fertilizing
exchange of ideas and experiences among senior and young researchers from the different com-
munities interested in the foundations, applications, and implementations of graph computation
models and related areas.
Previous editions of GCM series were held in Natal, Brazil (2006), Leicester, UK (2008), En-
schede, The Netherlands (2010), Bremen, Germany (2012), York, UK (2014), L’Aquila, Italy
(2015), Wien, Austria (2016), Marburg, Germany (2017), Toulouse, France (2018), Eindhoven,
The Netherlands (2019), and online (2020).
These proceedings contain seven accepted papers. All submissions were subject to careful refer-
eeing. The topics of accepted papers range over a wide spectrum, including theoretical aspects of
graph transformation, verification and parsing techniques as well as application issues of graph
computation models. Selected papers from these proceedings will be published online by Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS, http://www.eptcs.org/). We
would like to thank all the people who contributed to the success of GCM 2021, especially the
Program Committee and the additional reviewers for their valuable contributions to the selection
process, as well as the contributing authors without whom this volume would not exist.

June 15, 2021 Berthold Hoffmann and Mark Minas
Program chairs of GCM 2021

1GCM 2021 web site: https://sites.google.com/view/gcm2021/

http://www.eptcs.org/
https://sites.google.com/view/gcm2021/
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Grammars Based on a Logic of Hypergraph Languages

Tikhon Pshenitsyn
Department of Mathematical Logic and Theory of Algorithms

Faculty of Mathematics and Mechanics
Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

*

tpshenitsyn at lpcs.math.msu.su

The hyperedge replacement grammar (HRG) formalism is a natural and well-known generalization
of the context-free grammar. HRGs inherit a number of properties of context-free grammars, e.g.
the pumping lemma. This lemma turns out to be a strong restriction in the hypergraph case: e.g. it
implies that languages of unbounded connectivity cannot be generated by HRGs. We introduce a for-
malism that turns out to be more powerful than HRGs while having the same algorithmic complexity
(NP-complete). This formalism is called hypergraph Lambek grammars; such grammars are based
on the hypergraph Lambek calculus, which may be considered as a logic of hypergraph languages.
We explain the underlying principles of hypergraph Lambek grammars, establish their basic proper-
ties, and show some languages of unbounded connectivity that can be generated by them (e.g. the
language of all graphs, the language of all bipartite graphs, the language of all regular graphs).

1 Introduction: Productions vs Categories

Formal language theory is an area at the intersection of linguistics, logic, programming, mathematics
etc., which studies an issue of how complex, unboundedly large but in some sense regular families of
objects (strings, terms, graphs, pictures, ...) can be described using some kind of finite-sized mechanism.
There exist numerous kinds of formal grammars based on different principles. For instance, the standard
context-free grammar approach deals with strings; it includes terminal and nonterminal alphabets, the
start nonterminal symbol S, and the list of productions of the form X → α , which allow one to replace
the nonterminal symbol X by the string α .
Example 1. Look at the following “linguistic” example (which is extremely primitive from the linguistic
point of view):

Productions: S→ NP sleeps NP→ the N N→ cat
Derivation: S ⇒ NP sleeps ⇒ the N sleeps ⇒ the cat sleeps

The production [S → NP sleeps] is lexicalized; that is, there is exactly one terminal object (sleeps 
here) in its right-hand side. Let us transform it as follows: sleeps . NP\S. The . sign is to be read as 
“is of the type”, and NP\S is the type of such objects u that, whenever we add an object v of the type 
NP (NP stands for noun phrase) to the left of u, vu forms an object of the type S (S stands for sentence). 
Therefore, sleeps . NP\S means that the verb sleeps is such an object that whenever a noun phrase 
(singular) appears to its left, they together form a sentence. This is correct, to a first approximation: the 
cat sleeps, Helen sleeps, a green colorless idea sleeps etc. are correct English sentences. Similarly, we 
can transform the production NP → the N into a correspondence: the . NP/N (N stands for nouns that

*The study was funded by RFBR, project number 20-01-00670 and by the Interdisciplinary Scientific and Educational 
School of Moscow University “Brain, Cognitive Systems, Artificial Intelligence”. The author is a Scholarship holder of “BA-
SIS” Foundation.
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Grammars Based on a Logic of Hypergraph Languages

do not represent a specific object but rather represent a class of objects). Note that the direction of the
division is different from the previous one. The following reduction laws hold: the left one A,A\B→ B,
and the right one B/A,A→ B. The type A/B (B\A) can be understood as the type of functions that take
an argument of the type B from the right (from the left resp.) and return a value of the type A.

In linguistics, however, it is not enough to have the above reduction laws to describe language phe-
nomena of interest. E.g. sometimes it is useful to have the rule NP→ S/(NP\S) or A/B,B/C→ A/C.
Besides, there is a need for an operation that would store pairs of units of certain types. E.g. when we
consider sentences like Tim gave the lemon to Melany and the lime to Amelie, we would like to assign
the type ((NP ·PP)\(NP ·PP))/(NP ·PP) to the word and (where PP is the type of prepositional phrases
with to: to Melany, to Amelie) since it receives a pair consisting of a noun phrase and a prepositional
phrase from the right, and a similar pair from the left. A ·B is the type of pairs uv such that u is of the
type A, and v is of the type B; therefore, A ·B works as concatenation.

The above connectives \, ·,/ belong to the Lambek calculus (L) — a logical calculus introduced in
[7]. Types in the Lambek calculus are built from primitive types p1, p2, . . . ∈ Pr using \, ·,/. We focus
on the Lambek calculus in the Gentzen style; this means that it deals with sequents, which are structures
of the form A1, . . . ,An→ A for Ai, A being types. The calculus has one axiom and six inference rules of
L:

A→ A
(Ax)

Π→ A Γ,B,∆→C
Γ,Π,A\B,∆→C

(\→)
A,Π→ B
Π→ A\B (→\) Γ,A,B,∆→C

Γ,A ·B,∆→C
(· →)

Π→ A Γ,B,∆→C
Γ,B/A,Π,∆→C

(/→)
Π,A→ B
Π→ B/A

(→ /) Π→ A Ψ→ B
Π,Ψ→ A ·B (→ ·)

Hereinafter, primitive types are denoted by small Latin letters (in particular, from now on we write s
instead of S, np instead of NP etc.), types are denoted by capital Latin letters, and sequences of types are
denoted by capital Greek letters; besides, Π,Ψ above are nonempty. A sequent Π→ A is called derivable
in L (denoted L `Π→ A) if it can be obtained from axioms using rules.
Example 2. The following sequents are derivable in L (their derivations are presented below them):

• np/n,n,np\s→ s; • np→ s/(np\s); • p→ (p ·q)/q.

s→ s
np→ np n→ n

np/n,n→ np
(/→)

np/n,n,np\s→ s
(\→)

s→ s np→ np
np,np\s→ s

(\→)

np→ s/(np\s) (→ /)

p→ p q→ q
p,q→ p ·q (→ ·)

p→ (p ·q)/q
(→ /)

Summing up the above discussion, we note that the Lambek calculus, which has an algebraic and
logical nature, can be used as a grammar formalism: a grammar is a correspondence between terminal
objects and types. The intuition of the Lambek calculus types is formalized by the following

Definition 1. Given an alphabet Σ, we call any function w : Pr →P(Σ∗) a valuation; this function
assigns a formal language to each primitive type. It can be extended to types and sequents according to
principles stated above; namely, w is defined as follows:

1. w(B\A) = {u ∈ Σ∗ | ∀v ∈ w(B) vu ∈ w(A)};
2. w(A/B) = {u ∈ Σ∗ | ∀v ∈ w(B) uv ∈ w(A)};
3. w(A ·B) = {uv | u ∈ w(A),v ∈ w(B)};

4. w(A1, . . . ,An) = w(A1) · . . . · w(An) where
w(A) ·w(B) = w(A ·B);

5. w(Π→A) is true if and only if w(Π)⊆w(A).

2
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Pentus [9] proved that L ` Π→ A if and only if w(Π→ A) is true for all valuations w. This allows
us to call the Lambek calculus the logic of formal string languages in the sense that it describes all the
true facts about formal languages in the signature \, ·,/,⊆ and only them.

It is often important to work with more complex structures than strings. This is the reason why a
wide variety of extensions of generative grammars to terms, graphs etc. has been introduced. In this
paper, we focus on a particular approach called hyperedge replacement grammars (HRGs). A survey on
HRGs can be found in [3, 5]; in this paper, we mainly follow the definitions and notation from [3]. We
chose HRGs as the basis for our studies since they are very close to context-free grammars in the sense
of definitions, underlying mechanisms and properties. Our main goal is to extend the Lambek calculus
and Lambek grammars to hypergraphs in a natural way and to study the resulting notions.

In Section 2, we define fundamental notions regarding hypergraphs and hyperedge replacement. In
Section 3, we introduce the hypergraph Lambek calculus extending notions of types, sequents, axioms
and rules. The formal definition of hypergraph Lambek grammars will be given in Section 4. There we
also study power of these grammars; it turns out that they can generate more languages than HRGs, e.g.
the language of all graphs, the language of all bipartite graphs, the language of all regular graphs. Since
the membership problem for HL-grammars is NP-complete and since they generate all isolated-node
bounded languages generated by HRGs, they can be considered as an attractive alternative to HRGs. In
Section 6, we conclude and outline further research directions regarding HL and HL-grammars.

2 Preliminaries

Formal definitions of hypergraphs and of hyperedge replacement are given in this section according to
the handbook chapter [3] on HRGs.

N includes 0. Σ∗ is the set of all strings over the alphabet Σ including the empty string Λ. Σ~ is the
set of all strings consisting of distinct symbols. The length |w| of the word w is the number of symbols
in w. The set of all symbols contained in a word w is denoted by [w]. If f : Σ→ ∆ is a function from one
set to another, then it is naturally extended to a function f : Σ∗→ ∆∗ ( f (σ1 . . .σk) = f (σ1) . . . f (σk)).

Let C be some fixed set of labels with the ranking function rank : C→ N. In [3], this function is
denoted as type instead of rank; here we use rank to avoid confusion with types of the calculus.

Definition 2. A hypergraph G over C is a tuple G = 〈V,E,att, lab,ext〉 where V is a set of nodes, E is a
set of hyperedges, att : E → V~ assigns a string (i.e. an ordered set) of attachment nodes to each edge,
lab : E→C labels each edge by some element of C in such a way that rank(lab(e)) = |att(e)| whenever
e ∈ E, and ext ∈V~ is a string of external nodes.

Components of a hypergraph G are denoted by VG,EG,attG, labG,extG resp.

In the remainder of the paper, hypergraphs are usually called just graphs, and hyperedges are called
edges. Usual graphs (with hyperedges of rank 2) are called binary graphs. The set of all graphs with
labels from C is denoted by H (C). Graphs are usually named by letters G and H.

In drawings of graphs, black dots correspond to nodes, labeled squares correspond to edges, att is
represented by numbered lines, and external nodes are depicted by numbers in brackets. If an edge has
exactly two attachment nodes, it can be depicted by an arrow (which goes from the first attachment node
to the second one).

Note that Definition 2 implies that attachment nodes of each hyperedge are distinct, and so are exter-
nal nodes. This restriction can be removed (i.e. we can consider graphs with loops), and all definitions
will be preserved; however, in this paper, we stick to the above definition.
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Definition 3. The function rankG (or rank, if G is clear) returns the number of nodes attached to an edge
in a graph G: rankG(e) := |attG(e)|. If G is a graph, then rank(G) := |extG|.
Definition 4. A sub-hypergraph (or just subgraph) H of a graph G is a hypergraph such that VH ⊆ VG,
EH ⊆ EG, and for all e ∈ EH attH(e) = attG(e), labH(e) = labG(e).

Definition 5. If H = 〈{vi}n
i=1,{e0},att, lab,v1 . . .vn〉, att(e0) = v1 . . .vn and lab(e0) = a, then H is called

a handle. In this work, we denote it by a•.

Definition 6. An isomorphism between graphs G and H is a pair of bijective functions E : EG → EH ,
V : VG→VH such that attH ◦E = V ◦attG, labG = labH ◦E , V (extG) = extH .

In this work, we do not distinguish between isomorphic graphs.
Strings can be considered as graphs with the string structure. This is formalized in

Definition 7. A string graph induced by a string w = a1 . . .an is a graph of the form 〈{vi}n
i=0,{ei}n

i=1,att,
lab,v0vn〉 where att(ei) = vi−1vi, lab(ei) = ai. It is denoted by w•.

We additionally introduce the following definition (not from [3]):

Definition 8. Let H ∈H (C) be a graph, and let f : EH →C be a function. Then f (H) = 〈VH ,EH ,attH ,
lab f (H),extH〉 where lab f (H)(e) = f (e) for all e in EH . It is required that rank(labH(e)) = rank( f (e))
for e ∈ EH .

If one wants to relabel only one edge e0 within H with a label a, then the result is denoted by H[e0 := a].

Definition 9. Hyperedge replacement is defined in [3], and it plays a fundamental role in hyperedge
replacement grammars. The replacement of an edge e0 in G with a graph H can be done if rank(e0) =
rank(H) as follows:

1. Remove e0;

2. Insert an isomorphic copy of H (H and G have to consist of disjoint sets of nodes and edges);

3. For each i, fuse the i-th external node of H with the i-th attachement node of e0.

The result is denoted by G[e0/H].

It is known that if several edges of a graph are replaced by other graphs, then the result does not
depend on the order of replacements; moreover the result is not changed if replacements are done simul-
taneously (see [3]). The following notation is in use: if e1, . . . ,ek are distinct edges of a graph H and
they are simultaneously replaced by graphs H1, . . . ,Hk resp. (this requires rank(Hi) = rank(ei)), then the
result is denoted H[e1/H1, . . . ,ek/Hk].

3 Hypergraph Lambek Calculus

HRGs can be used to describe linguistic structures as well as context-free grammars since linguistic
objects often have an underlying structure, which is more complex than a string. One of the recently
studied applications is using HRGs for abstract meaning representation (see e.g. [2, 4, 6]): the meaning
of a sentence is represented by a graph. In [1], HRGs are used for modelling nonprojective dependencies
in Dutch. Another example where graph structures occur in linguistics is syntactic trees. Given a context-
free grammar, it is natural to represent an internal hierarchical structure of constituents of a generated
sentence by a tree.
Example 3. The HRG HGr = 〈{S,NP,N},{the,cat,sleeps, l,r},P,S〉 with the list of productions P de-
fined below generates the graph Syntree:

4
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S → NP
(1)

sleeps1 1l r

NP → the
(1)

N
1 1l r

N → (1) cat
1

Syntree =

(1)

sleeps

the cat

1

1 1

l r

l r

Syntree is a simplified syntactic tree for the sentence the cat sleeps; l and r distinguish left and right
directions in the tree.

Since there are such cases in linguistics where we need to work with graphs rather than with strings,
we would like to generalize the categorial point of view discussed in Section 1 to hypergraphs. Our first
attempt was a generalization of basic categorial grammars to hypergraphs; the resulting formalism called
hypergraph basic categorial grammar was introduced at ICGT 2020 [10]. However, this formalism did
not significantly improve our insight since most results were proved in the same way as for strings;
in particular, such grammars generate the same set of languages as HRGs (with some nonsubstantial
exceptions related to the number of isolated nodes). In this paper, we aim to go further and to discuss
how the Lambek calculus along with its grammars can be generalized to hypergraphs. Note that, in the
string case, Lambek grammars (i.e. grammars based on the Lambek calculus) are equivalent to context-
free grammars and to basic categorial grammars (this nontrivial result was proved in [8]).

It is known that strings can be represented as string graphs, e.g. (1) (2)
the cat sleeps

represents the string the cat sleeps (this graph is denoted as (the cat sleeps)•). The production S →
NP sleeps then is transformed into the graph production S→ (NP sleeps)•. We want to transform this
production into a correspondence as it was done in Section 1; there we “took out” the terminal unit sleeps
from the right-hand side, and assigned the type NP\S to it. Now, we are going to do the same operation
but we shall mark an edge, from which we took out the label sleeps, by a special $ symbol:

S→ (NP sleeps)•  sleeps . S/(NP $)•

In general, $ denotes the hyperedge, from which we took out its label. Similarly, the production [NP→
the N] is transformed as follows: the . NP/($ N)•. Note that now we do not need two divisions \ and /
anymore since the difference between them is now expressed by the position of the $-labeled edge. In
order to distinguish the string divisions and the new graph division, and also to stress that the latter is
undirected, we write A÷D instead of A/D for the latter.

The conversion of a production into a correspondence between a terminal unit (a symbol, a label, a
word) and a type requires that there is exactly one terminal unit in the right-hand side of the production.
This property is called lexicalized normal form, or weak Greibach normal form. Note that, if we have
e.g. a production S→ (ABaCD)• where S,A,B,C,D are nonterminal, and a is terminal, then we can
also use the above $-notation and write a . S÷ (AB$CD)•. As in Section 1, this means that a is such
an object that whenever objects of types A, B, C and D are placed instead of corresponding edges in the
graph (AB$CD)•, and a is placed on the $-labeled edge, the resulting structure forms an object of the
type S. We can proceed similarly with an arbitrary hypergraph production, if the grammar is in the weak
Greibach normal form. This is the main idea of hypergraph basic categorial grammars. However, as in
the string case, we would like to go further and to consider more complex types; besides, we would also
like to generalize the operation A ·B. This results in the following

5
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Definition 10. The set Tp(HL) of types of the hypergraph Lambek calculus HL is defined inductively as
the least set satisfying the following conditions:

1. Primitive types Pr are types. Pr is a countable set along with the function rank : Pr→N such that
for each n there are infinitely many types p ∈ Pr such that rank(p) = n.

2. Let N (“numerator”) be a type. Let D (“denominator”) be a hypergraph such that exactly one of its
hyperedges (call it e0) is labeled by $, and the other hyperedges (possibly, there are none of them)
are labeled by elements of Tp(HL); let also rank(N) = rank(D). Then T = (N÷D) is a type, and
rank(T ) := rankD(e0).

3. Let M be a hypergraph such that all its hyperedges are labeled by types from Tp(HL) (possibly,
there are no hyperedges at all). Then T =×(M) is also a type, and rank(T ) := rank(M).

Below we often write N÷ (D) or N÷D instead of (N÷D). Paragraph 2 generalizes the concept of
÷ explained earlier: N÷D is the type of such hypergraphs H that, if we replace the $-labeled edge in
D by H and for all the remaining edges ei, i > 0, which are labeled by some types Ti, we replace them
by hypergraphs Hi, which are of types Ti, then we obtain a hypergraph of the type N. In particular, this
explains why we require rank(N) = rank(D) and rank(N÷D) = rankD(e0).

Example 4. The first production from Example 3 can be transformed into the following correspondence:

sleeps . s÷

(
np

(1)
$

1 1pl pr

)
(1)

Here pl , pr are primitive types introduced to deal with special “technical” labels l (r resp.). According to
our general understanding of types, one may say that l (r) is of the type pl (pr resp.). Now, (1) means that

sleeps is such an object that, if we place it instead of $ within the graph np
(1)

$
1 1pl pr

,
and we place any object (syntactic tree) of the type np instead of the np-labeled edge, then we obtain an
object of the type s (we also need to replace pl by l and pr by r).

The operation ×(M) can be called a hypergraph product, or a hypergraph concatenation. Its general
semantics it the following: if EM = {m1, . . . ,ml}, labM(mi) = Ti, and Hi is a hypergraph of the type Ti

(i = 1, . . . , l), then the hypergraph M[H1/m1, . . . ,Hl/ml] is a hypergraph of the type ×(M). Thus, ×(M)
is the type of all substitution instances of M.

Example 5. If str is the primitive type of all string graphs labeled by the blank symbol ∗, then the type

×

 (1) (2)

str

str

 is the type of all graphs consisting of two parallel strings with the common start

and finish nodes, e.g. (1) (2) .

Moving away from the intuition of ÷ and ×, we would like to introduce a syntactic calculus, which
would work with types introduced in Definition 10 by means of axioms and rules. We expect that this
calculus should generalize the Lambek calculus in the Gentzen style introduced in Section 1. This is
done in our preprint [12]; in this paper, we only introduce the axiom and rules of the hypergraph Lambek
calculus (HL) without a detailed discussion of why they actually generalize those of L.

Definition 11. A hypergraph sequent is a structure of the form H → A, where A ∈ Tp(HL) is a type,
H ∈H (Tp(HL)) is a hypergraph labeled by types and rank(H) = rank(A). H is called the antecedent
of the sequent, and A is called the succedent of the sequent.

6

GCM 2021 Pre-Proceedings



T. Pshenitsyn

Remark 1. Returning to our intuition, H→ A could be understood as the statement “each hypergraph of
the type ×(H) is also of the type A”.

The hypergraph Lambek calculus HL deals with hypergraph sequents and explains, which of them
are derivable using axioms and rules. The only axiom of HL is the following: p•→ p, p∈ Pr (p• here
is the p-handle). Rules are presented below along with some simple examples.

1. Rule (÷→). Let N÷D be a type and let ED = {d0,d1, . . . ,dk} where lab(d0) = $, lab(di) = Ti for
i ≥ 1. Let H → A be a hypergraph sequent and let e ∈ EH be labeled by N. Let finally H1, . . . ,Hk
be hypergraphs labeled by types. Then the rule (÷→) is the following:

H→ A H1→ T1 . . . Hk→ Tk

H[e/D][d0 := N÷D][d1/H1, . . . ,dk/Hk]→ A
(÷→)

This rule explains how a type with division may appear in the antecedent of a sequent: we replace
a hyperedge e by D, put a label N ÷D instead of $ and replace the remaining labels of D by
corresponding antecedents.
Example 6. Consider the following rule application with Ti being some types and with T being
equal to q÷ (T2$T3)

• (w• here denotes a string graph induced by w):

(pq)•→ T1 (rs)•→ T2 (tu)•→ T3

(prsT tu)•→ T1
(÷→)

2. Rule (→÷). Let F → N÷D be a hypergraph sequent; let e0 ∈ ED be labeled by $. Then

D[e0/F ]→ N
F → N÷D (→÷)

This rule is understood as follows: if there are such hypergraphs D,F and such a type N that in a
sequent H→ N the hypergraph H equals D[e0/F ] and H→ N is derivable, then F→N÷D is also
derivable.
Example 7. Consider the following rule application where N equals ×((pqr)•) (here we draw
string graphs instead of writing w• to visualize the rule application):

(1) (2)
p q r → N

(1) (2)
p q → N÷

(
(1) (2)

$ r
) (→÷)

3. Rule (×→). Let G→ A be a hypergraph sequent and let e ∈ EG be labeled by ×(F). Then

G[e/F ]→ A
G→ A

(×→)

This rule is formulated from bottom to top as the previous one. Intuitively speaking, there is a sub-
graph of an antecedent in a premise, and it is “compressed” into a single ×(F)-labeled hyperedge.
Example 8. Consider the following rule application where U equals ×((pqrs)•):

(1) (2)
p q r s →U

(1) (2)
p ×((qr)•) s →U

(×→)

7
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4. Rule (→×). Let ×(M) be a type and let EM = {m1, . . . ,ml}. Let H1, . . . ,Hl be graphs. Then

H1→ lab(m1) . . . Hl → lab(ml)

M[m1/H1, . . . ,ml/Hl]→×(M)
(→×)

This rule is quite intuitive: several sequents can be combined into a single one via some hypergraph
structure M.
Example 9. Consider the following rule application with Ti being some types:

(pq)•→ T1 (rs)•→ T2 (tu)•→ T3

(pqrstu)•→×((T1T2T3)
•)

(→×)

Definition 12. A hypergraph sequent H→ A is derivable in HL (HL `H→ A) if it can be obtained from
axioms using rules of HL. A corresponding sequence of rule applications is called a derivation and its
representation as a tree is called a derivation tree.

Example 10. Let rank(s) = rank(np) = rank(n) = 1, rank(pl) = rank(pr) = 2, and let

V = s÷

(
np

(1)
$

1 1pl pr

)
; Adj = np÷

(
$

(1)
n1 1pl pr

)
.

Then the following is the derivation of the below sequent:

s•→ s np•→ np p•l → pl p•r → pr

(1)

Vnp
11

pl pr

→ s

(÷→)

n•→ n p•l → pl p•r → pr

(1)

V

Adj n

1

1 1

pl pr

pl pr
→ s

(÷→)

In [12], we show that L and its different variants can be embedded in HL; we also show that certain
structural properties of L can be straightforwardly lifted to HL. Hence HL can be considered as an
appropriate extension of the Lambek calculus to hypergraphs, as desired. Note that introduction of the
division ÷ and of the product × was motivated by the intuitive understanding of types as of families
of hypergraphs (i.e. hypergraph languages). Although HL was defined as a purely syntactic formalism
that formally explains how hypergraph sequents can be rewritten, one would expect that hypergraph
languages can be considered as models of HL. In Section 5, we formally define language models (L-
models in short) for HL in a way similar to how we introduced the notion of valuation w in Section 1.
We establish correctness of HL with respect to L-models, and completeness of its ×-free fragment.

The following statements can be proved in a similar way as for strings:

Theorem 1 (cut elimination). If H → A and G→ B are derivable in HL, and e0 ∈ EG is labeled by A,
then G[e0/H]→ B is also derivable in HL.

8
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Proposition 1 (reversibility of (×→) and (→÷)).

1. If HL ` H→C and e0 ∈ EH is labeled by ×(M), then HL ` H[e0/M]→C.

2. If HL ` H→ N÷D and e0 ∈ ED is labeled by $, then HL ` D[e0/H]→ N.

These statements will be used in proofs of some results in this paper.
Although in this paper we devote a great deal of attention to the hypergraph Lambek calculus itself

and to its model-theoretic motivation, our main goal is to study the concept of hypergraph Lambek
grammars (HL-grammars in short). They are defined in a similar way to Lambek grammars (in the string
case). A grammar is essentially a finite set of correspondences of the form a . T where a is a terminal
label, and T is a type; besides, in a grammar some type S (not necessarily primitive) is distinguished.
Then a hypergraph G belongs to the language generated by the grammar if we can replace labels of its
hyperedges by corresponding types (let us denote the resulting graph G′) and derive the sequent G′→ S
in HL. The formal definition of hypergraph Lambek grammars will be given in the next section.

4 Hypergraph Lambek Grammars and Their Power

Our goal in this section is to generalize the definition of Lambek grammars to hypergraphs. We consider
an alphabet Σ along with the function rank : Σ→ N.

Definition 13. A hypergraph Lambek grammar (HL-grammar) is a tuple HGr = 〈Σ,S,.〉 where Σ is a
finite set (alphabet), S ∈ Tp(HL) is a distinguished type, and . ⊆ Σ×Tp(HL) is a finite binary relation
such that a . T implies rank(a) = rank(T ).

Definition 14. The type set of an HL-grammar HGr = 〈Σ,S,.〉 is the set ts(HGr) = {T | ∃a∈ Σ : a . T}.

Definition 15. The language L(HGr) generated by a hypergraph Lambek grammar HGr = 〈Σ,S,.〉 is
the set of all hypergraphs G ∈H (Σ) for which a function fG : EG→ Tp(HL) exists such that:

1. labG(e) . fG(e) whenever e ∈ EG;

2. HL ` fG(G)→ S.

Example 11. The HL-grammar SGr = 〈{a,b},s,.〉 where s is primitive, and

• a . s÷ ($sp)• = Q,

• b . p, b . s

generates the language {(anbn+1)• | n ≥ 0}. For example, if one wants to check that G = (aabbb)•

belongs to L(SGr), he/she follows such steps:

1. Relabel each edge in G in such a way that each label is replaced by a type corresponding to it. We
do this as follows: G = (aabbb)• fG(G) = (QQspp)•.

2. Consider the sequent fG(G)→ s and derive it in HL:

s•→ s s•→ s p•→ p
(Qsp)•→ s

(÷→)
s•→ s p•→ p

(QQspp)•→ s
(÷→)

Now, notice the following: if a sequent G′ → s is derivable, and G′ is labeled only by types from the
type set of SGr, then each derivation of G′→ s consists only of applications of (÷→). The rule (÷→)

9

GCM 2021 Pre-Proceedings



Grammars Based on a Logic of Hypergraph Languages

consists of several replacements in the antecedent of a sequent, and hence the grammar SGr works in a
way similar to the hyperedge replacement grammar with the following set of productions:

S→ (aSP)• S→ b• P→ b•

Note that the conversion of this HRG back into SGr can be made according to the principles explained in
Section 3. The new grammar is actually a graph variant of a context-free grammar with the productions
S→ aSP,S→ b,P→ b, which, clearly, generates the language {anbn+1 | n≥ 0}.

The transformation considered in Example 4 and in Example 11 is possible, if there is exactly one
terminal label (say a) in a production; then we place $ instead of a, and establish a correspondence .
between a and a type made on the basis of this production.

Definition 16. An HRG HGr is in the weak Greibach normal form if there is exactly one terminal edge
in the right-hand side of each production.

Denote by isize(H) the number of isolated nodes in H.

Definition 17. A hypergraph language L is isolated-node bounded if there is a constant M > 0 such that
for each H ∈ L isize(H)< M · |EH |.

In [11] we prove the following

Theorem 2. For each HRG generating an isolated-node bounded language there is an equivalent HRG
in the weak Greibach normal form.

Using it, we can prove the following theorem applying standard techniques.

Theorem 3. For each HRG generating an isolated-node bounded language there is an equivalent HL-
grammar.

The proof of this theorem is placed in Appendix A. It is not, however, of interest in this paper; we for-
mulate this theorem here only to show the reader that HL-grammars are not weaker than HRGs (isolated-
node boundedness is a nonsubstantial limitation). Our objective now is to show that HL-grammars are
more powerful than HRGs; to do this, we will introduce several examples of grammars generating lan-
guages that can be generated by no HRGs.

4.1 All Binary Graphs

One of restrictions known for languages generated by HRGs is that they are of bounded connectivity (see
[3]); this follows from the pumping lemma (see [5], Chapter IV.2). Consequently, no HRG can generate
the set of all binary graphs (i.e. of usual graphs with edges of rank 2). This might seem unnatural because
HRGs represent a context-free formalism, and the language of all binary graphs seems to be very simple
and regular. Below we show that HL-grammars are powerful enough to generate such a language.

Consider the language L1 of all binary graphs without isolated nodes (the empty graph is not in-
cluded in L1 as well) over the alphabet {∗} (rank(∗) = 2) that are, besides, without external nodes. Con-
sequently, each graph in this language has at least two nodes. Let s, p be primitive types (rank(s) = 0,
rank(p) = 1). Let us define the following types:

Q1 = p, Q2 = p÷


(1)

$ p
1 1

 , Q3 = s÷

 $ p
1 1

 ;

10
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Mi j
11 =×


(1)

Qi

(2)

Q j

1 1

 , Mi
12 =×


(1)

Qi

(2)

1

 ,M j
21 =×


(1) (2)

Q j

1

 , M22 =×

(
(1) (2)

)
.

Consider a grammar HGr1 = 〈{∗},s,.〉 where ∗ . N whenever N ∈ {Mi j
11,M

i
12,M

j
21,M22|1≤ i, j ≤ 3}.

Theorem 4. L(HGr1) = L1.

Proof. To prove that L(HGr1) ⊆L1 it suffices to note that denominators of types in ts(HGr1) do not
contain isolated nodes; since isolated nodes may appear only after applications of rules (÷→) or (→×),
all graphs in L(HGr1) do not have them.

The other inclusion L(HGr1) ⊇ L1 is of central interest. We start with an example of a specific
derivation in this grammar. After, we provide the proof in a general case, but we suppose that this
example is enough to understand the construction of HGr1.

Example 12. Consider a binary graph

H = ∗
∗

∗

∗

In order to check that H belongs to L(HGr1) we relabel it by corresponding types as follows:

fH(H) = M32
11

M2
21

M22
M1

12

Then we check derivability of fH(H)→ s (see Figure 1).

In general, let H be in L1. Since there are no isolated nodes in H there exists a function h : VH → EH

such that h(v) is attached to v whenever v ∈ VH . We choose two arbitrary nodes vb (begin) and ve (end)
such that vb 6= ve. After that, we define a function c : VH →{1,2,3} as follows: c(vb) = 1, c(ve) = 3, and
c(v) = 2 whenever v 6∈ {vb,ve}.

Now we present a relabeling fH : EH → Tp(HL). Let e belong to EH and let attH(e) = v1v2.

• If h(v1) = h(v2) = e, then fH(e) := Mc(v1)c(v2)
11 ;

• If h(v1) = e,h(v2) 6= e, then fH(e) := Mc(v1)
12 ;

• If h(v1) 6= e,h(v2) = e, then fH(e) := Mc(v2)
21 ;

• If h(v1) 6= e,h(v2) 6= e, then fH(e) := M22.

We aim to check derivability of the sequent fH(H)→ s. Its derivation from bottom to top starts with
the rule (×→) applied |EH | times to all types in the antecedent. It turns out that, after such applications
of (×→), the antecedent of a sequent includes one edge labeled by Q1, one edge labeled by Q3, and the
remaining edges labeled by Q2; besides, for each node there is exactly one edge attached to it (this is
satisfied by the definition of the function h). Then we apply (again from bottom to top) the rule (÷→),
and using it we “reduce” the only Q1-labeled edge (recall that Q1 = p) with a Q2-labeled edge; after
this we obtain a new p-labeled edge and repeat the procedure. Thus we eliminate all nodes and edges
one-by-one. Finally, we obtain a graph with two nodes, with a Q3-labeled edge attached to the first one
and a p-labeled edge attached to the second one. Applying (÷→) once more, we “contract” Q3 with p
and obtain the sequent s•→ s, which is an axiom.
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s•→ s p•→ p

Q3 p1 1 → s
(÷→)

p•→ p

Q3 Q2 p1 1 1 → s
(÷→)

p•→ p

Q3 Q2 Q2 Q1
1 1 1 1 → s

(÷→)

Q3

Q2

Q2

M1
12

1

1

1 → s

(×→)

Q3

Q2

Q2

M22
M1

12

1

1

1 → s

(×→)

Q3

Q2

M2
21

M22
M1

12

1

1

→ s

(×→)

M32
11

M2
21

M22
M1

12

→ s

(×→)

Figure 1: Derivation of a sequent corresponding to a binary graph.
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Therefore, we have established that HL-grammars are stronger than HRGs and that they moreover
disobey the pumping lemma.

4.2 Bipartite graphs

Another example is the language L2 ⊆L1 of all bipartite binary graphs without isolated nodes.

Definition 18. A binary graph H is bipartite if its nodes can be divided into two disjoint subsets V1 and
V2 in such a way that each edge of H outgoes from a node belonging to V1 to a node belonging to V2.

Let us define the following types (where p,q are primitive, rank(p) = rank(q) = 1):

• R1(r) := r;

• R2(r) := r÷


(1)

$ r

1 1

;

• R3(r) := r÷


(1)

$ r
1 1

;

• R4(r) := r÷


(1)

$ r

1 1

r
1

;

• Mi j :=×


(1)

Ri(p)

(2)

R j(q)
1 1

 , 1≤ i, j≤ 4;

• S :=×
(

p q
1 1

)
.

We define HGr2 := 〈{∗},S,.〉 as follows: ∗ . Mi j for all 1≤ i, j ≤ 4.

Proposition 2. L2 = L(HGr2).

The proof of this proposition is given in Appendix B. It is not hard to straightforwardly show that
L2 ⊆ L(HGr2) by deriving sequents corresponding to graphs from L2. To prove the other inclusion, we
use Proposition 1 and then notice that there is no way for two hyperedges, one of which is labeled by
Ri(p) and the other one is labeled by R j(q), to be attached to the same node in the antecedent (to prove
this, it suffices to analyze variants of how the rule (÷→) can be applied).

4.3 Regular graphs

A less trivial example of a hypergraph language generated by a HL-grammar and by no HRGs is the
language of regular binary graphs.

Definition 19. A binary graph H is regular if there is an integer k ≥ 1 such that the indegree and the
outdegree of each node equals k.

Let L3 ⊆L1 be the language of all regular binary graphs (without the empty graph).

Theorem 5. L3 can be generated by some HL-grammar.

To prove this theorem, we need the following result proved in the paper accepted for ICGT 2021 (we
place this proof in Appendix C):

Theorem 6. If L1, . . . ,Lk are languages generated by some HRGs, then L1∩ . . .∩Lk can be generated by
some HL-grammar.

Less formally, this means that HL-grammars can generate finite intersections of languages generated
by HRGs.
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Definition 20. Let MS1, . . . ,MSn, n ≥ 1 be some multisets with elements from C′ ⊆ C (that is, they
are multisets of labels from C′). Let b ∈ C \C′ be some symbol with rank(b) = 2. We denote MSi =
{a1

i , . . . ,a
ki
i }, and rank(a j

i )= t j
i . A flowerbed F(MS1, . . . ,MSn,b) over C′ is the hypergraph 〈V,E,att, lab,ext〉

where

1. V = {v jk
i | i = 1, . . . ,n, j = 1, . . . ,ki, k = 1, . . . , t j

i −1}∪{u1, . . . ,un};

2. E = {e j
i | i = 1, . . . ,n, j = 1, . . . ,ki}∪{ f1, . . . , fn−1};

3. (a) att(e j
i ) = uiv

j1
i v j2

i . . .v j(t j
i −1)

i (if t j
i = 1, then att(e j

i ) = ui);
(b) att( fk) = vkvk+1;

4. (a) lab(e j
i ) = a j

i ;
(b) lab( fk) = b;

5. ext = Λ.

Definition 21. Given a multiset MS, |MS|a denotes the number of occurences of a in MS.

Proof (of Theorem 5). Let C′= {a,z}with rank(a)= 1, rank(z)= 3. We set Σ= {a,z,b}with rank(b)=
2. Let us introduce the following languages:

• L1 is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that |MS2k|a = |MS2k+1|a =
|MS2k|z = |MS2k+1|z for k = 1,2, . . .

• L2 is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that |MS2k−1|a =
|MS2k|a = |MS2k−1|z = |MS2k|z for k = 1,2, . . .

L1 and L2 can be generated by some HRGs (see Appendix D); thus, according to Theorem 6, L = L1∩L2
can be generated by an HL-grammar. Let us denote such a grammar HGr = 〈Σ,S,.〉: L(HGr) = L. Note
that L is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that |MSk|a = |MSk+1|a =
|MSk|z = |MSk+1|z for k = 1,2, . . . ,n−1.

Let us denote all types corresponding to a via . as Ai (i.e. a . Ai), all types corresponding to z as Z j,
and all types corresponding to b as Bk. Let

Ti j :=×


(1)

Ai

(2)

Z j
1 1

 , Ti jk :=×


(1)

Ai

(2)

Z j
1 1Bk

 .

Using these types we define an HL-grammar H̃Gr := 〈{∗},S, .̃〉 as follows: ∗ .̃ Ti j,Ti jk for all possible
i, j, k. We argue that L(H̃Gr) = L3. Indeed, H ∈ L(H̃Gr) if and only if there exists a relabeling fH such
that labH(e) .̃ fH(e), and HL ` fH(H)→ S. fH(H) consists of types Ti j and Ti jk, which are of the form
×(M). Using Proposition 1, we draw the conclusion that HL ` fH(H)→ S if and only if HL ` Ĥ → S
where Ĥ is obtained from fH(H) by replacing each hyperedge labeled by a type of the form×(M) by M.
Ĥ is labeled by types Ai, Z j, and Bk. Note that for all i, j,k Ai 6= Z j, Z j 6= Bk, Ai 6= Bk since type(Ai) = 1,
type(Bk) = 2, type(Z j) = 3. Let g : EĤ → Σ be such a function that g(e) = a if labĤ(e) = Ai, g(e) = b
if labĤ(e) = Bk, and g(e) = z if labĤ(e) = Z j. Since HL ` Ĥ → S, g(Ĥ) belongs to L(HGr) = L. To
complete the proof, observe that the number of a-labeled edges attached to a node in g(Ĥ) equals the
outdegree of this node in H, and the number of z-labeled edges attached to a node in g(Ĥ) equals the
indegree of this node in H; according to the definition of L, this number is the same for all nodes.

14

GCM 2021 Pre-Proceedings



T. Pshenitsyn

Formally, in the above reasonings we made a one-way transition when we introduced g; hence, we
only proved that H̃Gr generates regular binary graphs. However, given a regular binary graph H, we
can construct graphs of the form fH(H), Ĥ, and g(Ĥ) corresponding to it and then repeat the above
reasonings.

Remark 2. Consider the language L3 of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that
|MS1|a = n− 1. This language can also be generated by some HRG (this is left as an exercise to the
reader). If we defined L in the above proof as L1 ∩L2 ∩L3, then L(H̃Gr) would consist of all regular
binary graphs with n nodes such that the indegree and the outdegree of each node equals n−1. Note that
numbers of edges in graphs of L(H̃Gr) in such a case form the set

{
n(n−1)

2 | n≥ 2
}

, which grows with

the pace O(n2) (this violates the Linear-Growth theorem, see [5], Chapter IV.2).

5 Language Models for HL

Let us return to the model-theoretic point of view discussed in Sections 1 and 3. There we looked on
types of the Lambek calculus (either in its string or in its hypergraph versions) as hypergraph languages;
divisions and product were interpreted as operations on languages. In this section, we are going to
formalize this idea for HL in a way similar to that in Definition 1 and in Examples 4 and 5.
Definition 22. Given an alphabet Σ along with the function rank : Σ→ N, we call a function w : Pr→
P(H (Σ)) a valuation if for each p ∈ Pr there exists n ∈N such that rank(H) = n whenever H ∈ w(p).
This function assigns a hypergraph language to each primitive type. Its extension w is the following
function from the set of hypergraph types to P(H (Σ)):

1. Let N÷D be a type and let ED = {d0, . . . ,dk}, labD(d0)= $, labD(di)= Ti. Then w(N÷D) consists
of all graphs G such that D[d0/G,d1/H1, . . . ,dk/Hk] belongs to w(N) whenever H1 ∈ w(T1), ...,
Hk ∈ w(Tk).

2. Let ×(M) be a type and let EM = {m1, . . . ,ml}, labM(mi) = Ti. w(×(M)) consists of all graphs of
the form M[m1/H1, . . . ,ml/Hl] for all Hi ∈ w(Ti).

3. We additionally define w(H→ A) as the statement w(×(H))⊆ w(A).
Thus we defined models for the hypergraph Lambek calculus. Now we formulate some standard

model-theoretic results (their proof in the hypergraph case does not differ from that in the string case).
Theorem 7. If HL ` H→ A, then w(H→ A) is true for each valuation w.

This theorem is proved by a straightforward induction on length of a derivation. The other direction
(i.e. completeness) is an open question (in the string case, this direction was a hard open problem until it
was proved in [9]). We expect that it holds in the hypergraph case but we have no idea how to generalize
the proof from [9]. However, if we consider the product-free fragment of HL (that is, we will consider
types with ÷ only), then the completeness theorem can be easily proved using the canonical model.
Theorem 8. If w(H → A) is true for each valuation w, and types in H → A do not contain ×, then
HL ` H→ A.

Proof. Let us denote the fragment of HL, in which we consider only types without ×, as HL(÷). We
fix the alphabet Σ = Tp(HL(÷)) (i.e. types without × are now symbols of the alphabet) and introduce
a valuation w0 for all primitive types: w0(p) = {G ∈H (Σ) | HL ` G→ p}. Note that such a definition
of w0 can be considered not only for primitive types p but for all types T ∈ Tp(HL(÷)). We claim that
w0(T ) = w0(T ) for all such types; that is, the function w0 obtained from Definition 22 coincides with
w0. Indeed: if T = N÷D, labD(d0) = $, and labD(di) = Ti (i = 1, . . . ,k), then
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G ∈ w0(N÷D)⇔ HL ` G→ N÷D⇔ HL ` D[d0/G]→ N (see Proposition 1)⇔
⇔ ∀Hi : (HL ` Hi→ Ti, i = 1, . . . ,k) HL ` D[d0/G,d1/H1, . . . ,dk/Hk]→ N ⇔ G ∈ w0(N÷D).

The penultimate equivalence follows from the fact that HL ` T •i → Ti and from the cut elimination
Theorem 1. Since w0(H→ A) is true, w0(×(H))⊆ w0(A); H belongs to w0(×(H)) (HL ` H→×(H)),
hence H belongs to w0(A). By the definition of w0, this yields that HL ` H→ A.

Unfortunately, a similar proof does not work for HL with × (like in the string case). Thus, there
is much space for further investigations. Nevertheless, Theorem 7 and Theorem 8 partially justify the
periphrastic name of the hypergraph Lambek calculus given in the title: it is a logic of hypergraph
languages.

6 Conclusion

Hypergraph Lambek grammars is a logical formalism, which extends hyperedge replacement grammars.
It deals with hypergraph types and sequents, which have a model-theoretic semantics of hypergraph
languages. We showed that HL-grammars are more powerful than HRGs; in particular, they violate the
pumping lemma and the Linear-Growth theorem.

Note that the membership problem for HL-grammars is NP-complete: this follows from the fact that,
if H belongs to L(HGr) for HGr = 〈Σ,S,.〉, then this can be certified by a function fH and by a derivation
of fH(H)→ S. Description of fH and the derivation have polynomial size with respect to H and HGr,
hence the problem is in NP. It is NP-complete since HL-grammars can generate an NP-complete language
(which can be generated by some HRG without isolated nodes). Therefore, being equal in complexity to
HRGs, HL-grammars represent a promising instrument for generating hypergraph languages.

As is often the case, there are more questions than answers. Some of them are listed below:

1. Is it true that, if w(H→ A) is true for all valuations, then HL ` H→ A?

2. Do HL-grammars generate the language of (a) complete binary graphs? (b) planar binary graphs?
(c) directed acyclic binary graphs?

3. What string languages can be generated by HL-grammars?

4. Is the class of languages generated by HL-grammars closed under intersections?

5. What nontrivial upper bounds (like the pumping lemma for HRGs) exist for languages generated
by HL-grammars?

6. Can HL-grammars be embedded in some known kind of graph grammars?

We are interested in further and deeper study of generalizations of logical approaches and concepts to as
graphs; we think that this allows one to better understand the nature of the considered notions.
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Appendices
A Proof of Theorem 3

All the results proved in this section are presented in a paper accepted for ICGT 2021. 

Definition 23. A type A is called simple if one of the following holds:

• A is primitive;

• A =×(M), EM = {m1, . . . ,ml} and lab(m1), . . . , lab(ml) are simple;

• A = N÷D, ED = {d0, . . . ,dk}, lab(d0) = $, N is simple, and lab(d1), . . . , lab(dk) are primitive.

Firstly, let us prove the following

Theorem 9. Let HL ` H → P where H is labeled by simple types and P is either primitive or is of the
form ×(K) where all edge labels in K are primitive. Then there exists a simple derivation of H→ P, i.e.
such a derivation that

1. The rule (→×) either is not applied or is applied once to one of the leaves of the derivation tree.

2. In each application of (÷→), all the premises, possibly except for the first one, are of the form
q•→ q, q ∈ Pr.

3. If a sequent H ′→ p within the derivation tree contains a type of the form ×(M) in the antecedent,
then the rule, after which this sequent appears, must be (×→).

Proof. Firstly, note that if P =×(K), then the rule (→×) has to be applied one time in a derivation. Let
this be as follows (where EK = {k1, . . . ,km}):

G1→ labK(k1) . . . Gm→ labK(km)

K[k1/G1, . . . ,km/Gm]→×(K)
(→×)

A derivation of Gi→ labK(ki), i = 1, . . . ,m is a sequence of applications of rules (×→) and (÷→) only
since labK(ki) is primitive. Thus we can repeat this sequence of derivations within K[k1/G1, . . . ,km/Gm]→
×(K) from bottom to top for i = 1, i = 2, ..., i = m. After this we obtain the sequent K →×(K) and
now apply the rule (→×). Therefore, each derivation of H→ P can be remodeled in such a way that the
condition 3 is met. Let us further consider such a derivation (name it ∆).

Now let us prove that ∆ can be remodeled in such a way that a new one will satisfy conditions 2 and
3 as well. This is done by induction on length of ∆.

If H→ P is an axiom (particularly, P is primitive), then both requirements are satisfied.
If H contains an edge e0 labeled by a type ×(M), then we can derive a sequent H[e0/M]→ P (see

Proposition 1). Since length of a derivation equals the total number of symbols × and ÷ included in
types of an antecedent and a succedent, length of derivation of H[e0/M]→ P is less than that of H→ P;
thus we can apply the induction hypothesis and obtain a simple derivation for H[e0/M]→ P. The it
suffices to apply the rule (×→) to this sequent:

H[e0/M]→ P
H→ P (×→)

Hence we obtained a simple derivation for H→ P.
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Let H not contain types of the form ×(M). Then the last step of ane derivation must be of the form

G→ P H1→ lab(d1) . . . Hk→ lab(dk)

G[e/D][d0 := N÷D][d1/H1, . . . ,dk/Hk]→ P
(÷→)

where H = G[e/D][d0 := N÷D][d1/H1, . . . ,dk/Hk] (otherwise, if the last step is not (÷→), we have
H → P = K → ×(K), and this sequent obviously has a simple derivation). Applying the induction
hypothesis, we obtain that there are simple derivations for sequents Hi→ lab(di); each of such derivations
is a sequence of applications of the rules (÷→) and (×→). Now we construct a derivation of H → P
from bottom to top as follows: firstly, we repeat the simple derivation of H1 → lab(d1) (but now we
consider H1 to be a subgraph of H and disregard lab(di) in the succedent), then we repeat the simple
derivation of H2→ lab(d2) within H and so on until Hk→ lab(dk). Now we have a sequent of the form
G[e/D][d0 :=N÷D]→ P as a premise. Then we apply (÷→) to N÷D by “overlaying” the denominator
on edges of D; thus, each premise except for the first one is of the form lab(di)

•→ lab(di), and the first
one is G→ P. Now we can apply the induction hypothesis to G→ P, which shows that G→ P can also
be derived in the fashion stated in the lemma.

Now we proceed with the proof of Theorem 3.

Proof of Theorem 3. Let an HRG be of the form HGr = 〈N,Σ,P,S〉. Applying Theorem 2 we can assume
that HGr is in the weak Greibach normal form.

Consider elements of N as elements of Pr with the same function rank defined on them. Since
HGr is in the weak Greibach normal form, each production in P is of the form π = X → G where G
contains exactly one terminal edge e0 (say labG(e0) = a ∈ Σ). We convert this production into a type
Tπ :=X÷G[e0 := $]. Then we introduce the HL-grammar HGr′= 〈Σ,S,.〉where . is defined as follows:
a.Tπ . If G = a•, then we can simply write a.X instead.

The main objective is to prove that L(HGr) = L(HGr′). Firstly, we are going to prove that T • k⇒ H
for T ∈ N, H ∈H (Σ) only if HL ` f (H)→ T for some f : EH → Tp(HL) such that labH(e). f (e) for
all e ∈ EH . This is done by induction on k.

Basis. In such a case π = T → H belongs to P and EH = {e0}. Then we can derive HL ` H[e0 :=
S÷H[e0 := $]]→ T in one step using (÷→) (since |EH |= 1).

Step. Let the first step of the derivation be of the form T ⇒ G (π = T → G ∈ P) and let EG =
{e0, . . . ,en} where labG(e0) ∈ Σ and labG(ei) ∈ N otherwise. Let Gi ∈H (Σ) be a graph that is obtained
from Ti = labG(ei) in the derivation process (i = 1, . . . ,n). Note that H = G[e1/G1, . . . ,en/Gn]. By the
induction hypothesis, HL ` fi(Gi)→ Ti for such fi : EGi → Tp(HL) that labGi(e). fi(e). Then fi can be
combined into a single function f as follows: f (e) := fi(e) whenever e ∈ Gi and f (e0) := Tπ . Then we
construct the following derivation (recall that Tπ = T ÷G[e0 := $]):

T •→ T f1(G1)→ T1 . . . fn(Gn)→ Tn

(G[e0 := $])[e0 := Tπ ][e1/ f1(G1), . . . ,en/ fn(Gn)]→ T
(÷→)

This completes the proof since G[e0 := Tπ ][e1/ f1(G1), . . . ,en/ fn(Gn)] = f (H).
Secondly, we explain why L(HGr′)⊆ L(HGr). Note that types in the dictionary of HGr′ are simple;

thus for each derivable sequent of the form H → S over this dictionary we can apply Theorem 9 and
obtain a derivation where each premise except for, possibly, the first one is an axiom. Now we can
transform a derivation tree of HL into a derivation tree in the HRG HGr: each application of (÷→) such
that a type Tπ appears after it is transformed into an application of π in HGr. Formally, we have to use
induction again.
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B Proof of Proposition 2

Proof sketch. Let us prove that L2 ⊆ L(HGr2). Given a bipartite binary graph G ∈ L2, we call its nodes, 
from which edges outgo, out-nodes, and its nodes, to which edges arrive, in-nodes. Firstly, given an edge 
going from an out-node v1 to an in-node v2, we remove it, attach a hyperedge labeled by Ri(p) to v1, 
and attach a hyperedge labeled by R j(q) to v2 (for now, we do not choose i and j). Notice that, since 
G is bipartite, there is no node, to which hyperedges with labels including different primitive types are 
attached. Let us look at some former out-node, to which only hyperedges labeled by types of the form 
Ri(p) are attached now. We do the following:

1. Case 1: if only one hyperedge labeled by Ri(p) is attached to this node, then we do not choose i
yet.

2. Case 2: if there are two or more (say, k) hyperedges, then we label one of them by R1(p), (k−2)
ones by R2(p), but we do not choose a specific label for the remaining hyperedge yet.

Secondly, let us fix some numbering on former out-nodes. We look at the first out-node, and choose R1(p)
as a label for the only hyperedge without a fixed label, if Case 1 is the case for this node; otherwise, we
choose R2(p). As for the remaining out-nodes, we choose R3(p), if Case 1 is the case, and we choose
R4(p), if Case 2 is the case.

Thirdly, we perform a similar procedure with in-nodes (while replacing p by q everywhere). Finally,
we return at the first step of our procedure, and do the opposite: we combine each pair of hyperedges
labeled by Ri(p) and R j(q) into a type Mi j and put it as a new label for a corresponding edge of G (notice
that now i and j are defined). Thus, we have presented a relabeling fG : EG→ {Mi j | 1 ≤ i, j ≤ 4}. We
argue that HL ` fG(G)→ S. The above construction and the way we are going to prove this statement
can be understood with the use of the following

Example 13. Let G be the following bipartite binary graph:

G fG(G)

∗ ∗
∗

∗ M11 M12

M32
M43

fG(G) above is a picture of G after the relabeling defined above. Finally, a derivation of fG(G)→ S is
given in Figure 2.

The other direction of the proof is to show that HGr2 accepts only bipartite graphs. If a graph H
belongs to L(HGr2), then there exists a function fH such that labH(e). fH(e) and HL ` fH(H)→ S. We
notice that fH(H)→ S satisfies all the conditions of Theorem 9, and hence there exists a derivation of
this sequent meeting the following requirements:

1. The first part of a derivation (if we consider it from bottom to top) consists of applications of the
rule (×→) to all types in the antecedent.

2. The second part of a derivation consists of applications of the rule (÷→), in which all premises
except for the first one are axioms.

3. The third part of a derivation (from bottom to top) is one application of (→×); consequently, it is

applied to the sequent p q1 1 → S.
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p•→ p q•→ q

p

q

1

1

→ S

(→×)

q

p

R3(q)
1

1

1 → S

(÷→)

q•→ q

q

R2(q)

p

R3(q)
1

1

1

1 → S

(÷→)

q•→ q

q

R2(q)

R2(q)

p

R3(q)
1 1

1

1

1 → S

(÷→)

p•→ p

q

R2(q)

R2(q)

p R3(p)

R3(q)
1 1

1

1 1

1
→ S

(÷→)

p•→ p p•→ p

q

R2(q)

R2(q)

p p R4(p) R3(p)

R3(q)
1 1

1

1 1 1 1

1
→ S

(÷→)

M11 M12

M32
M43

→ S

(×→) x4

Figure 2: Derivation of a sequent corresponding to a bipartite graph.
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For example, a derivation given in Figure 2 is simple, and it satisfies the above conditions. Now, we look 
at this derivation from bottom to top and notice that there is no way for hyperedges of the form Ri(p) 
and R j(q) for some i, j to appear in the antecedent being attached to the same node during the second 
and the third parts. This is formally proved by induction on length l of the second part. The base case

(l = 0) means that the sequent is of the form 1 p q 1 → S where p- and q-labeled hyperedges are
clearly attached to different nodes. To prove the step case, it suffices to look at the construction of types 
Ri(r) and to notice that, when such a type appears in the antecendent, it preserves a desired property.

Concluding the proof, we observe that the first part of a derivation joins pairs of types of the form 
Ri(p) and R j(q) into an Mi j-labeled edge. According to the property established above, nodes, to which 
Ri(p)-labeled edges are attached, may be considered as in-nodes, and nodes, to which R j(q)-labeled 
edges are attached, may be considered as out-nodes in the final graph; hence, it is bipartite.

C Proof of Theorem 6

Theorem 6 and its proof is a central part of our paper accepted for ICGT 2021.

Definition 24. An ersatz conjunction ∧E (T1, . . . ,Tk) of types T1, . . . ,Tk ∈ Tp(HL) (such that rank(T1) = 
· · · = rank(Tk) = m) is the type ×(H) where

1. VH = {v1, . . . ,vm};
2. EH = {e1, . . . ,ek};
3. attH(ei) = v1 . . .vm;

4. labH(ei) = Ti;

5. extH = v1 . . .vm.

Example 14. Let T1,T2,T3 be types with rank equal to 2. Then their ersatz conjunction equals∧E(T1,T2,T3)=

×

 (1) (2)

T1

T2

T3

.

Proof of Theorem 6. Using the construction from Theorem 3 we construct an HL-grammar HGri for
each i = 1 . . . ,k such that L(HGr′i) = L(HGri). We assume without loss of generality that types involved
in HGri and HGr j for i 6= j do not have common primitive subtypes (let us denote the set of primitive sub-
types of types in dict(HGri) as Pri). Let us denote HGri = 〈Σ,si,.i〉. Note that rank(s1) = · · ·= rank(sk)
(otherwise L(HGr1)∩ ·· · ∩L(HGrk) = /0, and the theorem holds due to trivial reasons). The main idea
then is to do the following: given a .i Ti, i = 1, . . . ,k we join T1, . . . ,Tk using ersatz conjunction. A dis-
tinguished type of the new grammar will also be constructed from s1, . . .sk using ∧E . Then a derivation
is expected to split into k independent parts corresponding to derivations in grammars HGr1, . . . ,HGrk.
However, there is a nuance that spoils simplicity of this idea; it is related to the issue of isolated nodes.
This nuance leads to a technical trick, which we call “tying balloons”.

Let us fix (k−1) new primitive types b1, . . . ,bk−1 (“balloon” labels) such that rank(bi) = 1. For j < k
we define a function ϕ j : dict(HGr j)→ Tp(HL) as follows: ϕ j(p) = p whenever p ∈ Pr; ϕ j(p÷D) =
×(M)÷D′ where

1. D′ = 〈VD,ED,attD, labD,extDw〉 where [w] = VD \ [extD] (that is, w consists of nodes that are not
external in D; here [w] is the set of symbols in w).
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2. Denote m = |w|= |VD|− |extD|, and t = rank(p). Then M = 〈{v1, . . . ,vt+m},
{e0,e1, . . . ,em},att, lab,v1 . . .vt+m〉 where att(e0) = v1 . . .vt , lab(e0) = p; att(ei) = vt+i, lab(ei) =
b j whenever i = 1, . . . ,m.

Informally, we make all nodes in the denominator D external, while ×(M) “ties a balloon” labeled b j to
each node corresponding to a nonexternal one in D. Presence of these “balloon edges” is compensated
by modified types of the grammar HGrk. Namely, we define a function ϕk : dict(HGrk)→ Tp(HL) as fol-
lows: ϕk(p)= p whenever p∈Pr; ϕk(p÷D)= p÷D′ where D′= 〈VD,ED∪{e1, . . . ,e(k−1)m},att, lab,extD〉
such that:

1. m = |VD|− |extD|;

2. e1, . . . ,e(k−1)m are new edges;

3. att|ED = attD;

4. If v1, . . . ,vm are all nonexternal nodes of D, then att(ei) = vdi/(k−1)e for i = 1, . . . ,(k−1)m. In other
words, we attach (k−1) new edges to each nonexternal node of D.

5. lab(ei) = bg(i), i = 1, . . . ,(k− 1)m where g(i) = i mod (k− 1) if (k− 1) - i and g(i) = k− 1
otherwise. That is, for each bi, i = 1, . . . ,(k−1) and for each nonexternal node there is a bi-labeled
edge attached to it.

Example 15. Let k = 3 and let T = p÷
(

(1) (2)
$ q

)
. Then

• ϕ1(T ) =×


(1) (2)

(3) (4)

b1 b1
1 1p

÷(
(1)

(3)
(2)

(4)$ q

)

• ϕ3(T ) = p÷

 (1) (2)

b1 b2

1 1
b1 b2

1 1

$ q


Now we are ready to introduce HGr: HGr = 〈Σ,S,.〉 where

• a.T ⇔ T = ∧E(ϕ1(T1), . . . ,ϕk(Tk)) and ∀i = 1, . . . ,k a.i Ti;

• S = ∧E(s1, . . . ,sk).

The proof of L(HGr) = L(HGr1)∩ . . .∩L(HGrk) is divided into two parts: the ⊆-inclusion proof and
the ⊇-inclusion proof.

Proof of the ⊇-inclusion. A hypergraph H ∈H (Σ) belongs to L(HGr1)∩ ·· · ∩ L(HGrk) if and
only if there are relabeling functions fi : EH → Tp(HL) such that labH(e) .i fi(e) for all e ∈ EH , and
HL ` fi(H)→ si. Using these relabelings we construct a relabeling f : EH → Tp(HL) as follows: if
fi(e)= Ti, then f (e) :=∧E(ϕ1(T1), . . . ,ϕk(Tk)). It follows directly from the definition that labH(e). f (e).
Now we construct a derivation of f (H)→∧E(s1, . . . ,sk) from bottom to top:

1. We apply rules (×→) to all ersatz conjunctions in the antecedent. This yields a graph without
×-labels, which has k “layers” belonging to grammars HGr1, . . . ,HGrk.

2. We remodel a derivation of f1(H)→ s1, which consists of (÷→)-applications only, using types of
the form ϕ1( f1(e)),e ∈ EH that are present in f (H). The only difference now is that nonexternal
nodes do not “disappear” (recall that a derivation is considered from bottom to top), and edges
labeled by types with × appear. Every time when × appears in the left-hand side we immediately
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apply (×→), which results in adding one edge labeled by a primitive type from Pr1 and in adding
balloon edges to all nodes that would disappear in the derivation of f1(H)→ s1.
The result of this part of a derivation is that now all types corresponding to HGr1 left the an-
tecedent, except for the only s1-labeled edge attached to the external nodes of the antecedent in
the right order; besides, for each nonexternal node in the antecedent there is now a balloon edge
labeled by b1 attached to it.

3. We perform (k− 2) more steps similarly to Step 2 using types of the form ϕi( fi(e)),1 < i < k
and thus remodeling a derivation fi(H)→ si. Upon completion of all these steps the antecedent
contains:

• Types of the form ϕk( fk(e)),e ∈ EH ;
• (k−1) edges labeled by s1, . . . ,sk−1 resp. and attached to external nodes of the antecedent;
• Balloon edges such that for each j ∈ {1, . . . ,k−1} and for each nonexternal node there is a

b j-labeled edge attached to it.

4. We remodel a derivation of fk(H)→ sk using types of the form ϕk( fk(e)). A situation differs
from those at steps 2 and 3 because now nonexternal nodes do disappear, and each time when this
happens all balloon edges attached to a nonexternal node disappear as well.
After this step, all balloon edges are removed, and we obtain a graph with rank(s1) nodes such
that all of them are external, and with k edges labeled by s1, . . . ,sk such that their attachment nodes
coincide with external nodes of the graph. This ends the proof since ∧E(s1, . . . ,sk) is exactly this
graph standing under ×.

Proof of the ⊆-inclusion. Let H be in L(HGr); then there is a function Φ : EH → Tp(HL) such that
Φ(e) = ∧E (ϕ1(T1(e)), , . . . ,ϕk(Tk(e))) whenever e ∈ EH , lab(e) .i Ti(e), and Φ(H)→ S is derivable in
HL. We aim to decompose the derivation of this sequent into k ones in grammars HGr1, . . . ,HGrk. In
order to do this we transform the derivation in stages:

Stage 1. Using Proposition 1 we replace each edge in Φ(H) labeled by a type of the form ×(M) by
M. A new sequent (denote it by H ′→ S) is derivable as well.

Stage 2. The sequent H ′→ S fits in Theorem 9; hence there exists its simple derivation. Let us fix
some simple derivation of H ′→ S and call it ∆.

Furthermore we consider all derivations from bottom to top (in particular, if we state “X is after Y”
regarding some places X and Y in a derivation, then we mean that X is above Y in the derivation tree).

Stage 3. Design of types ϕi(T ) differs in the case i < k and i = k. Namely, if ϕi(T ) for i < k par-
ticipates in the rule (÷→) in ∆, this affects only primitive types from Pri; on the contrary, participating
of ϕk(T ) in (÷→) affects types from Prk but also balloon types b1, . . . ,bk−1, which appear after rule
applications of (÷→) and (×→) to several types of the form ϕi(T ), i < k. This allows us to come up
with the following conclusion: if a rule (÷→) application to a type of the form ϕk(T ) preceeds (from
bottom to top) a rule application of (÷→) to a type of the form ϕi(T ) for i < k, then we can change their
order (note also that all nodes in the denominator of ϕi(T ) are external). Thus ∆ can be remade in such
a way that all rules affecting ϕk(T ) will occur upper than rules affecting ϕi(T ), i < k in a derivation (and
it will remain simple). Let us call a resulting derivation ∆′.

Stage 4. A denominator of a type ϕi(T ) for i < k contains edges labeled by elements of Pri only.
Since ∆′ is simple, applications of the rule (÷→) to types of the form ϕi(T ) and ϕ j(T ′) for i 6= j are
independent, and their order can be changed. This means that we can reorganize ∆′ in the following way
(from bottom to top):

1. Set i = 1.
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2. Apply the rule (÷→) to a type of the form ϕi(T ) and right away the rule (×→) to its numerator.

3. If there still are types of the form ϕi(T ), repeat step 2;

4. If i = k−1, go forward; otherwise, set i = i+1 and go back to step 2.

5. Apply the rule (÷→) to types of the form ϕk(T ).

6. Now an antecedent of the major sequent (denote this sequent as G→ S) does not include types
with ÷ or ×. S is of the form ×(MS), and Theorem 9 provides that the last rule applied has to be
(→×); therefore, G = MS and we reach the sequent MS→ S. Consequently, G = MS consists of k
edges labeled by s1, . . . , sk resp.

Let us call this derivation ∆0. Observe that, after steps 1-4 in the above description, balloon edges with
labels b1, . . . ,bk−1 may occur in the antecedent of a sequent (denote this sequent, which appears after
step 4, as G′ → S). There is only one way for them to disappear: they have to participate in the rule
(÷→) with a type of the form ϕk(T ) (since only for such types it is the case that their denominators may
contain balloon edges). Note, however, that balloon edges within the denominator of ϕk(T ) are attached
only to nonexternal nodes. Therefore, balloon edges in G′ can be attached only to nonexternal nodes as
well. Besides, if some balloon edge labeled by bi is attached to a node v ∈ VG′ \ [extG′ ], then the set of
balloon edges attached to v has to consist of exactly k−1 edges labeled by b1, . . . ,bk−1 (because in the
denominator of ϕk(T ) exactly such edges are attached to each nonexternal node). Finally, note that after
step 5 all nonexternal nodes disappear since MS contains exactly rank(S) nodes, all of which are external.
This allows us to conclude that balloon edges have to be present on all nonexternal nodes (otherwise, a
nonexternal node cannot go away interacting with a type of the form ϕk(T )). Informally, a balloon edge
labeled by bi indicates that a node was used by a type from the i-th grammar HGri, and ϕk(T ) verifies
that each nonexternal node is used by the i-th grammar exactly once.

Summarizing all the above observations, we conclude that, after steps 1-4, there is exactly one bal-
loon edge labeled by bi on each nonexternal node of G′ for all i = 1, . . . ,k− 1 (and no balloon edge is
attached to some external node of G′). The only way for bi to appear attached to a node (recall that we
consider the derivation from bottom to top) is to participate in the rule (×→) after the application of
(÷→) to a type of the form ϕi(T ). Now we are ready to decompose ∆0 into k ones:

• For 1 ≤ i < k we consider step 2 of ∆0 with that only difference that we disregard balloon edges.
Then the combination of rules (÷→) and (×→) applied to a type ϕi(T ) turns into an application
of the rule (÷→) to T in the HGri. Take into account that the only type that is built of elements
of Pri and remains to step 6 is si attached to external nodes in the right order; therefore, if we
remove from H ′ all edges not related to HGri and relabel each edge labeled by ϕi(T ) with T (call
the resulting graph H ′i ), then H ′i → si is derivable.

• For i = k everything works similarly; however, instead of step 2 we have to look at step 5 and
again not to consider balloon edges. Then an application of (÷→) to ϕk(T ) is transformed into a
similar application of (÷→) to T in HGrk. After the whole process, only sk remains, so, if H ′k is
a graph obtained from H ′ by removing edges not related to HGrk and changing each label of the
form ϕk(T ) by T , then H ′k→ sk is derivable.

Finally note that H ′i = Φi(H) where Φi(e) = Ti(e). The requirement lab(e).i Ti(e) completes the proof,
because thus H ∈ L(HGri) for all i = 1, . . . ,k.

The balloon trick is used here to control that making all nodes in denominators of ϕi(T ) external
(i < k) does not lead to using, e.g., a nonexternal isolated node in rules (÷→) more than once.
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D Proof of an Auxiliary Fact From Theorem 5

Our goal in this section is to prove that L1 and L2 introduced in the proof of Theorem 5 can be generated 
by some HRGs. We will present an HRG generating L1; L2 is generated similarly. Namely, we argue 
that L1 = L(HGr1) where HGr1 = 〈{S,S′,T,U},{a,z,b},P,S〉 and productions from P are listed below:

• S→ S′ ;

• S→
U

1 ;

• S′→ (T bS′)•;

• S′→
(1) (2)

U
1T b ;

• S′→ T •;

• T →
(1) (2)

a z
1 1

2 3

a z
1 1

2 3

T
;

• T → b•;

• U →
(1)

a z U
1 11

2 3

;

• U →
(1)

.

The fact that L(HGr1) = L1 directly follows from the construction of HGr1.
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Encodings of term rewriting systems (TRSs) into graph rewriting systems usually lose global termi-
nation, meaning the encodings do not terminate on all graphs. A typical encoding of the terminating
TRS rule a(b(x))→ b(a(x)), for example, may be indefinitely applicable along a cycle of a’s and b’s.
Recently, we introduced PBPO+, a graph rewriting formalism in which rules employ a type graph
to specify transformations and control rule applicability. In the present paper, we show that PBPO+

allows for a natural encoding of linear TRS rules that preserves termination globally. This result
is a step towards modeling other rewriting formalisms, such as lambda calculus and higher order
rewriting, using graph rewriting in a way that preserves properties like termination and confluence.
We moreover expect that the encoding can serve as a guide for lifting TRS termination methods to
PBPO+ rewriting.

1 Introduction

A rewriting framework F consists of a set of objects O and a set of rewriting systems R. Each system
R ∈ R is a set of rewrite rules. Each rule ρ ∈ R defines a particular rewrite relation →ρ ⊆ O×O on
objects, and the rules of R collectively give rise to a general rewrite relation→R =

⋃
ρ∈R→ρ . The usual

definitions of string, cycle and term rewriting systems (TRSs), and the various definitions of term graph
and graph rewriting formalisms, are instances of this abstract view.

Because terms can be viewed as generalizations of strings, term graphs as generalizations of terms,
graphs as generalizations of terms graphs and cycles, etc., the question whether one framework can be
encoded into another framework frequently arises naturally. The same is true when comparing the large
variety of graph rewriting frameworks. Morever, the properties such an encoding is expected to satisfy
may vary. Let us therefore fix some vocabulary.

Definition 1 (Encoding). An encoding E of a framework F into a framework G consists of a function
EO : OF → OG on objects and a function ER :RF →RG on rewrite systems. The subscript is usually
omitted, since it will be clear from context which of EO and ER is meant.

Given an encoding E , a variety of properties of interest may be distinguished. We will say E is

1. step-preserving if x→FR y =⇒ E(x)→GE(R) E(y);

2. closed if x→GE(R) y and x∼= E(x′) for some x′ ∈ OF =⇒ y∼= E(y′) for some y′ ∈ OF with x′→R y′;

3. an embedding if E is step-preserving and closed;

4. globally P-preserving (for a property P, such as termination or confluence), if whenever R ∈RF
satisfies P, then so does the system E(R) ∈RG on all objects OG ; and

5. locally P-preserving if whenever R ∈RF satisfies P, then so does the system E(R) ∈RG on the
restricted domain of objects E(OF )⊆ OG .
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Consider the string rewrite rule ab→ ba and its usual encoding a(b(x))→ b(a(x)) as a term rewrite
rule. This encoding is an embedding that preserves termination and confluence globally. The usual
encoding as a cycle rewrite rule, by contrast, is step-preserving, but not closed, and neither termination-
nor confluence-preserving.

Building on PBPO by Corradini et al. [4] and our own patch graph rewriting formalism [16], we re-
cently proposed the PBPO+ algebraic graph rewriting approach [17], in which rules employ a type graph
to specify transformations and control rule applicability. In the present paper we give an embedding of
linear term rewrite systems into PBPO+ that preserves global termination, despite being applicable to
graphs that are not encodings of terms. This result requires powerful features (unsupported by standard
approaches such as DPO [8]), as two examples illustrate:

1. For the encoding of f (x,y)→ f (a,y) to be step-preserving, it must be possible to delete an arbitrary
subgraph x below f , while leaving the context above of f and the subgraph corresponding to y
intact.

2. For the encoding of a(b(x))→ b(a(x)) to be terminating, the rule must not be applicable on a cycle
of a’s and b’s.

Apart from being an interesting expressiveness result for PBPO+, our result enables reduction-style
termination arguments for linear, ‘term-like’ PBPO+ rewrite rules. Moreover, as we will elaborate in the
discussion (Section 6), we believe our result has broader relevance for the development of termination
techniques for graph rewriting, as well as the modeling of other rewrite formalisms.

The structure of the paper is as follows. In Section 2, we summarize the relevant categorical and TRS
preliminaries. In Section 3, we give a self-contained introduction to PBPO+ and to Graph(L,≤) [17], a
special category that combines well with PBPO+. In Section 4, we define an embedding of linear term
rewriting into PBPO+ rewriting over category Graph(L,≤). In Section 5, we prove that the embedding is
globally termination-preserving, using a novel zoning proof. Finally, we discuss the significance of our
results in Section 6.

2 Preliminaries

We assume familiarity with various basic categorical notions, notations and results, including morphisms
X→Y , pullbacks and pushouts, monomorphisms (monos) X �Y (note the different arrow notation) and
identities 1X : X � X [1, 14].

Definition 2 (Graph Notions). A (labeled) graph G consists of a set of vertices V , a set of edges E,
source and target functions s, t : E → V , and label functions `V : V → L and `E : E → L for some label
set L. A graph is unlabeled if L is a singleton.

A premorphism between graphs G and G′ is a pair of maps φ = (φV : VG → VG′ ,φE : EG → EG′)
satisfying (sG′ , tG′)◦φE = φV ◦ (sG, tG).

A homomorphism is a label-preserving premorphism φ , i.e., a premorphism satisfying `V
G′ ◦φV = `V

G
and `E

G′ ◦φE = `E
G.

Definition 3 (Category Graph [7]). The category Graph has graphs as objects, parameterized over
some global (and usually implicit) label set L, and homomorphisms as arrows. FinGraph is the full
subcategory of finite graphs.

The following TRS definitions are all standard [18].

Definition 4 (Signature). A signature Σ consists of a non-empty set of function symbols f ,g, . . . ∈ Σ,
equipped with an arity function # : Σ→ N. Nullary function symbols a,b, . . . are called constants.
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Definition 5 (Terms). The set of terms l,r,s, t, . . . ∈ Ter(Σ,X ) over a signature Σ and an infinite set of
variables x,y, . . . ∈ X is defined inductively by:

• x ∈ Ter(Σ,X ) for every x ∈ X ;

• if f ∈ Σ with #( f ) = n, and t1, . . . , tn ∈ Ter(Σ,X ), then f (t1, . . . , tn) ∈ Ter(Σ,X ). If n = 0, we
write f instead of f ().

A term t is linear if every x ∈ X occurs at most once in t. We write Var(t) to denote the set of variables
occurring in t.

Definition 6 (Position). A position p is a sequence of integers, i.e., p ∈ N∗. The empty sequence is
denoted by ε . We write pn (and np) to denote the right (and left) concatenation of a positive integer n to
a position p.

Every symbol occurrence in a term has a position associated with it. The position of the head symbol
is ε , and the position of the i-th (i≥ 1) symbol below a symbol with position p is pi. For a term s and a
position p in s, we write s(p) to denote the symbol at position p in s.

Definition 7 (Substitutions). A substitution is a function σ : X → Ter(Σ,X ). For terms s ∈ Ter(Σ,X )
we define sσ ∈ Ter(Σ,X ) by xσ = σ(x) for x ∈ X , and f (t1, . . . , tn)σ = f (t1σ , . . . , tnσ) for f ∈ Σ and
t1, . . . , tn ∈ Ter(Σ,X ).

Definition 8 (Contexts). A context C[ ] is a term from Ter(Σ,X ]{2}) with exactly one occurrence of
the hole 2. We write C[t] for the term obtained by replacing the hole with t.

Definition 9 (Term Rewriting Systems). A term rewrite rule is a pair of terms l→ r satisfying l /∈X and
Var(r)⊆ Var(l). The rule is linear if both terms l and r are linear. A term rewriting system (TRS)R is a
set of term rewrite rules. The systemR is linear if all its rules are.

A TRS R induces a relation→ on Ter(Σ,X ), the rewrite relation of R, as follows: C[lσ ]→C[rσ ]
for every context C, substitution σ and rule l→ r ∈R. The rewrite step C[lσ ]→C[rσ ] is said to be an
application of the rule ρ = l→ r at position p, where p is the position of the hole in C[ ].

3 PBPO+ and Graph(L,≤)

We recently introduced PBPO+ [17] (short for PBPO with strong matching), an algebraic rewriting
formalism obtained by strengthening the matching mechanism of PBPO by Corradini et al. [4]. We
believe PBPO+ is of interest for at least three important reasons.

First, PBPO+ is expressive: for Graph in particular, and assuming monic matching, we conjec-
ture [17] that PBPO+ is able to faithfully model DPO, SPO [13], SqPO [5], AGREE [3] and PBPO.
More precisely, for any rule in such a formalism, there exists a PBPO+ rule that generates exactly the
same rewrite relation.

Second, PBPO+ makes relatively weak assumptions on the underlying category: it is sufficient to
require the existence of pushouts along monomorphisms and the existence of pullbacks. In particular,
adhesivity [12], assumed for DPO rewriting to ensure the uniqueness of pushout complements, is not
required.

Third, we have defined a non-adhesive category called Graph(L,≤) [17] that combines very nicely
with PBPO+, allowing graph rewrite rules to easily model notions of relabeling, type systems, wildcards
and variables. These notions have been significantly more challenging to define for DPO.

In this section we provide the necessary background on PBPO+ and Graph(L,≤).
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Definition 10 (PBPO+ Rewriting [17]). A PBPO+ rewrite rule ρ (left) and adherence morphism α :
GL → L′ induce a rewrite step GL ⇒α

ρ GR on arbitrary GL and GR if the properties indicated by the
commuting diagram on the right hold

ρ =
L K

l

L′
tL

K′
tK

l′

PB
R

r

GLL
m

L

1L
PB

L′
tL

α

GK
gL

K′
u′

l′
PB

K
!u

R
r

GRgR

wPO

tK

where u : K → GK is the unique mono satisfying tK = u′ ◦ u [17, Lemma 11]. We write GL ⇒ρ GR if
GL⇒α

ρ GR for some α .

In the rewrite rule diagram, L is the lhs pattern of the rule, L′ its type graph and tL the typing of L.
Similarly for the interface K. R is the rhs pattern or replacement for L. The rewrite step diagram can
be thought of as consisting of a match square (modeling an application condition), a pullback square
for extracting (and possibly duplicating) parts of GL, and finally a pushout square for gluing these parts
along pattern R. The inclusion of the match square is the main aspect which differentiates PBPO+ from
PBPO: intuitively, it prevents α from collapsing context elements of GL onto the pattern tL(L)⊆ L′.

For the present paper, it suffices to restrict attention to rules in which l′ does not duplicate subgraphs.

Definition 11 (Linear PBPO+ Rule). A PBPO+ rule is linear if the morphism l′ : K′→ L′ is monic.

Remark 12. For linear PBPO+ rewriting, it is enough to assume the existence of pushouts and pullbacks
along monomorphisms. An interesting question is whether these weakened requirements enable new use
cases.

The category Graph(L,≤) is similar to Graph. The difference is that it is assumed that the label set
forms a complete lattice, and that morphisms do not decrease labels. The complete lattice requirement
ensures that pushouts and pullbacks are well-defined.

Definition 13 (Complete Lattice). A complete lattice (L,≤) is a poset such that all subsets S of L have
a supremum (join)

∨
S and an infimum (meet)

∧
S.

Definition 14 (Category Graph(L,≤) [17]). For a complete lattice (L,≤), the category Graph(L,≤) is the
category in which objects are graphs are labeled from L, and arrows are graph premorphisms φ : G→G′

that satisfy `G(x)≤ `G′(φ(x)) for all x ∈VG∪EG. We let FinGraph(L,≤) denote the full subcategory of
finite graphs.

Proposition 15. In Graph(L,≤), monomorphisms are stable under pushout.

Proof. Assume given a span B b← A
c
� C in Graph(L,≤). Overloading names, consider the unlabeled

version in Graph, and construct the pushout B m→ D n← C. Morphism m : B→ D is monic, because
monos are stable in the category of unlabeled graphs, by virtue of it being an adhesive category. Now for
each x ∈VD∪ED, define the label function `(x) to be the supremum of all labels in the labeled preimages
m−1(x) and n−1(x), and define the Graph(L,≤) object D` = (VD,ED,sD, tD, `). Then it is easy to verify

that B
m
� D`

n←C is the pushout of B b← A
c
�C in Graph(L,≤).

In this paper we will use the following simple complete lattice only.

Definition 16 (Flat Lattice [17]). Let L⊥,> = L]{⊥,>}. We define the flat lattice induced by L as the
poset (L⊥,>,≤), which has⊥ as a global minimum and> as a global maximum, and where all elements
of L are incomparable. In this context, we refer to L as the base label set.
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The following example is a variation of an example found in our previous paper [17, Example 40]. It
exemplifies all relevant features of linear PBPO+ rewriting in category Graph(L,≤).

Example 17 (Rewrite Example). As vertex labels we employ the flat lattice induced by the base label
set {a,b,c, . . .}, and we assume edges are unlabeled for notational simplicity. The diagram

L
x
⊥ K

x
⊥ R

x
c

GL x
a

z1
b

z2
c

GK x
⊥

z1
b

z2
c

GR x
c

z1
b

z2
c

L′
x
>

z
> K′

x
⊥

z
> R′

x
c

z
>

displays a rule (L,L′,K,K′,R) which

• matches an arbitrarily labeled, loopless node x, in an arbitrary context;

• “hard overwrites” the label of x to label c;

• disconnects x from its component by deleting its incident edges; and

• leaves all other nodes, edges and labels unchanged.

The pushout K′ r′−→ R′ tR←− R for span K′ tK←− K r−→ R is depicted as well (in lower opacity), because it shows
the schematic effect of applying the rewrite rule. An application to a host graph GL is included in the
middle row.

With respect to the labeling, the example demonstrates how (i) labels in L serve as lower bounds
for matching, (ii) labels in L′ serve as upper bounds for matching, (iii) labels in K′ can be used to
decrease matched labels (so in particular, ⊥ “instructs” to “erase” the label and overwrite it with ⊥, and
> “instructs” to preserve labels), and (iv) labels in R can be used to increase labels.

4 Embedding Linear Term Rewriting Systems

We are now ready to define an encoding (Definition 1) of linear term rewrite systems into PBPO+. We
also show that the encoding is an embedding (Theorem 35). In the next section, we prove that the
embedding is globally termination-preserving.

For defining the encoding of terms as graphs, the auxiliary notion of a rooted graph is convenient.

Definition 18 (Rooted Graph). A rooted graph (G,r) consists of a graph G and a distinguished root
r ∈VG. We let graph((G,r)) = G and root((G,r)) = r.

We usually omit graph(. . .) in places where a non-rooted graph is expected, since confusion is un-
likely to occur. In visual depictions, the root r is highlighted in a circle r .

Definition 19 (Term Encoding). Define the flat lattice Σ◦ for signatures Σ by Σ◦ = (Σ]N+)⊥,>.
For linear terms t ∈ Ter(Σ,X ), we define the term encoding t◦ of t as the Σ◦-labeled rooted graph

t◦ = E(t,ε), where E(t, p) is defined by clauses

E( f (t1, . . . , tn), p) = p f

E(t1, p1) · · · E(tn, pn)
1 n
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and E(x, p) = (x⊥,x) for f ∈ Σ, t1, . . . , tn ∈ Ter(Σ,X ), x ∈ X and p ∈N∗. The target of an edge pointing
towards a rooted graph (G, p′) is p′. In these graphs, the identity of an edge with source p and target p′

is (p, p′).

Note that the term encoding always results in a tree, because the terms it operates on are linear.

Definition 20 (Positions in Term Encodings). Analogous to positions in terms t (Definition 6), we assign

positions to the nodes of t◦: root(t◦) is assigned position ε; and if v wi is an edge in Et◦ (for i≥ 1)
and v has position p, then w is assigned position pi.

A translated rule ρ◦ is said to be applied at position p in t◦ if the match morphism m : L � t◦ maps
the root of L onto the vertex with position p in t◦, and establishes a match.

The following definition is used in the setting of rule encodings.

Definition 21 (Context Closures). Let Gr = (G,r) be a rooted graph.
Assume C /∈ VG. The upper context closure of Gr, denoted C[Gr], is the r-rooted graph obtained by

adding a >-labeled vertex C and two >-labeled edges with identities (C,r) and (C,C) to G. Sources and
targets are given by the first and second projections, respectively.

For x ∈ X , let x′ be fresh for VG. The lower context closure of G w.r.t. a subset X ⊆ VG, denoted
G↓X , is the r-rooted graph obtained as follows: for every x ∈ VG ∩X , (i) relabel x to >, and (ii) add a
>-labeled vertex x′ and two >-labeled edges (x,x′) and (x′,x′) to G.

The context closure of Gr is defined as C[Gr↓X ].
Example 22. The term encoding t◦ of t =
f (g(x),a,h(y)) and its context closure C[t◦↓X ]
are shown on the right. Both graphs are rooted
in ε . (The edge identities are left implicit.)

t◦ =

ε f

1g 2a 3h

x⊥ y⊥

1
2

3

1 1

C[t◦↓X ] =

C>

ε f

1g 2a 3h

x> y>

x′> y′>

>
>

1
2

3

1 1

> >
> >

Definition 23 (Variable Heads and Symbol Vertices). For term encodings t◦, the vertices in x ∈Vt◦ ∩X
with `(x) = ⊥ are called variable heads, and the remaining vertices labeled from Σ are called symbol
vertices.

Definition 24 (Interface Graph). The interface graph I(t) for a term t is the rooted graph (G′,ε), where
G′ is the discrete graph induced by VG′ = Var(t)∪{ε} and `V

G′(v) =⊥ for all v ∈VG′ .

Definition 25 (Rule Encoding). The rule encoding ρ◦ of a linear term rewrite rule ρ : l→ r over Σ into
a (linear) PBPO+ rewrite rule over Σ◦-labeled graphs is defined as follows:

L = l◦ K = I(r) R = r◦

L′ = C[l◦↓X ] K′ = C[I(r)↓X ]

Here we implicitly consider the rooted graphs as graphs by forgetting their roots. Each of the morphisms
l, r, l′, tL, and tK map roots to roots and behave as inclusions otherwise.

Observe that the rule encoding accounts for the special case where the right-hand side r of the TRS
rule is a variable x, in which case r : K→ R is the morphism determined by r(ε) = r(x) = x. (The case
where the left-hand side l is a variable is excluded by definition.)
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Proposition 26. In Definition 25, all of the morphisms are well-defined and uniquely determined, and
the pullback property is satisified. Moreover, morphisms l, l′, tL and tK are monic, and r is monic iff r is
not a variable.

Example 27 (Rule Encoding). The TRS rule ρ = f (x,g(b),y)→ h(g(y),a) is encoded as the PBPO+

rewrite rule ρ◦ given by

L
ε

f

2
g

21
b

x
⊥

y
⊥

1
2

3

1

K
ε
⊥

y
⊥

R
ε

h

1
g

y
⊥

2
a

1 2

1

L′

ε

f

2
g

21
b

x
>

y
>

x′
>

y′
>

C
>

1
2

3

1> >

> >

>
>

K′

ε
⊥

y
>

y′
>

C
>

>

>

>
>

R′

ε
h

1
g

y
>

2
a

1 2

1

y′
>

C
>

>
>

>
>

.

An application of this rule can be thought of as binding head variable x and y of L to the roots of
two subterms. These subterms and the context are then uniquely captured by L′ (by virtue of the strong
match property), and correctly rearranged around R by the rewrite step.

Rule encodings extend to rewrite system encodings in the obvious way.

Definition 28 (Rewrite System Encoding). The rewrite system encoding R◦ of a linear TRS R is {ρ◦ |
ρ ∈ R}.

All the encodings we have introduced have obvious inverses.

Definition 29 (Decoding). For term/rule/system encodings x◦, we define the inverse decode(x◦) = x.

Proposition 30 (Root Mapping Determines Adherence). Let ρ = l→ r be a linear term rewrite rule. If
ρ◦ is applied at position p in s◦, then a unique α : s◦→ C[l◦↓X ] exists that establishes a strong match,
i.e., that makes

s◦l◦ m

l◦

1l◦
PB

C[l◦↓X ]
tL

α

a pullback square.

Proof. By definition of applying at a position p, m maps root(l◦) onto position p of s◦, fully determining
m to map nodes with position q in l◦ onto nodes with position pq in s◦. A node in l◦ is either a symbol
vertex or a variable head. For symbol vertices, any m must preserve labels. Variable heads (labeled with
⊥) are mapped by m onto either (i) vertex σ(x) labeled with ⊥ if σ(x) ∈ X is a variable, or (ii) vertex
pq labeled with f ∈ Σ if x is substituted for some non-variable term σ(x) = f (t1, . . . , tn) (n≥ 0).
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On the image m(l◦), define α such that tL = α ◦m. The labels of symbol vertices are thereby pre-
served, and the labels in the head variables of l◦ are increased to >. The elements not in m(l◦) can be
mapped onto the appropriate elements added by the context closure, and only in one way as to not over-
lap with tL. Because tL does not map onto these closures, pulling α along tL gives the required pullback
square.

Lemma 31 (Match Determinism). Let ρ = l→ r be a linear term rewrite rule. If ρ◦ is applied at position
p in s◦ and gives rise to a step s◦→ G, then G is uniquely determined up to isomorphism.

Proof. By Proposition 30, adherence α is completely determined, and by general categorial properties,
the pullback of α along l′ gives a unique result up to isomorphism, and so does the final pushout.

Proposition 32. If m : l◦ � s◦ is a mono, then s◦ = (C[lσ ])◦ for some context C and substitution σ .
Moreover, the position of m(root(l◦)) in s◦ equals the position of 2 in C[ ].

Proof. By monicity of m, the tree structure of l◦ is preserved into s◦. The labels of symbol vertices and
edges are also preserved, since s◦ has no occurrences of >. This also means that, for every vertex v of l◦,
v and m(v) have the same number of outgoing edges, since encodings preserve arities.

A variable head x ∈ Vl◦ is mapped onto a vertex m(x), which is either a variable head with label ⊥,
or a symbol vertex labeled with some f ∈ Σ and a subtree underneath.

Let p be the position of m(root(l◦)) in s◦. Define C as the context obtained from s by replacing the
subterm at position p by 2. Define the substitution σ , for every x ∈ Var(l), by σ(x) = s|pqx where qx

is the position of x in l. Then the claim follows since m maps x in l◦ to the position pqx in s◦, and the
subtree rooted at this position is (s|pqx)

◦.

Lemma 33 ((·)◦ Is Step-Preserving). Let ρ = l→ r be a linear term rewrite rule. If s→ t via ρ at
position p, then s◦→ t◦ via ρ◦ at position p.

Proof. By the definition of a term rewrite step, s =C[lσ ] and t =C[rσ ] for some context C and substitu-
tion σ , and lσ is at position p in C[lσ ].

By the definitions of encodings and a PBPO+ rewrite step, we must show that the diagram

(C[lσ ])◦l◦ m

l◦
1l◦

PB

C[l◦↓X ]
tL

α

GK
gL

C[I(r)↓X ]
u′

l′
PB

I(r)

!u

r◦r

(C[rσ ])◦gR

w
PO

(1)

holds for some GK and the various morphisms that are not fixed by ρ◦ (including α), and where m maps
root(l◦) onto position p of (C[lσ ])◦. Note that gL is a mono by Proposition 26 and stability of monos
under pullbacks, and w is a mono by Proposition 15.

By Proposition 30, m and α exist and they exist uniquely. It is then straightforward to check that the
middle pullback extracts the subgraphs corresponding to the context C and to every subterm bound to a
variable x ∈Var(l)∩Var(r), and that the pushout performs the appropriate gluing around pattern r◦, with
(C[rσ ])◦ as the result.
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Lemma 34 ((·)◦ Is Closed). Let ρ = l→ r be a linear term rewrite rule. If s◦→ G via ρ◦ then G ∼= t◦
for some term t with s→ t.

Proof. Assume s◦ → G via ρ◦ at position p. Then by Proposition 32 we have s◦ = (C[lσ ])◦ for some
context C and substitution σ such that s(p) = 2. Then s =C[lσ ]→C[rσ ] = t via ρ at position p. Thus
s◦→ t◦ via ρ◦ at position p by Lemma 33. Then we have G∼= t◦ by Lemma 31.

Theorem 35. The encoding (·)◦ is an embedding.

Proof. From Lemma 33 and Lemma 34.

5 The Embedding Preserves Termination Globally

From the fact that the encoding is step-preserving (Lemma 33), the following is almost immediate.

Lemma 36. Let R be a linear TRS. If R◦ is terminating on FinGraphΣ◦ , then R is terminating.

It is obvious that the other direction holds if the category FinGraphΣ◦ is restricted to graphs that are
term encodings; so we have local termination [9–11]. However, in this subsection we will show that the
direction holds globally. Thus, in particular, the finite graphs may be disconnected, cyclic, and labeled
arbitrarily from Σ◦.

Our overall proof strategy is as follows. First, we show that it suffices to restrict to cycle-free graphs
G (Corollary 45). Then, we show that an infinite rewrite sequence on cycle-free G contains (in some
sense) an infinite rewrite sequence on term encodings, and therefore on terms (Theorem 62).

Definition 37 (Undirected Path). Let n ∈ N. An undirected path of length n from node v1 to vn+1 in a
graph G is a sequence v1 e1 v2 v2 · · ·vn en vn+1 where v1,v2, . . . ,vn+1 are nodes of G and e1,e2,e3, . . . ,en

are edges of G such that (vi,vi+1) ∈ {(s(ei), t(ei)), (t(ei),s(ei))} for every 1≤ i≤ n.
The path is an undirected cycle if moreover n > 0, v1 = vn+1 and ei 6= e j for all 0 < i < j ≤ n. A

cycle edge (cycle node) is an edge (node) that is part of an undirected cycle. A graph is cycle-free if it
does not contain undirected cycles.

Example 38. A path of length 1 is an undirected cycle iff its only edge e is a loop, that is, s(e) = t(e).
Two edges between two nodes always constitute an undirected cycle of length 2 (irrespective of the
direction of the edges).

Proposition 39. Edge e is a cycle edge iff there exists an undirected path from s(e) to t(e) that does not
include e.

Proof. If s(e) = t(e), one path is the empty path. Obvious otherwise.

Proposition 40. If e is a cycle edge in G and φ : G � H a mono, then φ(e) is a cycle edge in H.

Although monos preserve the cycle edge property, morphisms do not generally do so (consider a mor-
phism that identifies two parallel edges). However, for adherence morphisms α we have the following
result.

Lemma 41. Consider the PBPO+ match square (the leftmost square of the rewrite step diagram) with a
host graph GL. Suppose that e is a cycle edge in GL and α(e) = tL(e′) for some e′ ∈ EL. Then α(e) is a
cycle edge in L′.
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Proof. Let σ1 be the path just consisting of e. By Proposition 39 there also exists an undirected path
from s(e) to t(e) in GL that does not include e. Since premorphisms preserve undirected paths, α(σ1)
and α(σ2) are undirected paths from α(s(e)) to α(t(e)) in L′. If α(e) is not a cycle edge, then paths
α(σ1) and α(σ2) both include α(e) by Proposition 39. Thus α maps two distinct edges in GL onto
α(e) = tL(e′). Since L is the α-preimage of tL(L), α ◦m = tL also maps two distinct edges onto tL(e).
This contradicts that tL is monic. So α(e) is a cycle edge.

Lemma 42 (Cycle-Preserving Pullback). If for τ = G
g−→ X h←− H, (i) σ is an undirected cycle in G,

(ii) g(σ) lies in the image of h, and (iii) the pullback for τ is G
g′←− Y h′−→ H, then every edge e ∈ g′−1(σ)

is a cycle edge in Y .

Definition 43 (Cycle Edge Removal). For a graph G, we let [G] denote the graph obtained by deleting
all cycle edges from G.

Lemma 44. Let ρ : l→ r be a linear term rewrite rule over Σ. If there is a rewrite step GL
ρ◦→ GR on

graphs over Σ◦, then also [GL]
ρ◦→ [GR].

Proof. By the definition of a rewrite step and substituting for the translation of ρ , we have the following
arrangement of objects and morphisms

GLl◦ m

l◦
1l◦

PB

C[l◦↓X ]
tL

α

GK
gL

C[I(r)↓X ]
u′

l′

PB

I(r)

!u

r◦r

GRgR

w
PO

for some GK . Many of the morphisms are fixed by the rule ρ◦. Note that gL is a mono by Proposition 26
and stability of monos under pullbacks.

Observe that tL(l◦) does not contain cycle edges (Definition 25). Hence by Lemma 41, α must map
every cycle edge of GL into one of the edges created by constructing the context closure C[l◦↓X ] of l◦.

Now suppose that we replace GL by [GL] in the diagram. Then the middle pullback object G′K is
obtained by removing from GK the set of edges C ⊆ EGK that mono gL maps into a cycle edge of GL.
Since monos preserve cycle edges, every cycle edge of GK is in C. Moreover, using Lemma 42, C
contains only cycle edges. Hence G′K = [GK ].

Similarly, the pushout object replacement G′R for GR is obtained by removing from GR the set of
edges C ⊆ EGR that have a cycle edge gR-preimage in GK . Since an undirected path ρ in GR is an
undirected cycle iff ρ is in the range of gR and g−1

R (ρ) is an undirected cycle, G′R = [GR].

As a direct consequence of Lemma 44 we obtain the following.

Corollary 45. Let R be a linear TRS over Σ. R◦ admits an infinite rewrite sequence on all graphs iff R◦

admits an infinite rewrite sequence on cycle-free graphs.

Thus, in order to prove that termination of R implies termination of R◦ in FinGraphΣ◦ , it suffices to
restrict attention to finite, cycle-free graphs. However, not all such graphs are term-like: graphs may be
arbitrarily labeled from Σ◦, non-rooted and disconnected. So a further argument is needed.
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Definition 46 (Well-Formedness). Let Σ be a signature, and G a graph with labels from Σ◦. A node
v ∈VG with label l ∈ Σ∪{⊥,>}∪N+ is in-well-formed (I) if it has at most one incoming edge; and it is
out-well-formed (O) if l ∈ Σ, and v has precisely #l outgoing edges, labeled with 1, 2, . . . , #l.

Definition 47 (Good and Bad Nodes). A node v ∈VG is called good if v is O and all of v’s children in G
are I. Nodes that are not good are bad.

We will use the distinction between good and bad nodes to define a kind of partitioning on graphs G,
which we call a zoning. For cycle-free graphs, each zone will be seen to correspond to a term encoding
in a qualified sense. (Some edges of G will not be part of any zone of G.) Since most results related
to zoning hold not only for non-cycle-free graphs, we will use minimal assumptions where possible
(in particular, note that (directed) acyclicity is a weaker condition than cycle-freeness). We do assume
finiteness globally.

Definition 48 (Zoning). A zoning of G divides up G into zones, which are subgraphs of G. The zoning
is iteratively constructed as follows:

• Initially, every node of G forms its own zone.

• At each subsequent iteration, if an edge e is not included in a zone and s(e) is good, join the zones
of s(e) and t(e) along e. (If s(e) and t(e) are in the same zone Z, this is the same as adding e to
zone Z.)

• The algorithm terminates if the previous step can no longer be applied.

Definition 49 (Bridge). A bridge is an edge e ∈ EG not included in any zone of G.

Proposition 50. The zoning of a graph G is unique, and any zone is a connected subgraph.

Proposition 51. If e ∈ EZ is included in zone Z, then t(e) is I.

Proof. Since e was joined along, s(e) is good, and hence t(e) is I.

Definition 52 (Root). A node v ∈VZ without a parent inside zone Z is called a root for Z.

Proposition 53. Within a zone Z, for any two nodes u,v∈VZ , there is a node x∈VZ such that u←∗ x→∗ v
(using edges included in Z).

Proof. Because any zone is connected, there is an undirected path between u and v within Z. This path
cannot contain a segment of the form a→ c← b, for then c would not be I, contradicting Proposition 51.
Hence the path must be of the form u←∗ x→∗ v for some x ∈VZ .

Corollary 54. If a zone has a root, it is unique.

Proposition 55. If a zone Z is acyclic, it has a root.

Proof. If not, following the edges in Z backwards would reveal a directed cycle in Z.

Proposition 56. If a zone Z is acyclic, then Z is a directed tree.

Proof. As follows from the preceding propositions, Z is connected and each zone has a unique root u.
By Proposition 53, u has a path to every node v in Z. Such an (acyclic) path is moreover unique,

for otherwise the first point at which these paths join is not I, contradicting Proposition 51. Thus Z is a
directed tree.

We also have the following general characterization of bridges.
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Proposition 57 (On Bridges). The source of a bridge is a bad leaf of a zone, and the target of a bridge
is a root of a zone.

Proof. If e is a bridge, s(e) must be bad. If s(e) is bad, none of its outgoing edges have been joined
along. Hence s(e) is a leaf in Z.

If a bridge e targets a non-root t(e) of a zone Z, then t(e) is not I, since it has at least two incoming
edges. Thus the parent p of t(e) inside Z is bad. But this contradicts that p must be good since it has an
edge to t(e) inside Z. Hence t(e) must be a root.

Although acyclic zones are directed trees, not every zone corresponds directly to a term encoding t◦

for some term t. For instance, for the 3-zone graph f a f1 1 , with #( f ) = 1 and #(a) = 0, only
the zone containing the node labeled with a corresponds to a term encoding. But we have the following
result.

Proposition 58 (Zones as Term Encodings). If every bad node of an acyclic zone Z is relabeled with ⊥,
then Z is isomorphic to a term encoding t◦.

Proof. Every acyclic zone is structurally a directed tree. All inner nodes (and some leaves labeled with
constants a∈ Σ) are good, meaning they are labeled with Σ and out-well-formed; and all of their children
are in-well formed and included into the zone by the zoning algorithm. Since bad nodes are leaves,
relabeling them with⊥ essentially makes them represent variables. To establish an isomorphism between
a zone and a term encoding, one simply has to rename the identity of every good node to its position in
this tree, and the identity of every bad node to some unique x ∈ X .

We will now show that relabeling bad nodes with ⊥ does not meaningfully affect the rewriting
behavior in a graph G. Intuitively, this is because matches cannot cross zones, as shown by the following
results. Recall the terminology of Definition 23.

Lemma 59. A match morphism m : l◦→ G (for a rule encoding ρ◦) maps symbol vertices v ∈ Vl◦ onto
good nodes.

Proof. We must show that m(v) is O and that all of m(v)’s children are I.
First, we show that m(v) is O. Because v is a symbol vertex, `(v) ∈ Σ. Since morphisms do not

decrease labels, either (a) `(v) = `(m(v)), or (b) `(v)< `(m(v)).
In case (a), we must show that m(v) has precisely #(`(m(v))) = #(`(v)) outgoing edges labeled with

1,2, . . . ,#(`(v)). By monicity of m and the definition of rule encodings, we know that it has these edges
at least once. Moreover, m(v) cannot have additional outgoing edges, since these cannot be suitably
mapped by α into L′ without violating the strong match property.

In case (b), we obtain a contradiction. For note that tL : l◦ → C[l◦↓X ] preserves labels for nodes
labeled from Σ, so that `(tL(v)) = `(v). Furthermore, since m enables a rewrite step, tL = α ◦m and hence
`((α ◦m)(v)) = `(v). This implies that α decreases the label on m(v), which is not allowed by the ≤
requirement on morphisms.

Second, we establish that all of m(v)’s children are I. Observe that for symbol vertices v, all incoming
edges of children of tL(v) (i) have their source in tL(v) and (ii) are in the image of tL. For a contradiction,
assume a child u of m(v) has multiple incoming edges e,e′. Then using that α(m(v)) = tL(v) (by the
strong match property) and that α(u) is a child of tL(v), by observation (i) α(s(e)) = α(s(e′)). Since
there are no parallel edges in L′, α(e) = α(e′). By (ii) α(e) is in the image of tL. Thus multiple elements
are mapped onto the same element in L′. This violates the strong match property. Contradiction.

38

GCM 2021 Pre-Proceedings



R. Overbeek & J. Endrullis

G

G

B

G

G

G

G

B

G

G

G G

B

G

G

G

B G

G

B

G

B BG

G

G

B

G

G

B G

G B
G

G

BG

Figure 1: A zoning of a cycle-free graph with three components. Zone borders (gray), good (G) and bad
(B) nodes, bridges (dotted) and a match (green) are indicated.

Lemma 60 (Matches Respect Boundaries). Let ρ = l→ r be a TRS rule, and consider the translation
ρ◦. Then for any match morphism m : l◦� G, the image m(l◦) lies in precisely one zone.

Proof. Because l◦ is connected, so is m(l◦). So if a counterexample to the lemma exists, it involves a
bridge. Let m(e), the image of an e ∈ El◦ , be such a bridge. By Proposition 57, s(m(e)) = m(s(e)) is a
bad leaf of a zone Z. Hence s(e) ∈ Vl◦ is a variable head by the contrapositive of Proposition 59. Since
variable heads are leaves in l◦, this contradicts that s(e) has e ∈ El◦ for an outgoing edge.

Figure 1 is an abstract depiction of a zoning, and exemplifies the properties established thus far.

Proposition 61 (Bad Node Labels Are Irrelevant). Let G[`(v):=l] denote the graph obtained by changing
the label of v ∈VG to l ∈ L. If v /∈VG, G[`(v):=l] = G.

For bad v ∈VG and any l ∈ L, if G→H is a rewrite step via a translated TRS rule ρ◦ and adherence
morphism α , then G[`(v):=l]→ H [`(v):=l] is a rewrite step via ρ◦ and α .

Proof. In a rewrite step, bad nodes are either matched by variable heads, or lie outside the image of tL.
In both cases, the label does not influence the application condition, since any label l with ⊥≤ l ≤> is
allowed. Moreover, the node is either preserved (and its label unchanged), or deleted. In either case the
statement holds.

Theorem 62. Let R be a linear TRS. R is terminating on Ter(Σ,X ) iff R◦ is terminating on FinGraphΣ◦ .

Proof. Direction⇐= is Lemma 36.
For direction =⇒, we prove the contrapositive. By Corollary 45, we may assume G is cycle-free,

and thus acyclic. So suppose R◦ admits an infinite rewrite sequence τG = G→ G′ → ··· rooted in a
cycle-free, finite graph G.

Because matches respect zone boundaries, the number of zones is finite, and zones are never created
by rewrite steps, there exists a zone Z of G in which a match is fixed and rewritten infinitely often.
This zone is at no point affected by matches in other zones, since zones can only affect other zones by
completely deleting them. Similarly, due to cycle-freeness, it is easy to see that the bridges and zones
connected to Z do not affect rule applicability in Z. Hence we can restrict G to Z, and construct an infinite
rewrite sequence τZ = Z→ Z′→ Z′′→ ··· .
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By relabeling every bad node of starting term Z with ⊥, the existence of an infinite rewrite sequence
is not disturbed using Proposition 61. Furthermore, Z is now isomorphic to a term encoding t◦ for some
term t (Proposition 58). Using the fact that the encoding is closed (Lemma 34) and that rewriting is
defined modulo isomorphism, we can obtain an infinite rewrite sequence on terms. Thus R is also not
terminating.

Remark 63. Our result may be compared to one due to Nolte [15, Chapter 6]. Nolte first defines two
encodings of TRSs into term graph rewriting systems, a basic encoding and an extended encoding. These
encodings preserve neither termination nor confluence, and are not embeddings. He then shows that
for term graph systems obtained by the basic encoding, there exists a globally termination-preserving
encoding into graph rewriting systems (DPO) [15, Theorem 6.3]. So although Nolte’s approach is similar
to ours in spirit, it does not constitute a globally termination-preserving embedding of TRSs into graph
rewriting systems.

Remark 64 (Confluence). Although⇐= of Theorem 62 holds for confluence as well, =⇒ does not, even
if graphs are assumed to be connected, cycle-free and well-labeled. Namely, consider Σ = { f ,g,h,a,b}
with #( f ) = #(g) = #(h) = 1 and #(a) = #(b) = 0, and the confluent TRS R = {g(x)→ a,h(x)→ b}.
Then for the graph g f a f h1 1 1 1 both a and b are R◦-normal forms.

If graphs may be disconnected, rule g(x)→ a even constitutes a counter-example by itself. For the
type graph of its rule encoding, a disjoint component H can either be mapped onto the upper context
closure (preserving H) or the lower context closure (deleting H).

6 Discussion

We have defined an encoding of linear term rewriting into PBPO+ rewriting that is both an embedding
and globally termination-preserving. These properties are achievable because a PBPO+ rule allows
(i) specifying where parts of a context may occur around a pattern, (ii) ensuring that these parts are
disjoint, and (iii) deleting such parts (in our case study, such parts correspond to variable substitutions).

We submit that a rewriting framework F can be said to be a proper generalization of some other
framework G if there exists an embedding E from G toF . In this sense, PBPO+ is a proper generalization
of linear term rewriting (and DPO is not). Often we want the encoding E to have additional properties
such as the global preservation of certain properties (e.g., termination). For instance, the embedding that
interprets the TRS rule ρ = a(b(x))→ b(a(x)) as a mere swap of symbols, and thus as applicable in
any context, is an embedding that does not preserve termination globally. (Note that such an alternative
embedding is also expressible in PBPO+.)

The fact that a certain property-preserving embedding is possible is an interesting expressiveness
result for the embedding formalism. Moreover, it opens up a path to reduction arguments, as was also
considered by Nolte [15] in a different setting (Remark 63). In our case, if a PBPO+ rewrite system
is (isomorphic to) the encoding of a TRS (as defined in Definition 25), termination can be decided by
considering the decoded TRS and forgetting about the complexities of graphs. Our proof technique
extends to more general PBPO+ rewrite systems as long as the following conditions are met: the pattern
of the rules is tree-like (possibly with loops on the nodes of the pattern), the outgoing edges of nodes in
the pattern have distinct labels, and the ‘context’ and ‘variable graphs’ are disconnected (except through
the pattern) and are not duplicated by the rule.

Our provided embedding into PBPO+ does not preserve confluence globally. As shown in Re-
mark 64, the key problem is that an assumption true for terms, namely connectedness, does not hold
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for graphs. For the same reason it is currently impossible to define a termination-preserving embedding
of non-right-linear term rewriting into PBPO+: whenever a variable is duplicated, it may also lead to the
duplication of any number of disjoint components in the graph that are mapped onto the corresponding
variable closure. For future work, we intend to investigate extensions of our encoding that do preserve
confluence and termination globally even when variables are duplicated.

Adopting a broader perspective, we hope that our encoding contributes to the development of termi-
nation techniques for graph rewriting. There have been recent advances in proving termination of graph
rewriting; see for instance work by Bruggink et al. [2] and Dershowitz et al. [6]. In [6], recursive path or-
ders are generalized from term rewriting to graph transformation by decomposing the graph into strongly
connected components and a well-founded structure between them. A difficulty in this approach is that
all possible cycles around the pattern of a rule must be considered. We hope that the technique can be
extended to PBPO+ and strengthened by making use of the application conditions that exclude certain
cycles around and through the pattern.

Finally, we believe that our result is a step towards modeling other rewriting formalisms such as
lambda calculus and higher order rewriting using graph rewriting. These formalisms also rewrite tree
structures, and we expect that extensions of our zoning construction will be instrumental for this purpose.
Our goal in this respect is to model these systems in such a way that important properties like termination
and confluence are preserved globally, while at the same time keeping the modeling overhead minimal
(e.g., avoiding auxiliary rules and rewrite steps that increase the length of rewrite sequences).
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Adaptive networks model social, physical, technical, or biological systems as attributed graphs evolv-
ing at the level of both their topology and data. They are naturally described by graph rewriting, but
the majority of authors take an approach inspired by the physical sciences, combining an informal
description of the operations with programmed simulations, and systems of ODEs as the only ab-
stract mathematical description. We show that we can capture a range of social network models,
the so-called voter models, as stochastic attributed graph rewrite systems, demonstrate the benefits
of this representation and establish its relation to the non-standard probabilistic view adopted in the
literature. We use the theory and tools of graph rewriting to analyze and simulate the models and
propose a new variant of a standard stochastic simulation algorithm to recreate the results observed.

1 Introduction

Modeling and analyzing the dynamics of social networks allows scientists to understand the impact of so-
cial interactions on areas as diverse as politics (opinion formation, spread of (dis)information), economic
development, and health (spread of diseases, update of vaccines) [22, 1, 9]. Much of the more founda-
tional literature approach social network analysis from a perspective informed by statistical physics [21]
using a combination of mathematical models (differential equations) and programmed simulation, both
derived from an intuitive understanding of the operation of the network. This works well for static net-
works, where the structure is fixed and changes are to node or link attributes only, but in complex adaptive
networks [15] the interconnectedness of structure and data evolution poses additional challenges.

Stochastic typed attributed graph rewriting [16] is an obvious choice to formalize and analyze com-
plex adaptive networks. The formalism provides both tool support for simulation and analysis and an
established theory to derive mathematical models from the same rule-based descriptions, thus replacing
the informal, and sometimes vague, descriptions in natural language. A case in point are the various
voter models [11, 25, 17] which describe opinion formation in a network of agents. The operations, as
described in [11] seem clear enough.

. . . we consider two opinions (called 0 and 1) . . . ; and on each step, we pick a discordant
edge (x,y) at random . . . . With probability 1−α , the voter at x adopts the opinion of the
voter at y. Otherwise (i.e., with probability α), x breaks its connection to y and makes a
new connection to a voter chosen at random from those that share its opinion. The process
continues until there are no edges connecting voters that disagree.

Intuitively, this is a graph rewrite system of four rules over undirected graphs whose nodes are at-
tributed by 0 or 1, shown below using ◦ and •, respectively. We adopt the right-to-left notation of rules
in line with the theory of rule algebras [8, 2, 7, 6].

*Corresponding author email address: rh122@leicester.ac.uk
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• ◦\• ↼ •−◦
•

• ◦
/◦ ↼ •−◦

◦ •−• ↼ •−◦ ◦−◦ ↼ •−◦

The first pair of rules models rewiring where an agents disconnects from another one with a different
opinion to form a connection with a third agent of the same opinion. In the second pair of rules, an agent
connected to one with a different opinion adopts the opinion of the other. We could now associate rates
with these rules, resulting in a stochastic graph rewrite system that allows simulation using the SimSG
tool [12] and the derivation of differential equations using the rule algebra approach [8, 2, 7, 6].

However, on closer inspection we discover a number of discrepancies. First, the model in [11] and
related papers is probabilistic, but without time. This is an abstraction of real-world behavior in social
networks, where time is not discrete and actions not round-based. Arguably, a continuous-time model is
a better representation of this behavior. Semantically, a stochastic graph transformation system induces
a continuous-time Markov Chain (CTMC) — an established model with clear links to logics, model
checking and simulation techniques, while the operational model behind [11] and others is left informal,
but could be formalized as a discrete-time Markov chain (DTMC) or decision process (MDP) [4, 5, 8, 6].

More specifically, looking at the description of the operation, this is a two- or three-step process,
where first a conflict edge is selected at random, then a decision made based on the fixed probability
α between adopting another opinion, and rewiring which requires another random selection of a node
with the same opinion. That means, in the rewiring case, the combined behavior of the operation is
not reflected directly by the rewiring rules above, which choose all three nodes first. Also, the race
between the rewiring and adopt rules in a stochastic graph rewrite system depends on the number of
available matches (the candidates for the 3rd agent to link) while the probability is fixed in the original
formulation. Stochastic graph rewriting realizes a mass action semantics which reflects the behavior of
physical, chemical and biological processes where the frequency of actions (formally the jump rate of the
CTMC) depends on both a rate constant and the concentration or amount available of the input materials
required for the action.

In our view, the informal description of operations, lack of continuous time, and non-standard selec-
tion and execution procedure all represent weaknesses in the formulation which inhibit a natural mathe-
matical interpretation of the operational behavior of the model and consequently a formal and systematic
connection of this operational description with the simulation and equational model.

In this paper, we present an approach addressing those weaknesses by starting from a formal graph
rewrite model as operational description. We investigate the links to the existing voter models both
analytically, using the rule algebra framework to establish how to translate operations and parameters to
stochastic graph rewriting, and experimentally trying to recreate the observed emergent behavior in the
literature. Apart from making a convincing claim for the superiority of our methodological approach,
this will allow us in the future to both compare new analysis results to existing ones in the literature.

We start by introducing the model as a stochastic graph transformation system in the format accepted
by our simulation tool, then study the theory of relating the different CTMC and DTMC semantics to
support different possible conversions between models before reporting on the experimental validation
of the resulting models through simulation.

2 Voter Models as Stochastic Typed Attributed Graph Rewrite Systems

We model voter networks as instances of the type graph below (Figure 1), where Group nodes represent
undirected links connecting Agent nodes referred to by their member edges. For now, the cardinality
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of each group is exactly 2, so they are indeed a model of undirected edges (and we are planning to
generalize to groups with several members later). We see the voter network as an undirected multi graph,

GroupVotersContainer

Group

Voter * voter

group

vote : Int

*

*
member

Figure 1: Type graph of the basic voter model

i.e., parallel links between two voters v1 and v2 are permitted. That means, in our representation, v1,v2
can jointly make up one group g1 as well as another group g2. It is worth noting that the multi-graph
interpretation is never explicitly stated in [11] nor the literature building on it. However it is the only
interpretation consistent with the usual assumptions made, in particular that rewiring is always possible
after the selection of the 3rd node, which may or may not be connected to the first node v1 already, and
that the total number of edges in the graph is constant, so we have to create a new edge on rewiring even
if v1 and v2 are already connected.

In this paper we use SimSG [12] to simulate rule-based models, such as the basic voter model, for a
given start graph and rates according to the semantics of stochastic graph transformations [16]. SimSG
implements its own version of Gillespie’s well-known algorithm [14] which describes the behavior of
stochastic systems over time using a continuous-time Markov Chain with exponentially distributed tran-
sition delays. SimSG is build upon the graph transformation rule interpreter eMoflon [20], which pro-
vides the means to define and execute rules. For example, there are four rules in the basic voter model,
two dual variants each of the adopt and rewire operations. The graphs in Figure 2 show a visual repre-
sentation of these four rules as defined in the eMoflon::IBeX-GT1 syntax. In these rules, black and red
elements (--) specify context elements that need to be present in an instance graph, while green elements
(++) will be created. A pattern matcher will search for matches in an instance graph that fit these require-
ments. As shown in Figure 2, in addition to structural constraints, eMoflon allows the specification of
attribute conditions. If a match is found, the rule can be applied by deleting all graph elements matching
red elements in the rule, and creating new instances of all green elements. In addition to the struc-
tural constraints and attribute conditions shown in the example, eMoflon-GT also allows the definition
of more complex conditions, such as negative application conditions that filter out matches connected
to prohibited graph structures. Beyond the specification of rules, SimSG allows for the annotation of
rules with rates, either through value literals or statically evaluated arithmetic expressions. Most impor-
tantly, eMoflon provides SimSG with an interface to its underlying incremental graph pattern matching
engines, such as Viatra[23], Democles[24] or the recently developed HiPE2, all of which can be used to
find matches for rules and track observable patterns during simulations. During each simulation, SimSG
tracks occurrence counts of these patterns and provide the user with the option to plot these counts over
the simulation time or save them to a file.

1https://emoflon.org/#emoflonIbex
2https://github.com/HiPE-DevOps/HiPE-Updatesite
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adopt1 : Rule

v1 : Voter v2 : Voter

g : Group

≠

member member

v1.vote := 0

v1.vote == 1 && v2.vote == 0 

adopt2 : Rule

v1 : Voter v2 : Voter

g : Group

≠

member member

v2.vote := 1

v1.vote == 1 && v2.vote == 0 

<name> : <Type> Node

… :=…

<Type>

Attribute

Constraint

Edge

Node

Constraint

… ==…

Attribute

Assignment

rewire1 : Rule

v1 : Voter v2 : Voter

g : Group

≠

member member

v1.vote == 1 && v2.vote == 0 

&& v3.vote == 1 

<name> : <Type> Node

<Type>

Attribute

Constraint

Edge

Node

Constraint

… ==…

root : 

GroupVotersContainer

group --

g : Group

group

++

---- --

v3 : Voter

≠ ≠

++member

++

member

++
--

Created

Elements

Deleted

Elements

rewire2 : Rule

v1 : Voter v2 : Voter

g : Group

≠

member member

v1.vote == 1 && v2.vote == 0 

&& v3.vote == 0 <name> : <Type> Node

<Type>

Attribute

Constraint

Edge

Node

Constraint

… ==…

root : 

GroupVotersContainer

group --

g : Group

group

++

---- --

v3 : Voter

≠ ≠

++member

++member

++
--

Created

Elements

Deleted

Elements

Figure 2: Rules of the basic voter model

3 Theory: CTMCs and DTMCs via Rule-algebraic Methods

Approaches to social network modeling can be broadly classified by their underlying semantics. In
this paper, we consider the two major classes consisting of discrete-time Markov chains (DTMCs) and
continuous-time Markov Chains (CTMCs) (leaving for future work the class of Markov decision pro-
cesses). We will utilize the rule algebra formalism [8, 2, 7, 6] as our central technical tool, with CTMCs
in so-called mass-action semantics implemented via the stochastic mechanics framework [4, 5, 8, 6].
Here, the firing rate of a given rule for a system state at some time t ≥ 0 is proportional to a base rate
(i.e., a positive real parameter) times the number of admissible matches of the rule into the system state.
Note however that even in the CTMC setting, this semantics is only one of several conceivable vari-
ants, and indeed we will study in this paper also a variation of rule-based CTMC semantics wherein rule
activities in infinitesimal jumps are not weighted by their numbers of matches. In order to faithfully
implement rule-based DTMCs, we will adopt the approach of [3].
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3.1 Preliminaries: “compositional” rewriting theory

We will focus throughout this paper on the case3 of Sesqui-Pushout (SqPO) semantics [10], which under
certain conditions on the underlying base categories furnishes a “compositional” rewriting semantics [2],
i.e., supports the requisite construction of rule algebras. Since the main theme of this paper is to advocate
rewriting-based methods for implementing models, we discuss here the recent extension of the SqPO-
formalism to include rewriting rules with conditions and under the influence of constraints [7, 6]. We
refer the interested readers to [6] for the analogous formalism in the Double Pushout (DPO) setting.

Consider thus a base category C that is M -adhesive (for some class M of monomorphisms), fini-
tary, possesses an M -initial object, M -effective unions and an epi-M -factorization, and such that
all final pullback complements (FPCs) along composable pairs of M -morphisms exist (compare [6]).
Throughout this paper, we will consider the particular example of the category uGraph/T (for some
T ∈ obj(uGraph)) of typed undirected multigraphs, which according to [6] satisfies all of the aforemen-
tioned requirements.

Let us briefly recall the salient points of SqPO-type “compositional” rewriting theory:

Definition 1 (Rewriting rules). Denote by Lin(C) the set of equivalence classes of linear rewriting rules
with conditions,

Lin(C) := {R = (O o←− K i−→ I,cI)|i,o ∈M ,cI ∈ cond(C)}�∼ , (1)

where R ∼ R′ if and only if cI≡̇c′I (i.e., if the conditions are equivalent for all matches of the rules) and
the rules are isomorphic. The latter entails the existence of isomorphisms ω : O

∼=−→ O′, κ : K
∼=−→ K′ and

ι : I
∼=−→ I′ such that the obvious diagram commutes. We will adopt the convention to speak of “a” rule

R ∈ Lin(C) to mean an equivalence class of rules.

Definition 2. Given a rule R ∈ Lin(C) and an object X ∈ obj(C), an SqPO-admissible match m ∈MR(X)
is an M -morphism m : I → X that satisfies the application condition cI . Then an SqPO-type direct
derivation of X along R with a match m ∈MR(X) is defined via a commutative diagram of the form

O K I

Rm(X) X X

mm∗ FPCPO (2)

where the object Rm(X) is defined up to the universal isomorphisms of FPCs and pushouts (POs).

Note that in all of our applications, we will only consider objects up to isomorphisms, so we will in a
slight abuse of notations speak of taking direct derivations of iso-classes X ∈ obj(C)∼= along (equivalence
classes of) rules, understood as a mapping from iso-classes to iso-classes. With the focus of the present
paper upon implementation strategies, we forgo here a complete review of the concepts of compositional
rewriting theory (see e.g. [7, 6]), and limit ourselves to the following salient points. From hereon, C will
always denote a category suitable for SqPO-type rewriting.

Definition 3. Let RC denote the R-vector space “over rules” spanned by basis vectors δ (R), where
δ : Lin(C)

∼=−→ basis(RC) is an isomorphism. Let Ĉ denote the R-vector space “over states”, which
is defined via the isomorphism |.〉 : obj(C)∼= → basis(Ĉ) from isomorphism-classes of objects to basis

3Since the rewriting rules in our concrete models are linear and will not involve vertex deletions nor creations, we could
have equivalently opted for DPO- or SPO-semantics, which are well-known to coincide with SqPO-semantics in this special
situation.
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vectors of Ĉ. We introduce the notation EndR(Ĉ) to denote the space of endomorphisms on Ĉ (i.e., of
linear operators from Ĉ to itself). Then we denote by ρC : RC→ EndR(Ĉ) the morphism defined via

∀R ∈ Lin(C),X ∈ obj(C)∼= : ρC(δ (R)) |X〉 := ∑
m∈MR(X)

|Rm(X)〉 . (3)

The above definition extends to arbitrary elements of RC and Ĉ by linearity, i.e., for A = ∑
M
j=1 α jδ (R j)

and |Ψ〉 := ∑X ψX |X〉, we define ρC(A) |X〉 := ∑
M
j=1 α j ∑X ψX ρC(δ (R j)) |X〉.

Intuitively, ρC takes a rule vector in RC and delivers a transformation between state vectors, applying
the rules to the input states, and “weighing” the resulting states according to the coefficients in the rule
vector. This concept is useful in particular in order to formalize the jumps of a CTMC (see Section 3.2).

Theorem 1 (Cf. [6]). (i) The trivial rule R∅ := [(∅←∅→∅, true)]∼ ∈ Lin(C) satisfies

ρC(δ (R∅)) = IdEndR(Ĉ) . (4)

(ii) Denote by 〈| : Ĉ→ R the so-called (dual) projection vector, defined via 〈 |X〉 := 1R for all X ∈
obj(C)∼=. Extending this definition by linearity, 〈| thus implements the operation of summing
coefficients, i.e., for |Ψ〉= ∑X ψX |X〉, we define 〈 |Ψ〉 := ∑X ψX 〈 |X〉= ∑X ψX . Then ρC satisfies
the so-called SqPO-type jump-closure property:

∀R ∈ Lin(C) : 〈|ρC(δ (R)) = 〈|Ô(δ (R)) , Ô(δ (R)) := ρC(δ ([I← I→ I,cI]∼)) . (5)

The last point of the above theorem alludes to the important special case of rule-based linear oper-
ators that are diagonal in the basis of Ĉ, since these implement operations of counting patterns. In the
particular case at hand, we may combine the definition of ρC in (3) with (5) in order to obtain

〈|Ô(δ (R)) |X〉= 〈|ρC(δ (R)) |X〉= ∑
m∈MR(X)

〈 |Rm(X)〉= ∑
m∈MR(X)

1R = |MR(X)| . (6)

In this sense, Ô(δ (R)) as defined in (5) “counts” the numbers of admissible matches of R into objects.

3.2 Rule-based CTMCs

Traditionally, CTMCs based upon rewriting rules have been defined in so-called mass-action semantics.
In the rule algebra formalism, such types of CTMCs are compactly expressed as follows (with ρ ≡ ρC):

Theorem 2 (Mass-action semantics for CTMCs). Let T := {(κ j,R j)}N
j=1 denote a (finite) set of pairs

of base rates κ j ∈ R>0 and rules R j ∈ Lin(C) (for j = 1, . . . ,N) over some category C. Denote by
Prob(Ĉ) the space of (sub-)probability distributions over the state-space Ĉ, and choose an initial state
|Ψ0〉 := ∑X ψ(0)

X |X〉 ∈ Prob(Ĉ). Then the data (T , |Ψ0〉) defines a SqPO-type rule-based CTMC via the
following evolution equation for the system state |Ψ(t)〉 := ∑X ψX(t) |X〉 at time t ≥ 0:

d
dt |Ψ(t)〉= H |Ψ(t)〉 , |Ψ(0)〉= |Ψ0〉 , H := ρ(h)− Ô(h) , h :=

N

∑
j=1

κ jδ (R j) (7)

Here, we used linearity to extend the definition of the jump-closure operator Ô(.) of (5) to arbitrary
elements of RC, i.e., Ô(h) := ∑

N
j=1 κ jÔ(δ (R j)).
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However, while mass-action semantics is of key importance in the modeling of chemical reaction
systems, it is of course not the only conceivable semantics. In particular, as we shall demonstrate in the
later part of this paper, for certain applications it will prove useful to utilize alternative adjustments of
the “firing rates” of individual rules other than the one fixed in mass-action semantics.

Definition 4 (Generalized rule-based CTMC semantics). For a suitable category C, let T := {(γ j,R j,Wj)}N
j=1

be a set of triples of base rates γ j ∈ R>0, rewriting rules R j ∈ Lin(C) and (inverse) weight functions
Wj ∈ End(Ĉ)diag ( j = 1, . . . ,N). Here, End(Ĉ)diag denotes the space of diagonal operators (with respect
to the basis of Ĉ). Together with a choice of initial state |Ψ0〉 ∈ Prob(Ĉ), this data defines a rule-based
SqPO-type CTMC via the evolution equation

d
dt |Ψ(t)〉= HW |Ψ(t)〉 , |Ψ(0)〉= |Ψ0〉 , HW :=

N

∑
j=1

γ j
(
ρ(δ (R) j)− Ô(δ (R j))

) 1
W ∗j

∀F ∈ End(Ĉ)diag, |X〉 ∈ Ĉ :
1

F∗
|X〉 :=

{
|X〉 if F |X〉= 0R

1
〈|F |X〉 |X〉 otherwise.

(8)

Example 1. Given a set of pairs of base rates and rules T = {(κ j,R j)}N
j=1 for a rule-based CTMC with

mass-action semantics as in Definition 2, one may define from this transition set in particular a uniformed
CTMC with infinitesimal generator HU defined as follows (with ρ ≡ ρC):

HU :=−IdEnd(Ĉ)+
N

∑
j=1

p j ·ρ(δ (R j))
1

Ô(δ (R j))∗
, p j :=

κ j

∑
N
j=1 κ j

. (9)

Note in particular that since all base rates κ j are positive real numbers, the parameters p j are proba-
bilities. Moreover, applying HU to an arbitrary basis state |X〉, one finds that the overall jump rate (i.e.,
minus the coefficient of the diagonal part of HU ) is precisely equal to 1, so that the p j in the non-diagonal
part of HU encodes in fact the probability for the “firing” of rule R j, regardless of the numbers of admis-
sible matches of R j into the given state |X〉. Finally, under the assumption that both the mass-action and
the uniformed CTMC admit a steady state, we find by construction that

lim
t→∞

d
dt |Ψ(t)〉= 0 ⇔ lim

t→∞
H |Ψ(t)〉= 0 ⇔ lim

t→∞
HU
(
Ô(h) · |Ψ(t)〉

)
= 0 . (10)

Letting |ΨU(t)〉 denote the system state at time t of the “uniformed” CTMC with generator HU , and
assuming |Ψ(0)〉= |ΨU(0)〉, the above entails in particular that |ΨU(t→ ∞)〉= (Ô(h)∗)−1 · |Ψ(t→ ∞)〉,
i.e., the steady state of the CTMC generated by HU and the one of the CTMC generated by H are related
by an operator-valued rescaling (via the operator (Ô(h)∗)−1, and thus in general in non-constant fashion).
A similar construction will play a key role when studying rule-based discrete-time Markov chains.

Another interesting class of examples is motivated via the “Potsdam approach” to probabilistic graph
transformation systems as advocated in [19].

Example 2 (LCM-construction). Given a generalized CTMC with infinitesimal generator HW specified
as in Definition 4, construct the least common multiple (LCM) L of the inverse weight functions:

L := LCM(W1, . . . ,WN) . (11)

Then we define the LCM-variant of the CTMC as

HLCM := HW ·L . (12)
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Figure 3: Specification of the adaptive voter model (AVM) according to [11] via a probabilistic decision
tree (black arrows), and as combined one-step probabilistic transitions (orange arrows).

By construction, HLCM does not contain any operator-valued inverse weights (in contrast to the original
HW ). Moreover, for certain choices of (inverse) weight functions W1, . . . ,WN , the LCM-construction
results in an infinitesimal generator HLCM in which all contributing rules have the same input motif I,
thus making contact with the methodology of [19].

3.3 Rule-based DTMCs

Despite their numerous applications in many different research fields, to date discrete-time Markov
chains (DTMCs) that are based upon notions of probabilistic rewriting systems have not been consid-
ered in quite a comparable detail as the CTMC constructions. Following [3], we present here a possible
general construction of rule-based DTMC via a rule-algebraic approach:

Definition 5. For a suitable category C, let T = {(γ j,R j,Wj)}N
j=1 be a (finite) set of triples of positive

coefficients γ j ∈ R>0, rewriting rules R j ∈ Lin(C) and (inverse) weight functions Wj ∈ End(Ĉ)diag ( j =
1, . . . ,N), with the additional constraint that

N

∑
j=1

γ jÔ(δ (R j)) ·
1

W ∗j
= IdEnd(Ĉ) . (13)

Then together with an initial state |Φ0〉 ∈Prob(Ĉ), this data defines a SqPO-type rule-based discrete-time
Markov chain (DTMC), whose n-th state (for non-negative integer values of n) is given by

|Φn〉 := Dn |Φ0〉 , D :=
N

∑
j=1

γ jρ(δ (R j)) ·
1

W ∗j
(ρ ≡ ρC) . (14)

Example 3 (Adaptive Voter Model). As a typical example of a social network model, consider the
specification of the adaptive voter model (AVM) in the variant according to Durrett et al. [ref], which
has as its input parameters an initial graph state |Φ0〉= |X0〉 (with N(0)

• and N(0)
◦ vertices of types • and

◦, respectively, and with NE undirected edges) and a probability 0 ≤ α ≤ 1, and whose transitions as
depicted in Figure 3 are given via a form of a probabilistic decision procedure in several steps (black
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arrows): in each round of the AVM, an edge is chosen at random; if the edge is linking two nodes
of different kind, with probability p, one of the rewiring rules is “fired”, or with probability (1− p)
one of the adopt rules, respectively; otherwise, i.e., if the chosen edge is linking two vertices of the
same kind, no action is performed. As annotated in dark blue, each phase of this probabilistic decision
procedure is dressed with a probability (and so that all probabilities for a given phase sum to 1). These
probabilities in turn depend upon constant parameters (here, p and NE), as well as on pattern counts N•,
N◦, N•−•, N•−◦ and N◦−◦ that dynamically depend on the current system state. Note that NV := N•+N◦
and NE = N•−•+N•−◦+N◦−◦ are conserved quantities in this model, since none of the transitions create
or delete vertices, but at most exchange vertex types4, and since the transitions manifestly preserve the
overall number of edges.

Upon closer inspection, the transition probabilities may be written in a form that permits to compare
the “firing” semantics to the mass-action and to the generalized semantics used in rule-based CTMCs.
According to (6), we may implement the operation of counting patterns via linear operators based upon
“identity rules”, since for arbitrary graph patterns P and graph states |X〉,

NP(X) = 〈| ÔP |X〉 , ÔP := ρ(δ ([P← P→ P, true]∼)) . (15)

Since rule algebra theory is not the main topic of the present paper, we provide below some operator
relations without derivation5, noting that they may be computed utilizing the fact that ρ is a so-called
representation of the SqPO-type rule algebra (cf. [6, Thm. 3]):

Ô•−◦Ôx = Ô•−◦ x + Ô•−◦ ⇔ Ô•−◦ x = Ô•−◦(Ôx−1) (x ∈ {•,◦}) , (16)

which permit us to interpret the AVM model in the following way as a rule-based DTMC: starting by
computing the overall one-step transitions and their respective probabilities (orange arrows in Figure 3),
and using the above operator relations, we find the rule-based DTMC generator

DAV M =
α

2NE
ρ
(

δ
(
• ◦\• ↼ •−◦

•
))

1
(Ô•−1)∗

+
α

2NE
ρ
(

δ
(
• ◦
/◦ ↼ •−◦

◦
))

1
(Ô◦−1)∗

(17a)

+
(1−α)

2NE
ρ (δ (•−• ↼ •−◦))+ (1−α)

2NE
ρ (δ (◦−◦ ↼ •−◦)) (17b)

+
1

NE
ρ (δ (•−• ↼ •−•))+ 1

NE
ρ (δ (◦−◦ ↼ ◦−◦)) . (17c)

Interestingly, the particular semantics for the “firing” of transitions as encoding in this DTMC gener-
ator is neither a variant of mass-action semantics (wherein each rule would fire with a rate dependent
on its number of matches, and so that the overall firing rate of all rules would be utilized to normalize
all state-dependent firing rates to probabilities as described in Definition 5), nor do all transitions have
state-independent, i.e., constant rates. Instead, the rewiring rules (17a) have rates proportional to N•−◦;
according to (16), we have that N•−◦ = N•−◦ x/(NX − 1)∗ (for x ∈ {•,◦}), whence the firing rates of the

4Strictly speaking, we implement the two vertex types • and ◦ as attributes in our SimSG implementation, which in the
theoretical setting can be emulated via using self-loops of two different types; evidently, this amounts merely to a slight
modification of the type graph plus the enforcement of some structural constraints (compare [6]), thus for notational simplicity,
we do not make this technical detail explicit in our diagrams.

5In fact, for the simple case at hand, one may derive the relations heuristically, noting that applying Ô•−◦Ôx to some
graph state amounts to first counting all vertices of type x (for x ∈ {•,◦}), followed by counting all •−◦ edges; performing
this operation in one step, this amounts to either counting the x-type vertices separately (i.e., counting the pattern •−◦ x), or
counting the x-type vertices on the same location as counting the •−◦ patterns, thus explaining the two contributions in (16).
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rewiring transitions of the AVM model are found to be proportional to a state-dependent fraction of their
mass-action rates! In contrast, the adoption transitions (17b) as well as the inactive transitions (17c)
are found to follow standard mass-action semantics, which might raise the question of whether the over-
all “mixed” semantics chosen for the AVM model indeed reflect the intended intuitions and empirical
findings.

Finally, in view of simulation experiments, we would like to advocate the use of dedicated and high-
performance Gillespie-style stochastic graph transformation software such as in particular SimSG [12]
(cf. Section 4). More concretely, one may take advantage of the rule-algebraic formulation of DTMCs
and CTMCs to identify for a given DTMC with generator D a particular CTMC based upon the uniform
infinitesimal generator HU := D− IdEnd(Ĉ), so that (if both limits exist) the two alternative probabilistic
systems have the same limit distribution (i.e., |Φ∞〉= lim

t→∞
|Ψ(t)〉):

D |Φ∞〉= |Φ∞〉 ⇔ (D− IdEnd(Ĉ)) |Φ∞〉= 0 ↔
( d

dt |Ψ(t)〉
)∣∣

t→∞
= (HU |Ψ(t)〉)

∣∣
t→∞

= 0 (18)

However, CTMC simulations for rules that are not following mass-action semantics are non-standard to
date, which is why it is also of interest to consider two particular mass-action type alternative CTMC
models that are motivated by the original AVM model:

• A “standard” mass-action semantics (MAS) CTMC, where the rewriting rules in DAV M are defined
to act in mass-action semantics (with the base rates κ•,κ◦,α•,α◦ ∈ R>0 however not fixed in any
evident way from the original AVM model interpretation):

HMAS = κ• ·ρ
(

δ
(
• ◦\• ↼ •−◦

•
))

+κ◦ ·ρ
(

δ
(
• ◦
/◦ ↼ •−◦

◦
))

(19a)

+α• ·ρ (δ (•−• ↼ •−◦))+α◦ ·ρ (δ (◦−◦ ↼ •−◦)) (19b)

− Ô•−◦(κ•(Ô•−1)+κ◦(Ô◦−1)+α•+α◦) . (19c)

Note that if we let ρ(hMAS) := (19a)+ (19b), then the terms in (19c) are indeed found to be equal
to −Ô(hAV M) (utilizing (16) to simplify terms) as required by Theorem 2.

• A least-common-multiple (LCM) variant which is computable from DAV M via the method presented
in Example 2 (with constant and operator-valued contributions to firing rates in orange):

HLCM =
α

2NE
ρ
(

δ
(
• ◦\• ↼ •−◦

•
))

(Ô◦−1)+
α

2NE
ρ
(

δ
(
• ◦
/◦ ↼ •−◦

◦
))

(Ô•−1) (20a)

+
(1−α)

2NE
ρ (δ (•−• ↼ •−◦))(Ô•−1)(Ô◦−1)

+
(1−α)

2NE
ρ (δ (◦−◦ ↼ •−◦))(Ô•−1)(Ô◦−1)

(20b)

− 1
NE

Ô•−◦(Ô•−1)(Ô◦−1) . (20c)

Expanding terms in HLCM via utilizing once again the representation property of ρ (not presented
here for brevity; cf. [6, Thm. 3] for the details), we may write HLCM in the equivalent form below,
which exhibits this CTMC model as a particular instance of a model for which all rules have the
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same input motif (and thus as a model in the spirit of the “Potsdam approach” as in [19]):

HLCM =
α

2NE
ρ
(

δ
(
• ◦|• ◦ ↼

•−◦
• ◦

))
+

α
2NE

ρ
(

δ
(
• ◦|• ◦ ↼

•−◦
• ◦

))
(21a)

+
1−α
2NE

ρ
(

δ
(
•−•
• ◦ ↼

•−◦
• ◦

))
+

1−α
2NE

ρ
(

δ
(
◦−◦
• ◦ ↼

•−◦
• ◦

))
(21b)

− 1
NE

Ô•−◦
• ◦

(21c)

4 Simulating the Models

In Section 3.3 we presented several ways of converting a DTMC-based model into a CTMC-based one.
The first (M1) is based on introducing weight factors correcting for the deviation of the probabilistic
view of the DTMC from the CTMC mass action semantics. This allows us to use a modified stochastic
simulation algorithm to recover the behavior of the DTMC. Then we have the mass action stochastic
graph transformation system (M2) as introduced in Section 2, in our view the most natural and closest
to reality due to its use of continuous time, but in order to relate to the original probabilistic formulation
we have to sample rate constants experimentally until the behavior matches that observed in the given
model. Finally we consider a model (M3) obtained by mutually extending the rules of the system to the
same left-hand side. Then all rules have the same number of matches and hence rates directly reflect
probabilities.

In this section we simulate these models with the CTMC-based SimSG tool [12] to see how, with
suitably chosen parameters, their behavior matches that of the original formulation [11]. In particular,
we want to answer the following questions.

RQ1: Can we reproduce the results of [11] by simulating (M1) in SimSG?

RQ2: What rates do we have to use to reproduce the behavior of [11] in (M2)?

RQ3: Does (M3) with rates reflecting the probabilities of [11] lead to the same overall behavior?

Note that in (M1) and (M2) rates are derived analytically based on the theory in Section 3.3 while they are
determined experimentally for (M3). As in [11] initial graphs are generated randomly based on a fraction

(a) Initial graph (u=0.5) (b) Giant component (c) Fragmented graph

Figure 4: Graphs before and after simulation
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u of agents voting 0 (where u = 0.5 gives a 50/50 split between opinions) by deciding for each pair of
nodes with probability v if they should be linked. This means that, with 100 voters and v= 0.04, we create
an Erdös-Rényi graph with 400 links and average degree 8. According to [11] we expect to see one of two
behaviors, depending on the probability α of rewiring (vs. 1−α for adoption) for a given discordant link.
With α > 0.43 rewiring causes a fragmentation of the graph into homogeneous connected components;
otherwise adoption leads to the dominance of a single opinion (usually the initial majority) in a giant
component. Visually we indicate opinion 1 in green and opinion 0 in red. Homogeneous components
are highlighted in their respective color, whereas heterogeneous components are shown in gray. For
example, Figure 4(a) shows the initial graph. In the limit, if the rates favor the adopt rules we obtain a
graph as in Figure 4(b), while Figure 4(c) shows a possible result of dominant rewiring where the graph
has split split into two components, one for each opinion.
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(b) CTMC Version of the Voter Model

Figure 5: Simulation results

To answer RQ1 we use the rules as presented in Section 2, but modify the simulation algorithm by
the weight factors derived in Section 3.3. This produces a simulation matching that of a discrete time
Markov chain. While fixing the model size, we perform a nested parameter sweep over α , the static
probability of rewiring, and over the fraction u of agents voting 0. The results are shown in Figure 5(a).
On the y-axis we plot the fraction of voters with the minority opinion in the final graph, while the x-
axis shows the α value for each simulation. Furthermore, each set of symbols in the figure represents a
different opinion ratio u in the initial graph. As we can see, independently of the u there is a clear point
after which an increase in α leads to a separation of voters by opinion, which implies a segmentation of
the graph. In turn, if α is low, the minority opinion disappears. Thus, Figure 5(a) reflects very closely
the findings of [11], with only a minor deviation of the value of α separating the two outcomes.

For RQ2, we execute the same rules with our standard implementation simulation algorithm reflect-
ing mass action CTMC semantics. While fixing the rate of the adopt rules as 1, we perform a nested
parameter sweep over α , in this case denoting the rate of the rewiring rules, and the minority fraction u.
The results are shown in Figure 5(b), again with the y-axis showing the fractions of voters in the minor-
ity in each final graph and the x-axis tracking the α values. As before, each set of symbols represents
a different initial fraction u. In contrast to Figure 5(a), here the threshold of α at which the final graph
becomes segmented is orders of magnitudes smaller. This is a result of the CTMC-based simulation
algorithm, that obtains the rule application probability by multiplying a rule’s match count with its static
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rate. Intuitively, the set of matches for each of the adopt rules consists of all connected pairs of voters
v1,v2 of different opinion. Instead, the set of matches of the rewire rules is made up by the Cartesian
product of this first set with the set of voters sharing the opinion of v1. To find the same balancing point
as in the probabilistic model, this “unfair advantage” of the rewire rules is compensated for by a very
low rate.
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Figure 6: Simulation results of the alternative CTMC Version described by the rules in equation (21)

Finally, to address RQ3 we perform simulations using adopt and rewire rules extended to a common
left-hand side consisting of two connected voters v1,v2 of conflicting opinions plus one extra voter each
of opinion 0 and 1. By the same argument as above this leads to a large increase in the number of matches
and hence poses scalability challenges to the simulation. To address this we used a smaller initial graph
of 50 Voters and 200 groups and executed only 10 simulation runs per parameter configuration rather
than 40 as in the other two models. (In each case, configurations range across 3 values for u and 7 values
for α totaling 21 parameter configurations for each model.) The results are shown in Figure 6 using the
same layout as before. It is interesting that, despite the high degree of activity in this model due to the
very large match count, it displays almost the same behavior as the DTMC version (M1), even down to
the α threshold.

The limited scalability of this approach is in part due to the global nature of the requirement that all
rules share the same left-hand side. In the MDP-based approach of [19] this applies only to the subsets of
rules defining the same action. One could then consider the four alternatives of rewire and adopt as cases
of the same action of resolving a conflict edge, leading to a probabilistic graph transformation system
with one rule. An analysis of the relation of mass-action CTMC with MDP-based semantics, however,
is beyond the scope of this paper.

Social network analysis of the voter model and its variants is limited to a theoretical level, exploring
mechanisms resulting in certain emergent phenomena that are observable in real-life networks, but are
not quantified using real data. For a deeper quantitative analysis of phenomena such as the spread of
opinions or the fragmentation of networks, the parameters of our rule-based models need to be matched
to real social network data where such is available. This means, in particular, to determine the rates of
the rules, e.g., from observations of pattern frequencies.

Such approaches are well established in chemical and biological modeling where statistical methods
are used to derive rates of reaction rules from concentrations, i.e., relative pattern frequencies describing
the ratios of the different types molecules [18, 13]. Instead, the derivation of an equational model from
the operational rule-based description based on the rule algebra approach described in this paper could
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allow for an analytical approach where rates are determined by solving a system of equations. The
precise conditions under which this is possible are a subject of future research.

5 Conclusion

In this paper we analyzed the non-standard semantics behind the formulation of adaptive system models
in the literature. For a simple but prototypical example, we focused specifically on the voter models
of opinion formation in social networks. We analyzed the non-standard semantics behind these models
and established that they can be seen as Discrete-Time Markov Chains (DTMCs). In order to start
the study of such models using the concepts, theories and tools of stochastic graph transformations
(SGTS), we formalized the semantic relation between the rule-based specification by SGTS of mass-
action Continuous-Time Markov Chains (CTMCs) with the DTMC-based semantics, identifying two
systematic ways by which an SGTS can be derived from a DTMC-based model while preserving the
behavior in the limit.

In the first derivation, this leads to a generalized notion of SGTS with weight factors correcting for
the mass-action component represented by the dependency of the jump rate on the number of matches
for each rule. This new type of SGTS is supported by a generalized simulation algorithm supporting
the analysis of DTMC-based probabilistic graph transformation systems which, to our knowledge, is
original. The second derivation converts the rules of the system by extending them to the same left-
hand sides, producing a model resembling Markov-Decision Process (MDP)-based probabilistic graph
transformation rules.

Apart from the theoretical analysis, we validate both resulting systems through simulations, estab-
lishing that they reproduce the expected behavior of the model. We also create a direct model of the
same system as an SGTS with standard mass-action CTMC semantics and succeed in determining its
parameters experimentally to match the expected behavior. We conclude that we can use standard mass-
action stochastic GTS to model the phenomena expressed by the voter models in the literature, providing
a starting point for further more elaborate modeling and analyses.

In future work we want to study more complex adaptive networks, including variations on the voter
model with groups of more than two members, opinion profiles for a set of topics instead of a single
opinion per voter, and including concepts such as influencers (who actively try to link to and persuade
others), or zealots (who do not change their opinions). We are also planning to study how to match
models to social network data. On the foundational side, we are planning optimizations to the simulation
algorithm and a study of the relation between mass-action CTMC and MDP semantics of probabilistic
graph transformations. We can also derive and study differential equations (ODEs) from our SGTS
using the rule-algebra formalism. This provides a more scalable solution to analyzing their behavior
complementing the simulation-based approach.
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Di Ruscio & Dániel Varró, editors: Theory and Practice of Model Transformations, Lecture Notes in Com-
puter Science 8568, Springer International Publishing, Cham, pp. 138–145, doi:10.1007/978-3-319-08789-
4 10.

[21] Mark Newman (2008): The physics of networks. Physics Today 61(11), pp. 33–38, doi:10.1063/1.3027989.
[22] Jonathan M Read, Ken T.D Eames & W. John Edmunds (2008): Dynamic social networks and the impli-

cations for the spread of infectious disease. Journal of The Royal Society Interface 5(26), pp. 1001–1007,
doi:10.1098/rsif.2008.0013.
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We show how a particular variety of hierarchical nets, where the firing of a transition in the parent net
must correspond to an execution in some child net, can be modelled utilizing a functorial semantics
from a free category – representing the parent net – to the category of sets and spans between
them. This semantics can be internalized via Grothendieck construction, resulting in the category
of executions of a Petri net representing the semantics of the overall hierarchical net. We conclude
the paper by giving an engineering-oriented overview of how our model of hiearchic nets can be
implemented in a transaction-based smart contract environment.

1 Introduction

This paper is the fourth instalment in a series of works [22, 21, 20] devoted to describing the semantics of 
extensions of Petri nets using categorical tools.

Category theory has been applied to Petri nets starting in the nineties [29]; see also [6, 11, 8, 7, 3, 10, 
5, 9, 12, 4]. The main idea is that we can use different varieties of free monoidal categories to describe 
the executions (or runs) of a net [28, 18]. These works have been influential since they opened up an 
avenue of applying high-level methods to studying Petri nets and their properties. For instance, in [2] the 
categorical approach allowed to describe glueing of nets leveraging on colimits and double categories, 
while category-theory libraries such as [17] can be leveraged to implement nets in a formally verified way. 
These libraries implement category theory directly, so that one could translate the categorical definitions 
defining some model object directly and obtain an implementation.

In [22], we started another line of research, where we were able to define a categorical semantics for 
coloured nets employing monoidal functors. The Grothendieck construction was then used to internalize 
this semantics, obtaining the well-known result that coloured nets can be “compiled back” to Petri nets.

In [21, 20], we extended these ideas further, and we were able to characterize bounded nets and 
mana-nets – a new kind of nets useful to model chemical reactions – in terms of generalized functorial 
semantics.

This approach, based on the correspondence between slice categories and lax monoidal functors to 
the category of spans [31], has still a lot to give. In this paper, we show how it can be used to model 
hierarchical nets.

There are a lot of different ways to define hierarchical nets [24, 16, 30, 23, 14], which can be seen as a 
graph-based model. It means that we have one “parent” Petri net and a bunch of “child” nets. A transition
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firing in the parent net corresponds to some sort of run happening in a corresponding child net. The main
net serves to orchestrate and coordinate the executions of many child nets in the underlayer.

This paper will contain very little new mathematics. Instead, we will reinterpret results obtained
in [22] to show how they can be used to model hierarchical nets, moreover, in a way that makes sense
from an implementation perspective.

It is worth noting that category theory in this paper is used in a way that is slightly different than the
usage in graph transformations research: We won’t be using category theory to generalize definitions
and proofs to different classes of graph(-related) objects. Instead, we will employ categorical concepts to
actually build a semantics for hierarchical Petri nets.

2 Nets and their executions

Definition 1 (Monad, comonad). Let C be a category; a monad on C consists of an endofunctor T : C→ C

endowed with two natural transformations
• µ : T ◦T ⇒ T , the multiplication of the monad, and

• η : idC⇒ T , the unit of the monad,
such that the following axioms are satisfied:

• the multiplication is associative, i.e. the diagram

T ◦T ◦T
T∗µ //

µ∗T
��

T ◦T

µ

��
T ◦T

µ
// T

is commutative, i.e. the equality of natural transformations µ ◦ (µ ∗T ) = µ ◦ (T ∗µ) holds;

• the multiplication has the transformation η as unit, i.e. the diagram

T
η∗T // T ◦T

µ

��

T
T∗ηoo

T

is commutative, i.e. the equality of natural transformations µ ◦ (η ∗T ) = µ ◦ (T ∗η) = idT holds.
Dually, let C be a category; a comonad on C consists of an endofunctor T : C→ C endowed with two
natural transformations

• σ : T ⇒ T ◦T , the comultiplication of the comonad, and

• ε : T ⇒ idC, the counit of the comonad,
such that the following axioms are satisfied:

• the comultiplication is coassociative, i.e. the diagram

T ◦T ◦T ooT∗σOO

σ∗T

T ◦TOO
σ

T ◦T oo
σ

T

is commutative.
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• the comultiplication has the transformation ε as counit, i.e. the diagram

T oo ε∗T T ◦TOO
σ

T//T∗ε

T

is commutative.

Definition 2 (Bicategory). A (locally small) bicategory B consists of the following data.

1. A class Bo of objects, denoted with Latin letters like A,B, . . . .

2. A collection of (small) categories B(A,B), one for each A,B ∈Bo, whose objects are called 1-cells
or arrows with domain A and codomain B, and whose morphisms α : f ⇒ g are called 2-cells or
transformations with domain f and codomain g; the composition law ◦ in B(A,B) is called vertical
composition of 2-cells.

3. A horizontal composition of 2-cells

�B,ABC : B(B,C)×B(A,B)→B(A,C) : (g, f ) 7→ g� f

defined for any triple of objects A,B,C. This is a family of functors between hom-categories.

4. For every object A ∈Bo there is an arrow idA ∈B(A,A).

To this basic structure we add

1. a family of invertible maps α f gh : ( f �g)�h∼= f �(g�h) natural in all its arguments f ,g,h, which
taken together form the associator isomorphisms;

2. a family of invertible maps λ f : idB� f ∼= f and ρ f : f � idA ∼= f natural in its component f : A→ B,
which taken together form the left unitor and right unitor isomorphisms.

Finally, these data are subject to the following axioms.

1. For every quadruple of 1-cells f ,g,h,k we have that the diagram

(( f �g)�h)� k

α f ,g,h�k
��

α f g,h,k // ( f �g)� (h� k)
α f ,g,hk // f � (g� (h� k))

( f � (g�h))� k
α f ,gh,k

// f � ((g�h)� k)

f�αg,h,k

OO

commutes.

2. For every pair of composable 1-cells f ,g,

( f � idA)�g

ρ f�g &&

aA,idA,g // f � (idA� g)

f�λgxx
f �g

commutes.
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Definition 3 (Bimodule). Given a bicategory B having finite colimits (in the 2-categorical sense of [25]),
define the 2-category Mod(B) of bimodules as in [36, p. 2.19]:

• 0-cells are the monads in B;

• 1-cells T → S are bimodules, i.e. 1-cells H : C→ D (assuming T is a monad on C, and S a monad
on D) equipped with suitable action maps: ρ : HT →H and λ : SH→H satisfying suitable axioms
expressing the fact that T acts on the right over H, via ρ (resp., S acts on the left on H, va λ );

• 2-cells are natural transformations α : H⇒ K : T → S compatible with the action maps.

Definition 4 (Pseudofunctor, (co)lax functor). Let B,C be two bicategories; a pseudofunctor consists of

1. a function Fo : Bo→ Co,

2. a family of functors FAB : B(A,B)→ C(FA,FB),

3. an invertible 2-cell µ f g : F f ◦Fg⇒ F( f g) for each A
g−→ B

f−→ C, natural in f (with respect to
vertical composition) and an invertible 2-cell η : η f : idFA⇒ F(idA), also natural in f .

These data are subject to the following commutativity conditions for every 1-cell A→ B:

F f ◦ idA
ρF f //

F f∗η
��

F f

F(ρ f )
��

idB ◦F f

η∗F f
��

λF f // F f

F(λ f )
��

F f ◦F(idA) µ f ,idA

// F( f ◦ idA) F(idB)◦F f
µidB, f

// F(idB ◦ f )

(F f ◦Fg)◦Fh
αF f ,Fg,Fh //

µ f g∗Fh
��

F f ◦ (Fg◦Fh)

F f∗µgh

��
F( f g)◦Fh

µ f g∗Fh
��

F f ◦F(gh)

µ f ,gh

��
F(( f g)h)

Fα f gh

// F( f (gh))

(we denote invariably α,λ ,ρ the associator and unitor of B,C).
A lax functor is defined by the same data, but both the 2-cells µ : F f ◦Fg⇒ F( f g) and η : idFA⇒

F(idA) can be non-invertible; the same coherence diagrams in Definition 4 hold. A colax functor reverses
the direction of the cells µ,η , and the commutativity of the diagrams in Definition 4 changes accordingly.

2.1 Categorical Petri nets

Notation 1. Let S be a set; a multiset is a function S→ N. Denote with S⊕ the set of multisets over S.
Multiset sum and difference (only partially defined) are defined pointwise and will be denoted with ⊕ and
	, respectively. The set S⊕ together with ⊕ and the empty multiset is isomorphic to the free commutative
monoid on S.
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Definition 5 (Petri net). A Petri net is a pair of functions T
s,t−→ S⊕ for some sets T and S, called the set of

places and transitions of the net, respectively. s, t are called input and output functions, respectively, or
equivalently source and target.

A morphism of nets is a pair of functions f : T → T ′ and g : S→ S′ such that the following square
commutes, with g⊕ : S⊕→ S′⊕ the obvious lifting of g to multisets:

S⊕ T S⊕

S′⊕ T ′ S′⊕

s

s′ t ′

t

g⊕ g⊕f

Petri nets and their morphisms form a category, denoted Petri. Details can be found in [29].

Definition 6 (Markings and firings). A marking for a net T
s,t−→ S⊕ is an element of S⊕, representing a

distribution of tokens in the net places. A transition u is enabled in a marking M if M	 s(u) is defined.
An enabled transition can fire, moving tokens in the net. Firing is considered an atomic event, and the
marking resulting from firing u in M is M	 s(u)⊕ t(u). Sequences of firings are called executions.

The main insight of categorical semantics for Petri nets is that the information contained in a given
net is enough to generate a free symmetric strict monoidal category representing all the possible ways
to run the net. There are multiple ways to do this [32, 18, 19, 28, 1]. In this work, we embrace the
individual-token philosophy, where tokens are considered distinct and distinguishable and thus require the
category in Definition 7 to have non-trivial symmetries.

Definition 7 (Category of executions – individual-token philosophy). Let N : T
s,t−→ S⊕ be a Petri net. We

can generate a free symmetric strict monoidal category (FSSMC), F(N), as follows:

• The monoid of objects is the free monoid generated by S. Monoidal product of objects A,B is
denoted with A⊗B.

• Morphisms are generated by T : each u ∈ T corresponds to a morphism generator (u,su, tu),
pictorially represented as an arrow su u−→ tu; morphisms are obtained by considering all the formal
(monoidal) compositions of generators and identities.

A detailed description of this construction can be found in [28].

In this definition, objects represent markings of a net. For instance, the object A⊕A⊕B means “two
tokens in A and one token in B”. Morphisms represent executions of a net, mapping markings to markings.
A marking is reachable from another one if and only if there is a morphism between them. An example is
provided in Fig. 1.

3 Hierarchical nets

Now we introduce the main object of study of the paper, hierarchical nets. As we pointed out in Section 1,
there are many different ways to model hierarchy in Petri nets [24], often incompatible with each other. We
approach the problem from a developer’s perspective, wanting to model the idea that “firing a transition”
amounts to call another process and waiting for it to finish. This is akin to calling subroutines in a piece of
code. Moreover, we do not want to destroy the decidability of the reachability relation for our nets [15],
as it happens for other hierarchical models such as the net-within-nets framework [26]. We consider this
to be an essential requirement for practical reasons.
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Figure 1: Graphical representation of a net’s execution.

Figure 2: A hierarchical net.

We will postpone any formal definition to Section 5. In the present work, we focus on giving an
intuitive explanation of what our requirements are.

Looking at the net in Fig. 2, we see a net on the top, which we call parent. To each transition of the
parent net is attached another net, which we call child. Transitions can only have one child, but the parent
net may have multiple transitions, and hence multiple children overall. Connecting input and output
places of a transition in the parent net with certain places in the corresponding child, we can represent the
orchestration by saying that each time a transition in the parent net fires, its input tokens are transferred to
the corresponding child net, that takes them across until they reach a place connected with the output place
in the parent net. This way, the atomic act of firing a transition in the parent net results in an execution of
the corresponding child.

Figure 3: Replacing transitions in the parent net of Fig. 2 with its children.
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Notice that we are not interested in considering the semantics of such hierarchical net to be akin to the
one in Fig. 3, where we replaced transitions in the parent net with their corresponding children. There are
two reasons for this: First, we want to consider transition firings in the parent net as atomic events, and
replacing nets as above destroys this property. Secondly, such replacement is not so conceptually easy
given that we do not impose any relationship between the parent net’s topologies and its children. Indeed,
the leftmost transition of the parent net in Fig. 2 consumes two inputs, while the corresponding leftmost
transition in its child only takes one. How do we account for this in specifying rewriting-based semantics
for hierarchical nets?

4 Local semantics for Petri nets

We concluded the last section pointing out reasons that make defining a semantics for hierarchical nets
less intuitive than one would initially expect. Embracing an engineering perspective, we could get away
with some ad-hoc solution to conciliate that parent and child net topologies are unrelated. One possible
way, for instance, would be imposing constraints between the shapes of the parent net and its children.
However, in defining things ad-hoc, the possibility for unforeseen corner cases and situations we do not
know how to deal with becomes high. To avoid this, we embrace a categorical perspective and define
things up to some degree of canonicity.

Making good use of the categorical work already carried out on Petri nets, our goal is to leverage it
and get to a plausible definition of categorical semantics for hierarchical nets. Our strategy is to consider
a hierarchical net as an extension of a Petri net: The parent net will be the Petri net we extend, whereas
the children nets will be encoded in the extension.

This is precisely the main idea contained in [22], that is, the idea of describing net extensions with
different varieties of monoidal functors. Indeed, we intend to show how the theory presented in [22], and
initially serving a wholly different purpose, can be reworked to represent hierarchical nets with minimal
effort.

As for semantics, we will use strict monoidal functors and name it local because the strict-monoidality
requirement amounts to endow tokens with properties that cannot be shared with other tokens. To
understand this choice of naming a little bit better, it may be worth comparing it with the notion of
non-local semantics, defined in terms of lax-monoidal-lax functors, that we gave in [21].

Definition 8 (Local semantics for Petri nets). Given a strict monoidal category S, a Petri net with a local
S-semantics is a pair

(
N,N]

)
, consisting of a Petri net N and a strict monoidal functor

N] : F(N)→ S.

A morphism F :
(
M,M]

)
→
(
N,N]

)
is just a strict monoidal functor F : F(M)→ F(N) such that M] =

F #N], where we denote composition in diagrammatic order; i.e. given f : c→ d and g : d→ e, we denote
their composite by ( f #g) : c→ e.

Nets equipped with S-semantics and their morphisms form a monoidal category denoted PetriS, with
the monoidal structure arising from the product in Cat.

In [22], we used local semantics to describe guarded Petri nets, using Span as our category of choice. We
briefly summarize this, as it will become useful later.

Definition 9 (The category Span). We denote by Span the 1-category of sets and spans, where isomorphic
spans are identified. This category is symmetric monoidal. From now on, we will work with the strictified
version of Span, respectively.
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Notation 2. Recall that a morphism A→ B in Span consists of a set S and a pair of functions A← S→ B.
When we need to extract this data from f , we write

A
f1←− S f

f2−→ B

We sometimes consider the span as a function f : S f → A×B, thus we may write f (s) = (a,b) for s ∈ S f

with f1(s) = a and f2(s) = b.

Definition 10 (Guarded nets with side effects). A guarded net with side effects is an object of PetriSpan.
A morphism of guarded nets with side effects is a morphism in PetriSpan.

Example 1. Let us provide some intuition behind the definition of PetriSpan.
Given a net N, its places (generating objects of F(N)) are sent to sets. Transitions (generating

morphisms of F(N)) are mapped to spans. Spans can be understood as relations with witnesses, provided
by elements in the apex of the span: Each path from the span domain to its codomain is indexed by some
element of the span apex, as it is shown in Fig. 4. Witnesses allow considering different paths between
the same elements. These paths represent the actions of processing the property a token is enowed with
according to some side effect. Indeed, an element in the domain can be sent to different elements in the
codomain via different paths. We interpret this as non-determinism: the firing of the transition is not only
a matter of the tokens input and output; it also includes the chosen path, which we interpret as having
side-effects interpreted outside of our model.

In Fig. 4 the composition of paths is the empty span: Seeing things from a reachability point of view, the

s1

s2

s3
z2

z1

Figure 4: Semantics in Span

process given by firing the left transition and then the right will never occur. This is because the rightmost
transition has a guard that only accepts yellow tokens, so that a green token can never be processed by it.
This is witnessed by the fact that there is no path connecting the green dot with any dot on its right. The
relation with reachability can be made precise by recasting Definition 7.

Definition 11 (Markings for guarded nets). Given a guarded Petri net with side effects
(
N,N]

)
, a marking

for
(
N,N]

)
is a pair (X ,x) where X is an object of F(N) and x ∈ N]X. We say that a marking (Y,y)

is reachable from (X ,x) if there is a morphism f : X → Y in F(N) and an element s ∈ S f such that
N] f (s) = (x,y).

5 Semantics for hierarchical nets

In the span semantics we can encode externalities in the tips of the spans to which we send transitions.
That is, given a bunch of tokens endowed with some properties, to fire a transition, we need to provide a
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witness that testifies how these properties have to be handled. The central intuition of this paper is that
we can use side effects to encode the runs of some other net: To fire a transition in the parent net, we
need to provide a trace of the corresponding child net. This can be made precise relying on the following
high-level result:

Theorem 1 ([36, Section 2.4.3]). Given a category A with finite limits, a category internal in A is a
monad in Span(A). Categories are monads in Span, whereas strict monoidal categories are monads
in Span(Mon), with Mon being the category of monoids and monoid homomorphisms. A symmetric
monoidal category is a bimodule in Span(Mon), that is, a monad in Span(Mon) with extra structure.

In particular, it follows that any free symmetric strict monoidal category can be represented as a span of
monoids

N• dom←−− N→ cod−−→ N•

underlying a bimodule, with N• and N→, representing the objects and arrows of the category, respectively,
both free. Here, dom and cod map each morphism in N→ to its domain and codomain objects in N•. We
will refer to such a span as the FSSMC N (in Span(Mon)).
Definition 12 (Hierarchical nets – External definition). A hierarchical net is a functor F(N)→ Span(Mon)
defined as follows:

• Each generating object A of F(N) is sent to a set FA, called the set of accepting states for the place
A.

• Each generating morphism A
f−→ B is sent to a span with the following shape:

(I f×N•f dom f )×N→f (cod f ×N•f � f )

(I f×N•f dom f ) (cod f ×N•f � f )

FA N→f FB

FA N•f N•f FB

I f dom f cod f � f

q

q q

The FSSMC N f at the center of the span is called the child net associated to f ; the morphisms I f

and � f are called play N f and stop N f , respectively.

Unrolling the definition, we are associating to each generating morphism of f of F(N) – the parent net
– a FSSMC N f – the child net. As the feet of the spans corresponding to the child nets will, in general,
be varying with the net themselves, we need to pre and post-compose them with other spans to ensure
composability: I f and � f represent morphisms that select the initial and accepting states of N f , that
is, markings of N f in which the computation starts, and markings of N f in which the computation is
considered as concluded. Notice how this also solves the problems highlighted in Section 3, as I f and
� f mediate between the shape of inputs/outputs of the transition f and the shape of N f itself.

Remark 1. Interpreting markings as in Definition 11, We see that to fire f in the parent net we need to
provide a triple (a,x,b), where:

• a is an element of FA, witnessing that the tokens in the domain of f provide a valid initial state for
N f .
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• x is an element of N→f , that is, a morphism of N f , and hence an execution of the child net.

• b is an element of FB, witnessing that the resulting state of the execution x is accepting, and can be
lifted back to tokens in the codomain of f .

Definition 13 (Category of hierarchical Petri nets). Nets
(
N,N]

)
in the category PetriSpan with N] having

the shape of Definition 12 form a subcategory, denoted with Petri , and called the category of hierarchical
Petri nets.

Remark 2. Using the obvious forgetful functor Mon→ Set we obtain a functor Span(Mon)→ Span,
which allows to recast our non-local semantics in a more liberal setting. In particular, we could send a
transition to spans whose components are subsets of the monoids heretofore considered. We could select
only a subset of the executions/states of the child net as valid witnesses to fire a transition in the parent.

Everything we do in this work will go through smoothly, but we consider this approach less elegant;
thus, we will not mention it anymore.

6 Internalization

In Section 5 we defined hierarchical nets as nets endowed with a specific kind of functorial semantics
to Span. As things stand now, Petri nets correspond to categories, while hierarchical nets correspond to
functors. This difference makes it difficult to say what a Petri net with multiple levels of hierarchy is:
intuitively, it is easy to imagine that the children of a parent net N can be themselves parents of other nets,
which are thus “grandchildren” of N, and so on and so forth.

In realizing this, we are blocked by having to map N to hierarchical nets, which are functors and not
categories. To make such an intuition viable, we need a way to internalize the semantics in Definition 12
to obtain a category representing the executions of the hierarchical net.

Luckily, there is a way to turn functors into categories, which relies on an equivalence between the slice
2-category over a given category C, denoted Cat/C, and the 2-category of lax-functors C→ Span [31].
This is itself the “1-truncated” version of a more general equivalence between the slice of Cat over C, and
the 2-category of lax normal functors to the bicategory Prof of profunctors (this has been discovered by
Bénabou [13]; a fully worked out exposition, conducted in painstaking detail, is in [27]).

Here, we gloss over these abstract motivations and just give a very explicit definition of what this
means, as what we need is just a particular case of the construction we worked out for guarded nets in [22].

Definition 14 (Internalization). Let
(
M,M]

)
∈ Petri be a hierarchical net. We define its internalization,

denoted
∫

M], as the following category:

• The objects of
∫

M] are pairs (X ,x), where X is an object of F(M) and x is an element of M]X.
Concisely:

Obj(
∫

M]) :=
{
(X ,x)

∣∣ (X ∈ Obj F(M))∧ (x ∈M]X)
}
.

• A morphism from (X ,x) to (Y,y) in
∫

M] is a pair ( f ,s) where f : X → Y in F(M) and s ∈ SM] f in
the apex of the corresponding span that connects x to y. Concisely:

Hom∫ M] [(X ,x),(Y,y)] :=

:=
{
( f ,s)

∣∣ ( f ∈ HomF(M) [X ,Y ])∧ (s ∈ SM] f )∧ (M] f (s) = (x,y))
}
.
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Figure 5: The Grothendieck construction applied to N].

The category
∫

N], called the Grothendieck construction applied to N], produces a place for each element
of the set we send a place to, and makes a transition for each path between these elements, as shown in
Figure 5.

Notice that in Fig. 5, on the left, each path between coloured dots is a triple (a,x,b) as in Remark 1.
This amounts to promote every possible trace of the child net – together with a selection of initial and
accepting states – to a transition in the parent net. This interpretation is justified by the following theorem,
which we again proved in [22]:

Theorem 2. Given any strict monoidal functor F(N)
N]

−→ Span, the category
∫

N] is symmetric strict
monoidal, and free. Thus

∫
N] can be written as F(M) for some net M.

Moreover, we obtain a projection functor
∫

N]→ F(N) which turns
∫

into a functor, in that for each
functor F :

(
M,M]

)
→
(
N,N]

)
there exists a functor F̂ making the following diagram commute:

∫
M]

F(M)

∫
N]

F(N)

Span

πM πN

F

F̂

M] N]

Theorem 2 defines a functor PetriSpan→ FSSMC, the category of FSSMCs and strict monoidal functors
between them. As Petri is a subcategory of PetriSpan, we can immediately restrict Theorem 2 to
hierarchical nets. A net in the form

∫
N] for some hiearchical net

(
N,N]

)
is called the internal categorical

semantics for N (compare this with Definition 12, which we called external).

Remark 3. Notice how internalization is very different from just copy-pasting a child net in place of a
transition in the parent net as we discussed in Section 3. Here, each execution of the child net is promoted
to a transition, preserving the atomicity requirement of transitions in the parent net.

Clearly, now we can define hierarchical nets with a level of hierarchy higher than two by just mapping a
generator f of the parent net to a span where N f is in the form

∫
N] for some other hierarchical nets N,

and the process can be recursively applied any finite number of times for each transition.

7 Engineering perspective

We deem it wise to spend a few words on why we consider this way of doing things advantageous from an
applicative perspective. Petri nets have been considered as a possible way of producing software for a long
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time, with some startups even using them as a central tool in their product offer [34]. Providing some form
of hierarchical calling is needed to make the idea of “Petri nets as a programming language/general-purpose
design tool” practical.

Our definition of hierarchy has the great advantage of not making hierarchical nets more expressive
than Petri nets. If this seems like a downside, notice that a consequence of this is that decidability of any
reachability-related question is exactly as for Petri nets, which is a great advantage from the point of view
of model checking. Internalization, moreover, allows us to compile hierarchical nets back to Petri nets
so that we can use already widespread tools for reachability checking [35] without having necessarily to
focus on producing new ones.

Moreover, and more importantly, our span formalism works really well in modelling net behaviour in
a distributed setting. The parent and children nets may exist on different machines and are not required to
be engineered in a monolithic fashion.

To better understand this, imagine an infrastructure where each Petri net is considered as a piece
of data with its address (as it would be, for instance, if we were to implement nets as smart contracts
on a blockchain). The way of operating Petri nets in this formalism is transactional: A user sends a
message consisting of a net address, the transaction the user intends to fire, and some transaction data.
The infrastructure replies affirmatively or negatively if the transaction can be fired, which amounts to
accept or reject the transaction. Clearly, this is particularly suitable for blockchain-related contexts and is
how applications such as [33] implement Petri nets in their services.

dbbfe69836

t1

832344009d

dbbfe69836

t1

832344009d

from: dbbfe69836

to: 832344009d

command: t1
data:

from: 832344009d

to: dbbfe69836

command: OK

data:

From this point of view, a hierarchical net would work exactly as a standard Petri net, with the exception
that in sending a transaction to the parent net, the user also has to specify, in the transaction data, a proper
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execution of the child net corresponding to the firing transition.

dbbfe69836

t1

832344009d

u1 u2

2f9b1ee0dc

u1 u2

2f9b1ee0dc

u1 u2

2f9b1ee0dc

dbbfe69836

t1

832344009d

from: dbbfe69836

to: 832344009d

command: t1
data:u1 #u2

from: 832344009d

to: 2f9b1ee0dc

command: u1 #u2
data:

from: 2f9b1ee0dc

to: 832344009d

command: OK

data:

from: 832344009d

to: dbbfe69836

command: OK

data:

Again, from a smart contract standpoint, this means that the smart contract corresponding to the parent
net will call the contract corresponding to the child net with some execution data, and will respond
affirmatively to the user only if the generated call resolves positively.

All the possible ways of executing the contracts above form a category, which is obtaining by
internalizing the hierarchical net corresponding to them via Theorem 2.

Internalized categories being free, they are presented by Petri nets, which we can feed to any main-
stream model checker. Now, all sorts of questions about liveness and interaction of the contracts above
can be analyzed by model-checking the corresponding internalized net.

This provides an easy way to analyze complex contract interaction, relying on tools that have been
debugged and computationally optimized for decades.

8 Conclusion and future work

In this work, we showed how a formalism for guarded nets already worked out in [22] can be used to
define the categorical semantics of some particular variety of hierarchical nets, which works particularly
well from a model-checking and distributed-implementation point of view. Our effort is again part of a
more ample project focusing on characterizing the categorical semantics of extensions of Petri nets by
studying functors from FSSMCs to spans [21, 20].

As a direction of future work, we would like to obtain a cleaner way of describing recursively
hierarchical nets. In this work, we relied on the Grothendieck construction to internalize a hierarchical
net, so that we could use hierarchical nets as children of some other another parent net, recursively. This
feels a bit like throwing all the carefully-typed information that the external semantics gives into the same
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bucket, and as such it is a bit unsatisfactory. Ideally, we would like to get a fully external semantics for
recursively hierarchical nets, and generalize the internalization result to this case.

Another obvious direction of future work is implementing the findings hereby presented, maybe
relying on some formally verified implementation of category theory such as [17].
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[31] D. Pavlović and S. Abramsky. “Specifying Interaction Categories”. In: Category Theory and
Computer Science. Ed. by Eugenio Moggi and Giuseppe Rosolini. Red. by Gerhard Goos, Ju-
ris Hartmanis, and Jan van Leeuwen. Vol. 1290. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 147–158 (cit. on pp. 1, 10).

[32] V. Sassone. “On the Category of Petri Net Computations”. In: TAPSOFT ’95: Theory and Practice
of Software Development. Ed. by Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach.
Red. by Gerhard Goos, Juris Hartmanis, and Jan Leeuwen. Vol. 915. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 334–348 (cit. on p. 5).

[33] Statebox Team. Statebox, Compositional Diagrammatic Programming Language. 2017. URL:
https://statebox.org (cit. on p. 12).

[34] Statebox Team. The Mathematical Specification of the Statebox Language. June 18, 2019. arXiv:
1906.07629 [cs, math]. URL: http://arxiv.org/abs/1906.07629 (cit. on p. 12).

[35] University of Torino. GreatSPN Github Page. 2018. URL: https://github.com/greatspn/
SOURCES (cit. on p. 12).

[36] F. Zanasi. Interacting Hopf Algebras: The Theory of Linear Systems. May 4, 2018. arXiv: 1805.
03032 [cs, math]. URL: http://arxiv.org/abs/1805.03032 (cit. on pp. 4, 9).

74

GCM 2021 Pre-Proceedings

https://arxiv.org/abs/1904.09091
https://statebox.org
https://arxiv.org/abs/1906.07629
http://arxiv.org/abs/1906.07629
https://github.com/greatspn/SOURCES
https://github.com/greatspn/SOURCES
https://arxiv.org/abs/1805.03032
https://arxiv.org/abs/1805.03032
http://arxiv.org/abs/1805.03032


Resilience of Well-structured Graph Transformation Systems∗

Okan Özkan Nick Würdemann
Department of Computing Science

University of Oldenburg
Oldenburg, Germany

{o.oezkan,wuerdemann}@informatik.uni-oldenburg.de

Resilience is a concept of rising interest in computer science and software engineering. For systems
in which correctness w.r.t. a safety condition is unachievable, fast recovery is demanded. We investi-
gate resilience problems of graph transformation systems. Our main contribution is the decidability
of two resilience problems for well-structured graph transformation systems (with strong compatibil-
ity). We prove our results in the abstract framework of well-structured transition systems and apply
them to graph transformation systems incorporating also the concept of adverse conditions.

1 Introduction

Resilience is a broadly used concept in computer science and software engineering (e.g., [22]), and a 
basic concept for, e.g., industrial control systems [18] and mobile cyber-physical systems [15]. For 
systems in which correctness w.r.t. a safety condition SAFE is unachievable, fast recovery is demanded. 
We interprete fast recovery as reachability of the safety condition in a bounded amount of time steps. 
The intuitive approach is to start from any error state, i.e., a state in which ¬SAFE(≡ ERROR) holds, 
and try to reach a state in which SAFE holds again as fast as possible.

Another approach to formalizing resilience is to ask whether the system can withstand an adverse 
effect rather than to ask whether fast recovery is possible from any error state. To formally capture ad-
verse effects we consider an environment which interacts with the system. In this setting, we investigate 
on the question whether a state satisfying SAFE can be reached in bounded time, starting from any state 
satisfying ENV, i.e., any state directly resulting from an environment interference.

For modeling systems we use graph transformation systems (GTS), as considered, e.g., in [6], which 
are a visual but yet precise formalism. In this perception, system states are captured by graphs and state 
changes by graph transformations. Usually, the state set (the set of graphs) is infinite. To handle infinite 
state sets, we incorporate the concept of well-structuredness [1, 9, 12]. A well-structured transition 
system (WSTS) is informally a transition system equipped with a well-quasi order (wqo) satisfying that 
larger states simulate smaller states. They allow us to abstract from both of the approaches towards 
resilience described above. In the setting of WSTSs, we define resilience problems for a given downward-
closed set J (a BAD condition, e.g., ERROR or ENV) and an upward-closed set I (e.g., a safety property 
SAFE). Given an initial state s and a natural number k, the explicit resilience problem asks whether we 
can, starting from s, reach I in at most k steps whenever we reach J. The bounded resilience problem 
asks whether there exists a k such that k-step resilience is satisfied.

We show that both resilience problems are decidable for strongly well-structured transition systems 
(SWSTS). We propose an algorithm which computes the minimal k s.t. we can recover from any BAD 
state in at most k steps, or returns false if there exists no such k. It is based on the ideal reachability 
algorithm proposed by Abdulla et al. [1], and solves both resilience problems at the same time.

∗Supported by the German Research Foundation (DFG) through the Research Training Group (DFG GRK 1765) SCARE
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When applying these results to GTSs, we assume that the corresponding graph class is of bounded
path length in order to obtain a SWSTS. This sufficient condition for a GTS to be strongly well-structured
is shown by König & Stückrath in [12]. The wqo on graphs used in this case is the subgraph order, so
I = ISAFE corresponds to a constraint stating existence of subgraphs. We incorporate adverse conditions
by distinguishing system and environment rules, and considering J = JENV, the set of graphs directly
resulting from the application of an environment rule.

The rest of this paper is organized as follows: We recall preliminary concepts in Sec. 2. In Sec. 3,
we present the concept of resilience in the context of adverse conditions and identify abstract resilience
problems. In Sec. 4, we prove decidability of resilience for strongly well-structured transition systems.
We apply these results to graph transformation systems incorporating adverse conditions in Sec. 5. In
Sec. 6, we present related work. We close with a conclusion and an outlook in Sec. 7.

2 Preliminaries

We recall the concepts used in this paper, namely graph transformation systems [6, 5] and (in particular
well-structured) transition systems [9].

2.1 Graph Transformation Systems

In the following, we recall the definitions of graphs, graph conditions, rules, and graph transformation
systems [6, 5]. A directed, labeled graph consists of a set of nodes and a set of edges where each edge is
equipped with a source and a target node and where each node and edge is equipped with a label. Note
that this kind of graphs are a special case of the hypergraphs considered in [12].

Definition 1 (graphs & graph morphisms). A (directed, labeled) graph (over a finite label alphabet
Λ) is a tuple G = 〈VG,EG,srcG, tgtG, labV

G, labE
G〉, with finite sets VG and EG of nodes (or vertices) and

edges, functions srcG, tgtG : EG → VG assigning source and target to each edge, and labeling func-
tions labV

G : VG → Λ, labE
G : EG → Λ . A (simple, undirected) path p in G of length ` is a sequence

〈v1,e1,v2 . . . ,v`,e`v`+1〉 of nodes and edges s.t. srcG(ei) = vi and tgtG(ei) = vi+1, or tgtG(ei) = vi and
srcG(ei) = vi+1 for every 1 ≤ i ≤ `, and all contained nodes and edges occur at most once. Let `(G)
denote the length of a longest path in G. Given graphs G and H, a (partial graph) morphism g : G ⇀ H
consists of partial functions gV : VG ⇀ VH and gE : EG ⇀ EH which preserve sources, targets, and la-
bels, i.e., gV ◦ srcG(e) = srcH ◦gE(e), gV ◦ tgtG(e) = tgtH ◦gE(e), labV

G(v) = labV
H ◦gV (v), and labE

G(e) =
labE

H ◦ gE(e) on all egdes e and nodes v, for which gE(e), labE(e), labV (v) is defined. Furthermore, if
a morphism is defined on an edge, it must be defined on all incident nodes. The morphism g is total
(injective) if both gV and gE are total (injective). If g is total and injective, we also write g : G ↪→H. The
composition of morphisms is defined componentwise.

We consider graph constraints [17, 10] whose validities are inherited to bigger/smaller graphs.

Definition 2 (positive & negative basic graph constraints). The class of positive (basic graph) constraints
is defined inductively: (i) ∃G is a positive constraint where G is a graph, (ii) for positive constraints c,c′,
also c∨c′, c∧c′ are positive constraints. Analogously, the negative (basic graph) constraints are defined
by: (i) ¬∃G is a negative constraint for any graph G, (ii) for negative constraints c,c′, also c∨ c′, c∧ c′

are negative constraints.
A graph G satisfies ∃G′ if there exists an total injective morphism G′ ↪→ G. The semantics of the logical
operators are as usual. We write G |= c if G satisfies the positive/negative constraint c.
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Remark. If c is a positive constraint, ¬c is equivalent to a negative constraint, and vice versa.

Fact 1 (upward & downward inheritance). Let G ↪→ H be a total injective morphism, c be a positive
constraint, and c′ a negative constraint. If G |= c, then also H |= c. If H |= c′, then also G |= c′.

We use the single pushout (SPO) approach [6, 12] with injective matches for modeling graph trans-
formations. The reason for choosing SPO and not, e.g., the double pushout approach (DPO) [5] is that
the dangling condition disturbs the compatibility condition in Def. 10.

Definition 3 (rules & transformations). A (graph transformation) rule r = 〈L ⇀ R〉 (over a finite label
alphabet Λ) is a partial morphism from L to R (both graphs over Λ). A (direct) transformation G⇒ H
from a graph G to a graph H applying rule r at a total injective match morphism g : L ↪→ G is given by a
pushout as shown in Fig. 1a (for existence and construction of pushouts, see, e.g., [6]). We write G⇒r H
to indicate the applied rule, and G⇒R H if G⇒r for a rule r contained in the rule set R.

Note that we do not have any application conditions. The pushout of a rule application is visualized
in Fig. 1a. An example for a rule is presented in Fig. 1b, and an application of that rule in Fig. 1c.

L R

G H

r

g

(a) Pushout for the trans-
formation G⇒r H

tr :
〈

P 1 W 2

3
⇀ P 1 W 2

3
〉

(b) A graph transformation rule tr

P
1

W
2

S1 3

S2 4

5 6
7 8

9

⇒tr P
1

W
2

S1 3

S2 4

5 6
7 8

9

(c) An application of the rule tr

Figure 1: Pushout and example of a direct graph transformation.

GTSs are simply finite sets of rules. We will specify the state set later.

Definition 4 (graph transformation system). A graph transformation system (GTS) is a finite set of graph
transformation rules.

2.2 Transition Systems

We recall the notion of transition systems. In Sec. 4, we prove our results on the level of transition
systems and explicate the concept for graph transformation systems in Sec. 5.

Definition 5 (transition system). A transition system (TS) 〈S,→〉 consists of a (possibly infinite) set S of
states and a transition relation→⊆ S×S. Let→0= IdS (identitiy on S),→1=→, and→k=→k−1 ◦→ for
every k ≥ 2. Let→≤k=

⋃
0≤ j≤k→ j for every k ≥ 0. The transitive closure is given by→∗=

⋃
k≥0→k.

A GTS is simply a set of rules. The following definition shows how it can be interpreted as a TS.

Definition 6 (graph transition system). Let R be a GTS and G a set of graphs which is closed under rule
application of R. The graph transition system w.r.t. R and G is the transition system 〈G ,⇒R〉. A graph
transition system 〈G ,⇒R〉 is of bounded path length if G is of bounded length, i.e., supG∈G `(G)< ∞.

Often we are interested in the predecessors or successors of a given set of states in a transition system.

Definition 7 (pre- & postsets). Let 〈S,→〉 be a transition system. For S′ ⊆ S and k ≥ 0, we define
prek(S′) = {s ∈ S | ∃s′ ∈ S′ : s →k s′} and postk(S′) = {s ∈ S | ∃s′ ∈ S′ : s′ →k s}. Let pre∗(S′) =⋃

k≥0 prek(S′) and post∗(S′)=
⋃

k≥0 postk(S′). We abbreviate post1(S′) by post(S′) and pre1(S′) by pre(S).

GTSs, when interpreted as TSs, have in general an infinite state space.
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2.3 Well-structuredness

While several problems are undecidable for transition systems in general due to their infinite state space,
many interesting decidability results can be achieved if the system is well-structured [9, 1, 12].
Definition 8 (well-quasi order). A well-quasi order (wqo) over a set X is a quasi-order (a reflexive,
transitive relation) ≤⊆ X ×X s.t. every infinite sequence 〈x0,x1, . . .〉 in X contains an increasing pair
xi ≤ x j with i < j.

We give two examples for wqos on graphs. In our setting, the subgraph order is of crucial importance.
Example 1 (subgraph & minor order).

(i) The subgraph order is given by G ≤ H iff there is a total injective morphism G ↪→ H. Let G` be
a graph class of bounded path length (with bound `). The restriction of ≤ to G` is a wqo [12, 4].
However, it is not a wqo on all graphs: consider, e.g., the infinite sequence 〈 , , , . . .〉 of
cyclic graphs of increasing length.

(ii) The minor order is given by G 4 H iff G can be obtained from H by a sequence of edge contrac-
tions, node and edge deletions. The minor order is a wqo on all graphs [12, 19].

Assumption. From now on, we implicitly equip every set of graphs with the subgraph order. By ≤ we
mean either an abstract wqo or the subgraph order, depending on the context.
Definition 9 (closure & basis). Let X be a set and ≤ a wqo on X . For every subset A of X , we denote by
A = {x ∈ X | ∃a ∈ A : a≤ x} the upward-closure and A = {x ∈ X | ∃a ∈ A : a≥ x} the downward-closure
of A. If A = A, then a basis of A is a subset B ⊆ A s.t. (i) B generates A, i.e., B = A, and (ii) any two
distinct elements in B are incomparable, i.e., ∀b1,b2 ∈ B : b1 6= b2⇒ b1 6≤ b2.

Sets A satisfying A = A will later be called ideals. For well-structuredness, we demand that the well-
quasi order yields a simulation of smaller states by larger states. This condition is called compatibility.
Definition 10 (well-structured transition systems). Let 〈S,→〉 be transition system and ≤ a decidable
wqo on S, i.e., for each two given states s,s′ ∈ S, it is decidable whether s≤ s′. The tuple 〈S,≤,→〉 is a
(strongly) well-structured transition system, if

(i) The wqo is (strongly) compatible with the transition relation, i.e., for all s1,s′1,s2 ∈ S with s1 ≤ s′1
and s1→ s2, there exists s′2 ∈ S with s2 ≤ s′2 and s′1→∗ s′2 (strongly: s′1→1 s′2).

(ii) For every s ∈ S, a basis of pre({s}) is computable.

s1 s2

s′1 s′2

≤ ≤

∗

∀

∃

(a) Upwards compatibility

s1 s2

s′1 s′2

≤ ≤

1

∀

∃

(b) Strong upwards compatibility

Figure 2: Visualization of the (strong) upwards compatibility property for transition systems.

In Fig. 2, both versions of compatibility are visualized. The term (strongly) well-structured transition
system is often abbreviated by (S)WSTS. In Sec. 4, we prove the decidability of resilience for SWSTS.
We include the definition of general WSTS for clarity and to point out the differences. Note that for
GTSs, strong compatbility is achieved by applying the same (SPO) rule to bigger graphs. However, in
DPO, the bigger graph may not fullfill the dangling condition. Consider, e.g., the rule which deletes a
node. This rule can be applied to the graph consisting of a single node but not to the graph in DPO.

The following result of König & Stückrath terms sufficient conditions for GTSs to be well-structured.
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Lemma 1 ([12]). Every graph transition system of bounded path length is strongly well-structured
(equipped with the subgraph order).

Note that in [12], König & Stückrath consider labeled hypergraphs. However, the proof in this case
is the same. The premise of bounded path length seems very restrictive, but we can still capture infinitely
many graphs. An usual example are graphs where the “topology” remains unchanged. It is also shown
in [12] that every lossy GTS is well-structured w.r.t. the minor order and without restriction of the graph
class. “Lossy” means that every edge contraction rule is contained in the GTS. However, in this case, we
do not obtain strong compatibility.

Assumption. In the following, let 〈S,≤,→〉 be a strongly well-structured transition system.

Upward- and downward-closed sets w.r.t. a given wqo are of special interest. Such sets are called
ideals and used in Sec. 3 to define resilience problems for WSTSs.

Definition 11 (ideal). An ideal I ⊆ S is an upward-closed set, i.e., I = I. A bi-ideal J ⊆ S is an ideal
which is also downward-closed, i.e., J = J = J. An anti-ideal J ⊆ S is a downward-closed set, i.e., J = J.
The anti-ideal J is decidable if, given s ∈ S, it is decidable whether s ∈ J.

Example 2 (ideal). Let G` be a graph class of bounded path length. For every positive constraint c,
Ic = {G ∈ G` |G |= c} is an ideal.

Bi-ideals often represent “control states” as in [1]. The notion of anti-ideal is the pendent to ideal.
Since a downward-closed set does not have an “upward-basis” in general, we will demand that member-
ship is decidable.

Example 3 (anti-ideal). Let G` be a graph class of bounded path length. For every negative constraint c,
Jc = {G ∈ G |G |= c} is a decidable anti-ideal.

The set of ideals of S is closed under preset, union, and intersection.

Fact 2 (stability of ideals). Let I,J ⊆ S be ideals. Then the sets pre(I), I∪ J, and I∩ J are ideals.

A major point in our argumentation is the observation that every infinite ascending sequence of ideals
w.r.t. a wqo eventually becomes stationary.

Lemma 2 ([1]). For every infinite ascending sequence 〈I0 ⊆ I1 ⊆ . . .〉 of ideals, there exists a k ≥ 0 s.t.
Ik = Ik+1. This directly implies ∃k0 ≥ 0 ∀k ≥ k0 : Ik = Ik0 .

Since ideals are in general infinite, we need a computable finite representation of them. Similar to
algebraic structures, ideals are represented by a finite basis (a minimal generating set). Indeed, every
ideal has a basis and every basis is finite. We consider bases for complexity reasons. In theory, finite
generating sets are sufficient to carry out our approach.

Fact 3 ([1]). (i) For every ideal I ⊆ S, there exists a finite basis B of I. (ii) Given a finite set A⊆ S with
I = A, we can compute a finite basis B of I.

2.4 Ideal Reachability

In [1], Abdulla et al. exploit Lemma 2 to show the decidability of ideal reachability (also called cover-
ability) for strongly well-structured transition systems. The corresponding algorithm forms the basis of
our results. We present its basic idea. For any ideal I, another ideal I∗ is constructed, s.t. ∃s′ ∈ I : s→∗ s′

iff s ∈ I∗. This is clearly the case for I∗ = pre∗(I) =
⋃

j≥0 pre j(I). The idea is to iteratively construct the
sequence of the ideals Ik =

⋃
0≤ j≤k pre j(I) until it becomes stable.
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Definition 12 (index). For an ideal I ⊆ S and k≥ 0, let Ik =
⋃

0≤ j≤k pre j(I)⊆ Ik+1. The index k(I) is the
smallest k0 s.t. Ik = Ik0 for all k ≥ k0.

Lemma 2 ensures that k(I) always exists. However, we have to show that Ik = Ik+1 implies that
k(I)≤ k to obtain a stop condition. This follows by the observation that Ik+1 = I∪pre(Ik).

Fact 4 (stop condition). Let I ⊆ S be an ideal and k ≥ 0 s.t. Ik = Ik+1, then I` = Ik for all ` ≥ k, i.e.,
k(I)≤ k. This also implies that pre∗(I) = Ik.

Since ideals are infinite, we cannot carry this construction out directly, but we use a basis for rep-
resenting an ideal. If we can show the computability of a basis in every iteration step, we obtain an
algorithm which can decide whether we can reach an ideal I from a given state s.

Lemma 3 ([1]). Given a basis of an ideal I ⊆ S, and a state s of a strongly well-structured transition
system, we can decide whether we can reach I from s.

Proof. We have to show that we can compute a basis of Ik+1 if we are given a basis of Ik. Then the
decidability of the stop condition follows directly. Let B be a basis of Ik. We have

Ik+1 = I∪pre(Ik) = I∪
⋃

s′∈B

pre({s′}).

Since pre({s′}) is computable for any s′ ∈ S by definition, we obtain a finite generating set of Ik+1. By
Fact 3, we can compute a basis of Ik+1.

3 Adverse Conditions and Resilience Problems

We put adverse conditions and resilience on the level of GTSs into context by using joint graph transfor-
mation systems [14]. Abstracting from this setting, we identify resilience problems for TSs.

3.1 Joint Graph Transformation Systems

We recapitulate the modeling of adverse conditions by joint graph transformation systems, introduced
in [14]. While we considered DPO rules in [14], in order to obtain strong compatbility, SPO is expedient.
We define joint graph transformation systems, each of which involves the system, the environment, and
an automaton modeling the interaction between them. Both system and environment are GTSs.

Assumption. In the following, let Λ be a fixed label alphabet, and S and E be GTSs over Λ, called
system and environment, respectively. W.l.o.g., we assume that S and E are disjoint. (If S and E share
a common rule r, we assign r different names in S and E .)

We specify the class of automata which are used to regulate the interaction between system and
environment. These control automata are similar to ω-automata, see, e.g., [21].

Definition 13 (control automaton). A control automaton of 〈S ,E 〉 is a tuple A = 〈Q,q0,δ ,sel〉 con-
sisting of a finite set Q disjoint from Λ, called the state set, an initial state q0 ∈ Q, a transition relation
δ ⊆ Q×Q, and a function sel : δ → P(S ∪ E ) (into the power set of S ∪ E ), called the selection
function.

Remark. Alternatively, the interaction between system and environment can be specified by an ω-regular
language [21] over the alphabet P(S ∪E ) corresponding to the accepting control automaton. In order
to obtain a GTS as joint system, we prefer to use control automata.
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A joint graph transformation system is obtained by synchronizing the system, repectively, the envi-
ronment, with the control automaton, and then joining both sets of enriched rules.

Definition 14 (joint graph transformation system). Let be A = 〈Q,q0,δ ,sel〉 a control automaton of
〈S ,E 〉. The joint graph transformation system of S and E w.r.t. A is the graph transformation system
SA∪EA, shortly SE , where for a rule set R ∈ {S ,E }, the enriched rule set RA is given by

RA = {〈L,q〉⇀ 〈R,q′〉 | 〈q,q′〉 ∈ δ and 〈L ⇀ R〉 ∈R ∩ sel〈q,q′〉},

and for a graph G and a state q, the tuple 〈G,q〉 denotes the disjoint union of G and a node labeled with q.
In the partial morphism 〈L,q〉⇀ 〈R,q′〉, the node labeled with q is mapped to the node labeled with q′.

We refine our notion of joint graph transformation systems, namely to annotated joint graph trans-
formation systems which also carry the information whether the last applied rule was a system or envi-
ronment rule. This is realized by a node labeled with “s” or “e”.
Notation. For a joint graph transformation system SE , the symbol m(S ) = s or m(E ) = e, is the marker
of S or E , respectively. For a rule r ∈R and R ∈ {S ,E }, let m(r) = m(R) be the marker of r. The
set of all markers M = {>,s,e} includes also the symbol >, usually indicating a start graph.

For the explicit construction, we can use premarkers to reduce the number of rules. This technical
detail is included in App. A.1.

Definition 15 (annotated joint graph transformation system). Let SE be a joint graph transformation
systems w.r.t. a control automaton A = 〈Q,q0,δ ,sel〉 of 〈S ,E 〉. The annotated joint graph transforma-
tion system of S and E w.r.t. A is S ′

A∪E ′A, shortly (SE )′, where for a rule set R ∈ {S ,E }, R ′A denotes
the marked rule set

R ′A = {〈L,q,m〉⇀ 〈R,q′,m′〉 | 〈L,q〉⇀ 〈R,q′〉 ∈RA, m ∈M, m′ = m(R)}

where for a graph G, a state q, and a marker m, 〈G,q,m〉 denotes the disjoint union of G, a node labeled
with q, and a node labeled with m. In the partial morphism 〈L,q,m〉⇀ 〈R,q′,m′〉, the node lableled with
m is mapped to the node labeled with m′.

We explicate the state set of annotated joint GTSs. These graphs are of the form 〈G,q,m〉 for state q
of the control automaton and a marker m. We denote a class of all such graphs by G ⊕Q⊕M. Using such
graphs instead of the product of graphs we can directly apply the result (Lemma 1) of [12] for GTSs.

Definition 16 (joint graph transition system). Let (SE )′ be an annotated joint GTS and G ′ be a class of
graphs which is of the form G ⊕Q⊕M and closed under rule application of (SE )′. The graph transition
system 〈G ′,⇒(SE )′〉 is called annotated joint graph transition system.

Note that we usually begin our analysis at a start graph of the form 〈G,q0,>〉.
Example 4 (supply chain). We model a simplified supply chain with graph transformation rules. The
infrastructure (topology) is given in the following start graph:

P W
S1

S2

A production site (P) is connected to a warehouse (W ) which again is connected to two stores S1 and S2.
Each of the black nodes indicates one product at the corresponding (connected) location. The behavior
in this production chain is modeled by the graph transformation rules in Fig. 3a. The system rules
consists of pr (the completion of a product at the production site P), tr (transporting a product from P
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S



pr :
〈

P1 ⇀ P1
〉

tr :
〈

P 1 W 23 ⇀ P 1 W
2

3
〉

sh1 :
〈

W 1
S1 23 ⇀ W 1

S1 2
3
〉

sh2 :
〈

W 1
S2 23 ⇀ W 1

S2 2
3
〉 , E


ac :

〈
W1 ⇀ W1

〉
b1 :

〈
S11 ⇀ S11

〉
b2 :

〈
S21 ⇀ S21

〉
(a) The two GTSs S (system) and E (environment)

e
pr

tr
pr tr

pr tr
shi shi

shi

ac, bi

bi

(b) Control automaton

Figure 3: A joint GTS consisting of a GTS for system and environment, each, and a control automaton.

to the warehouse W ), and sh1 and sh2 (shipping a product from W to one of the two stores S1, S2).
The environment rules describe external impacts. Namely, ac describes an accident in the warehouse
which leads to the loss of one product, and b1 and b2 describe that a product is bought from S1 or S2,
respectively. The control automaton in Fig. 3b describes the possible order of rule applications. We are
interested in the question when the product is again in stock (at least 1 product in the warehouse and in
each of both stores) whenever a customer buys a product or when an accident in the warehouse happens.
After each such transition, the automaton is in the state e. Regardless of the current situation, in 17 steps
we can accomplish that the product is in stock by first producing and transporting 6 products with a
following accident (3 products will get lost) and shipping them to the stores afterwards. However, what
is the minimal number of steps in which we can reach a situation where the product is in stock whenever
someone bought a product or a product got lost?

We will come back later to that question in Ex. 4. We describe the setting for joint GTSs which
we investigate: Consider a safety condition c, given as positive constraint, and the set of graphs Ic =
{G′ ∈ G ⊕Q⊕M |G′ |= c} which satisfy c. Similarly, let Je = {G′ ∈ G ⊕Q⊕M |G′ |= ∃e} (all graphs
obtained by an environment interference; ∃e means that there exists a node labeled with e). The environ-
ment is usually modeled in a such way that it has an adverse effect on the satisfaction of c. Resilience
in this context means that the system can withstand such an adverse condition. We ask whether we can
reach a graph in Ic in a reasonable amount of time whenever we reach a graph in Je. By a “reasonable
amount of time”, we mean either that a number k of steps is given in which Ic should be reached (explicit
resilience), or that Ic should be reached in a bounded number of steps (bounded resilience).

Another approach is to consider the set J¬c = {G′ ∈ G ⊕Q⊕M|G′ 6|= c} instead of Je. So, we
ask whether we can reach a graph which satisfies c in a bounded amount of time/in at most k steps
whenever we reach a graph which does not satisfy c, i.e., an error state. Both instances of the problem
are reasonable, and if we can give a positive answer for the latter one, we can also give a positive answer
for the first one. We focus on the first problem (adverse conditions), but the results which we will obtain
abstract from a specific J and therefore also apply to the latter one (error states).

3.2 Abstract Resilience Problems

The previous motivation gives rise to a more abstract definition of resilience problems, namely in the
framework of TSs. When we explicate state set, every GTS can be interpreted as a TS.

We assume that a TS 〈S,→〉 comes along with a set of propositions each of which is either satisfied or
not satisfied by a state of the TS. Let SAFE (safety property) and BAD (bad condition) be propositions.
Note that BAD is not necessarily equivalent to ¬SAFE. We ask whether we can reach a state which
satisfies SAFE in a reasonable amount of time whenever we reach a state which satisfies BAD. From
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this we formulate two resilience problems. First consider the case where the recovery time is bound by a
natural number k ≥ 0, i.e., the (abstract) explicit resilience problem.

EXPLICIT RESILIENCE PROBLEM

Given: A state s of a TS 〈S,→〉, propositions SAFE and BAD, a natural number k ≥ 0.
Question: ∀s′ ∈ S : (s′ |= BAD∧ s→∗ s′)⇒∃s′′ ∈ S : s′→≤k s′′∧ s′′ |= SAFE ?

If we assume that the transition system yields infinite sequences of transitions, we can express the
property to be evaluated in CTL by s |= AG(BAD→

∨
0≤ j≤k EX jSAFE). We can also ask whether there

exists such a bound k. We call this problem the (abstract) bounded resilience problem.

BOUNDED RESILIENCE PROBLEM

Given: A state s of a TS 〈S,→〉, propositions SAFE and BAD.
Question: ∃k ≥ 0 ∀s′ ∈ S : (s′ |= BAD∧ s→∗ s′)⇒∃s′′ ∈ S : s′→≤k s′′∧ s′′ |= SAFE ?

Both problems are undecidable: For SAFE = false, resilience is equivalent to reachability of BAD.

4 Decidability Results

Many interesting decidability results can be obtained if we assume that a transition system is well-
structured [1, 9, 12]. We formulate the resilience problems from above for WSTSs and show decidability
of both, the explicit and the bounded resilience problem in the setting of SWSTSs.

4.1 Resilience Problems in a Well-structured Framework

Properties in well-structured transition systems are often given as upward- or downward closed sets [1, 9].
Ideals enjoy suitable features for verification such as finite representation and stability, and anti-ideals
are their complements (cp. Sec. 2.3). Transfering the abstract resilience problems into this framework,
it is therefore reasonable to demand that both propositions, SAFE and BAD, are given by ideals or anti-
ideals. For our purpose, the following setting suits very well: we assume that the safety property is an
ideal and the bad condition is a decidable anti-ideal.

From these considerations, we formulate “instances” of the abstract resilience problems for well-
structured transition systems. Again, we first consider the case where the recovery time is bounded by a
k ∈ N, the explicit resilience problem for WSTSs.

EXPLICIT RESILIENCE PROBLEM FOR WSTSS

Given: A state s of a WSTS 〈S,≤,→〉, a basis of post∗(s), an ideal I with a given basis, a
decidable anti-ideal J, a natural number k ≥ 0.

Question: ∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′ ?

Analogously, we formulate the bounded resilience problem for WSTSs.

BOUNDED RESILIENCE PROBLEM FOR WSTSS

Given: A state s of a WSTS 〈S,≤,→〉, a basis of post∗(s), an ideal I with a given basis, a
decidable anti-ideal J.

Question: ∃k ≥ 0 ∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′ ?
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From now on, we mean one of the previously defined resilience problems for WSTSs if we speak of
a resilience problem. If the answer of the bounded (explicit) resilience problem is positive, we say that
〈S,≤,→〉 is resilient (k-step resilient) w.r.t. I and J starting from s. In this context, s is a start state/graph.
Remark. The premise that a basis of post∗(s) is given is a strong but reasonable assumption. In general,
we cannot simply compute the sequence of ideals Pk =

⋃
0≤ j≤k post j(s) until it becomes stationary. This

sequence does become stationary by Lemma 2. However, in contrast to the case in Lemma 3, Pk+1 = Pk
is not a sufficient stop condition. So, this way it is not algorithmically checkable when we have reached
k0 s.t. P̀ = Pk0 for every ` ≥ k0. However, we investigate resilience of GTSs each of which constitutes
a SWSTS. A sufficient condition for strong well-structuredness is boundedness of the path length (cp.
Lemma 1). This holds, e.g., for graph classes where the “topology” is static. For these graph classes, a
basis of all successors is often easier to determine than in general. A typical example for such GTSs are
Petri nets (Sec. 5.3). For Petri nets, it is even computable (App. A.3).

4.2 Decidability

Abdulla et al. show in [1] that ideal reachability is decidable for SWSTSs (cp. Lemma 3). Finkel
& Schnoebelen [9] show that ideal reachability (or coverability) is also decidable for WSTSs. Both
algorithms coincide in the case of strong well-structuredness. König & Stückrath [12] use the algorithm
of [9] for the backwards analysis for (generalized) well-structured GTSs.

The main difference between the algorithms in [1] and [9] is that for (not necessarily strongly)
WSTSs, pre(I′) in general, for any ideal I′, is not an ideal. Thus, Finkel & Schnoebelen consider in
every iteration step the ideal pre(I′) instead of pre(I′). Now the same arguments like before hold (cp.
Sec. 2.4) and a basis of pre∗(I) = pre∗(I) for a given ideal I can be computed.

We are interested in the exact number of steps which we need to reach an ideal. Thus, pre(I′) should
be an ideal and we cannot use the technique from [9] for WSTSs. We need to restrict our setting to
strongly WSTSs like in [1]. First, we state our main result for SWSTSs, the decidability of resilience.

Theorem 1 (decidability of resilience). The explicit and the bounded resilience problem are both decid-
able for strongly well-structured transition systems.

We prove this theorem by giving a respective algorithm. It exploits a modified version of the
ideal reachability algorithm in [1] (cp. Lemma 3). We check in every iteration step inclusion in Ik =⋃

0≤ j≤k pre j(I). Before doing so, we need a finite representation of post∗(s)∩ J to check the inclusion in
an ideal I′. The next lemma uses that J and I′ are downward- and upward-closed, respectively.

Lemma 4 (intersection with anti-ideal). Let A⊆ S be a set, J ⊆ S an anti-ideal and I′ ⊆ S an ideal. Then
A∩ J ⊆ I′⇔ A∩ J ⊆ I′.

Proof. “⇐”: Holds since A⊆ A.
“⇒”: Let s′ ∈ A∩ J. Then s′ ∈ J and there exists s′′ ∈ A s.t. s′′ ≤ s′. Thus, s′′ ∈ J = J. So we have
s′′ ∈ A∩ J ⊆ I′. Hence, s′ ∈ I′ = I′.

This lemma enables us to prove Thm. 1 given above. We iteratively determine the minimal k satisfy-
ing post∗(s)∩ J ⊆ Ik (or stop, if there does not exist such k).

Proof of Theorem 1. Let Bpost be a basis of post∗(s), B0 a basis of I, and J a decidable anti-ideal. For
every k ≥ 0, Ik is an ideal due to strong compatibility. By applying Lemma 4 twice, we obtain

post∗(s)∩ J ⊆ Ik ⇔ Bpost∩ J ⊆ Ik
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for any k ≥ 0. Since Bpost is finite and J is a decidable anti-ideal, we can directly compute Bpost∩ J. We
perform a modification of the ideal reachability algorithm: Iteratively check whether Bpost∩ J ⊆ Ik. If
this is the case, return kmin = k. Otherwise check whether Ik+1 = Ik. If so, return −1 (false), otherwise
continue. We have to make sure that every iteration step is decidable. In fact, we can compute a basis
of Ik+1 if we have a basis of Ik. This follows by the proof of Lemma 3. The stop condition is decidable
and by Fact 4 also sufficient. Soundness and completeness follow by the previous considerations and the
fact that

post∗(s)∩ J ⊆ Ik ⇔ (∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′)

for any k ≥ 0. Termination is guaranteed by Lemma 2.
To sum up, our algorithm decides whether there exists a k ≥ 0 s.t. post∗(s)∩ J ⊆ Ik, and returns the

minimal such k in the positive case. Thus, it decides the bounded resilience problem. Given any k, we
can check whether kmin ≤ k and therefore decide the explicit resilience problem.

We denote the above described algorithm deciding resilience by MINIMALSTEP(Bpost,J,B0) and
the used procedure returning a basis of pre(B′) by PREBASIS(B′). We give the detailed algorithm in
pseudocode in App. A.2.
Remark. In our proof, it was crucial that we have strong compatibility. This approach does not work for
WSTSs in general. We loose precision when we only demand compatibility. Thus, we conjecture that
both resilience problems are undecidable for WSTSs in general, but this question remains still open.

5 Application to Graph Transformation Systems

We apply our abstract results to (joint) graph transformation systems and present a framework for veri-
fying resilience of GTSs. We exemplarily show how Petri nets fit in this setting.

We considered ideals as safety, and decidable anti-ideals as “bad” properties. In the setting of well-
structured GTSs w.r.t. the subgraph order, these can be expressed as positive and negative constraints.
Recall that for a class G of graphs, Ic = {G ∈ G |G |= c} for a positive constraint c, and Jc′ = {G ∈
G |G |= c′} for a negative constraint c′.

Fact 5 (ideals of graphs). Let G` be a class of graphs of bounded path length. Let I,J ⊆ G` be sets.

(i) I is an ideal. ⇔ I = Ic for a positive constraint c.

(ii) J is a decidable anti-ideal. ⇔ J = Jc for a negative constraint c.

Thus, for GTSs, our safety conditions are equivalent to positive constraints and bad conditions are
equivalent to negative constraints.

Remark. In general, more expressive graph constraints [17, 10], e.g., ∀( 1 ,∃( 1 )), do not consitute

ideals w.r.t. the subgraph order, as the relation 1 ≤ 1 shows. However, for particular GTSs, nested
graph constraints may yield ideals.

5.1 Verifying Resilience of Graph Transformation Systems

Using the sufficient conditions for strong well-structuredness of König & Stückrath [12], we obtain the
decidability of both resilience problems for a subclass of GTSs. We need to use the subgraph order
as wqo. Thus, we have the restriction of boundedness of the path length for the generated graph class.
Instead of considering GTSs, we consider graph transition systems, i.e., we always explicate the state set.
Thm. 1 and the result in [12] (see Lemma 1) imply our main result for GTSs:
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Theorem 2 (decidability of resilience for well-structured GTSs). The explicit and the bounded resilience
problem are decidable for graph transition systems which are of bounded path length (and equipped with
the subgraph order).

As joint GTSs are also GTSs, the same sufficient conditions for strong well-structuredness apply.

Fact 6 (strongly well-structured joint GTSs). Every annotated joint graph transition system which is of
bounded path length is strongly well-structured (equipped with the subgraph order).

An immediate consequence of Thm. 2 and Fact 6 is the following:

Corollary 1 (decidability of resilience for joint GTSs). The explicit and the bounded resilience prob-
lem are decidable for annotated joint graph transition systems which are of bounded path length (and
equipped with the subgraph order).

Thus, we can apply the algorithm MINIMALSTEP described in Sec. 4.2 to verify resilience of an-
notated joint graph transition systems. We consider an ideal Ic for a positive constraint c with a given
basis Bc. The anti-ideal (bi-ideal) is given by Je = {G′ ∈ G ⊕Q⊕M |G′ |= ∃e}. We assume that a start
graph G ∈ G ⊕{q0}⊕{>} and a basis BG of post∗(G) are given. The PREBASIS procedure for the sub-
graph order needed in the algorithm is given by König & Stückrath in [12] (and more detailed in [20]).

MINIMALSTEP(BG,Je,Bc)

(SE )′

BG

Bc

kmin/false

Figure 4: Verifying resilience in the adverse conditions approach.

5.2 Adverse Conditions vs. Error States

We compare the adverse conditions approach with the error state approach. As pointed out, these two
views of resilience are not equivalent. While every system that is resilient w.r.t. error states (i.e., J = S\ I)
is also resilient w.r.t. adverse conditions (i.e., J = Je) due to Je \ I ⊆ S\ I (meaning that if we can reach I
from every state, then also from every state in Je), the opposite is not true in general.

We do not define a restriction on the system/environment to allow more freedom of modeling but
our counterexample in Fig. 5 captures the adverse effect of the environment. The joint GTS in Fig. 5a,

S
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Figure 5: A joint GTS example that is 1-step resilient w.r.t. Je (adverse conditions), but not resilient w.r.t.
J = S\ I (error states).
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together with a start graph , results in the state set in Fig. 5b. A basis of I is given by 〈 ,q0〉. From
the definition of A, we see that Je is given by {〈G,q1〉 | ≤ G}, indicated by the hatched area. We see
that from every reachable state in Je we can reach I in one step, which means that the system is 1-step
resilient w.r.t. adverse conditions. On the other hand, we cannot reach I from the state 〈 ,q0〉 ∈ S \ I,
which is reachable from Je when the “wrong” system rule is applied. This means the system is not
resilient w.r.t. error states.

If, due to the structure of a joint GTS, we can reach Je from every reachable error state, as, e.g., in
Ex. 4, both approaches coincide. The computed kmin’s then only differ by at most the index k(Je).

5.3 An Example Class: Petri Nets

Petri nets [16] are a common model for discrete distributed systems in computer science, often applied,
e.g., in logistics or supply chains [24]. It is a classical example for strongly well-structured (graph)
transition systems. We will give a definition of Petri nets and show how our example fits in this setting.

Definition 17 (Petri nets). A Petri net is a tuple N = 〈P,T,F〉 with disjoint finite sets of places P and
transitions T , and a flow function F : (P×T )∪ (P×T )→ N. A marking in N is a multi-set M : P→ N
that indicates the number of tokens on each place. F(x,y) = n > 0 means there is an arc of weight n
from node x to y describing the flow of tokens in the net. A transition t ∈ T is enabled in a marking M if
∀p ∈ P : F(p, t)≤M(p). If t is enabled, then t can fire in M, leading to a new marking M′ calculated by
∀p∈ P : M′(p) = M(p)−F(p, t)+F(t, p). This is denoted by M[t〉M′. Usually, a Petri net N is equipped
with an initial marking M0. The tuple 〈N,M0〉 is then called a marked Petri net.

Any Petri net N can be interpreted as a transition system with the states S given by M (N), the set
of all markings of N, and the transitions → given by M → M′ ⇔ ∃t ∈ T : M[t〉M′. Together with the
wqo ≤N , given by ∀M,M′ ∈M (N) : M ≤N M′ :⇔ ∀p ∈ P : M(p) ≤M′(p), this constitutes a SWSTS.
For Petri nets, many problems, e.g., reachability or coverability, are decidable [16, 7, 23]. From this fact,
one can show that a basis of post∗(M0) is computable. We give more details on this topic in App. A.3.

Petri nets can also be seen as an instance of GTSs, as shown in [2]. From that point of view, every
transition corresponds to a graph transformation rule. A marking is given by the structure of the Petri net
represented as a graph, with the number of tokens on a place represented by extra nodes connected to it,
as in Fig. 1c. The wqo ≤N then directly corresponds to the subgraph order. Together with the start graph
representing the initial marking, interpreting the GTS as a WSTS results in exactly the same SWSTS
above. This means we can apply the algorithm deciding resilience in GTS to Petri nets. We demonstrate
this by the following example, where we consider a Petri net that, when interpreted as a GTS, is exactly
the supply chain modeled in Ex. 4.

Example 5 (supply chain as Petri net). We consider a marked Petri net modeling a simplified scenario
of a supply chain, shown in Fig. 6. As usual we depict places as circles, transitions as rectangles, and
the flow as weighted directed arcs between them. In the example, all weights are 1 and therefore not
indicated. Dots on places indicate the number of tokens on the respective place in the initial marking.

The Petri net corresponds directly to the graph transformation rules in Ex. 4, with the blue transitions
simulating S , and the red (checkered) transitions simulating E . The initial marking represents the start
graph. Correspondingly, the control automaton has the same structure as in Ex. 4, with transitions re-
placing rules. Let I = {〈M,q〉 |M(warehouse),M(store1),M(store2)≥ 1∧q ∈Q}, i.e., in the warehouse
and in both stores products are available for shipping or purchase, respectively. The transitions corre-
sponding to E reduce the number of tokens in the net. We consider the resilience problem with adverse
conditions. By definition of the control automaton, we know that Je = {〈M,e〉|M is a marking}.
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accident, buyi

buyi

Figure 6: A Petri net modeling a supply chain, and its control automaton.

We interpreted the Petri net as a GTS and applied a prototype implementation of the algorithm
MINIMALSTEP from Sec. 4.2 to it. We obtained that kmin = 6 is the smallest k for which the system is
k-step resilient. More detailed results of the computations are shown in App. A.4.

6 Related Work

We use SPO graph transformation for modeling systems as in Ehrig et al. [6] (see also Löwe [13]).
Our notion of joint GTSs is a special case of graph-transformational interacting systems. Another

approach considering dependencies can be found, e.g., in Corradini et al. [3].
The concept of resilience is broadly used in different areas, e.g., in industrial control systems [22, 18],

with varying definitions. Following these ideas, we formulated resilience in the abstract settings of TSs
and GTSs. Our interpretation of resilience captures recovery in bounded time.

Abdulla et al. [1] show the decidability of ideal reachability (coverability), eventuality properties and
simulation in (labeled) SWSTSs. We use the presented algorithm to show the decidability of resilience
problems in SWSTSs.

Finkel & Schnoebelen [9] show that the concept of well-structuredness is ubiquitous in computer
science by providing a large class of example models (e.g., Petri nets and their extensions, communicat-
ing finite state machines, lossy systems, basic process algebras). Moreover, they give several decidabil-
ity results for systems with different degrees of well-structuredness. They also generalize the algorithm
of [1] to (not necessarily strongly) WSTSs to show decidability of coverability.

König & Stückrath [12] extensively study the well-structuredness of GTSs. More detailed consid-
erations can be found in [20]. They identify three types of wqos (minor, subgraph, induced subgraph) on
graphs based on results of Ding [4] and Robertson & Seymour [19]. The fact that the subgraph order
is a wqo on graphs of bounded path length while the minor order allows all graphs comes with a trade-
off: For obtaining well-structuredness w.r.t. the minor order, the GTS must contain all edge contraction
rules, i.e., it must be a “lossy” GTS. On the other hand, all GTSs (without application conditions) are
strongly well-structured on graphs of bounded path length w.r.t. the subgraph order. This result enables
us to apply our abstract results to GTSs (in particular, we use the pred-basis procedure in the case of the
subgraph order for our algorithm). In our setting, the regarded wqo is the subgraph order since it yields
strong compatibility. They also generalize the notion of well-structured transition systems by regarding
Q-restricted WSTSs whose state sets needs not to be a wqo but rather a subset Q of the states is a wqo.
König & Stückrath develope a backwards algorithm based on [9] for Q-restricted WSTSs obtaining de-
cidability of coverability under additional assumptions. For SWSTSs, this approach coincides with the
ideal reachability algorithm [1].

All in all, our result for SWSTSs uses a modification of Abdulla et. al [1], and our application to GTSs
additionally uses the predecessor-basis procedure from König & Stückrath [12] in every computation
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Resilience in SWSTSs
Thm. 1

Coverability in SWSTSs
Abdulla et al. [1] Thm. 4.1

Coverability in WSTSs
Finkel & Schoebelen [9] Thm. 3.6

Coverability in Q-restr. WSTSs
König & Stückrath [12] Thm. 1

Resilience in GTSs
Thm. 2

Coverability in GTSs
König & Stückrath [12] Prop. 4
Method: Pred-basis procedure

uses

modification of

uses

Figure 7: Relation of the decidability results for resilience (bold) and the results in related work. The
bottom (blue) and the top (green) layers contain decidability results for GTSs and WSTSs, respectively.
The hooked arrows (↪→) mean “generalized to” or “instance of”.

step. It can also be seen as a modification of the backwards analysis of König & Stückrath [12] in the
case of the subgraph order. We summarize the relations of our results and the used concepts in Fig. 7.

7 Conclusion

We (1) provided a definition of resilience in an abstract framework, namely the explicit and the bounded
resilience problem, (2) proved decidability of both problems for strongly well-structured transition sys-
tems, and, (3) by applying them, obtained decidability results for GTSs of bounded path length, and in
particular a verification framework for GTSs which incorporates adverse conditions. Our approach does
not work for WSTSs in general/lossy GTSs for which we conjecture that both problems are undecidable.

For future work, we will investigate on (i) the (un)decidability of resilience for WSTSs/lossy GTSs,
(ii) synthesis of resilient GTSs, i.e., using the presented approach to construct provably resilient GTSs,
and (iii) the computability of a basis of the upward-closure of all successors for (a subclass of) strongly
well-structured GTSs. Regarding (ii), we will investigate on the construction of strongly well-structured
GTSs since it is a requirement for the application of the presented concept.

Acknowledgement. We are grateful to Annegret Habel, Christian Sandmann, and the anonymous re-
viewers for their helpful comments to this paper.
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A Appendix

A.1 Annotated Joint Graph Transformation Systems

Notation. For a joint graph transformation system SE , the symbol m(S ) = s or m(E ) = e, is the marker
of S or E , respectively. For a rule r ∈R and R ∈ {S ,E }, let m(r) = m(R) be the marker of r. Let
A = 〈Q,q0,δ ,sel〉 be the regarded control automaton. We define

prem(r) = ∪q∈Qprem(r){m(r′)|r′ ∈S ∪E : q ∈ Qpostm(r′)}∪{>|q = q0} ⊆ {>,s,e}

as premarkers of r, where Qprem(r) = {q ∈ Q|∃q′ ∈ Q : 〈q,q′〉 ∈ δ ,r ∈ sel〈q,q′〉} and Qpostm(r′) =
{q ∈ Q|∃q′′ ∈ Q : 〈q′′,q〉 ∈ δ ,r′ ∈ sel〈q′′,q〉}.

The set prem(r) of premarkers of a rule r depicts all markers of rules which could have been applied
prior to an application of r. We give an alternative definition of annotated joint GTSs using premarkes.

Definition 18 (annotated joint graph transformation system). Let SE be a joint graph transformation
systems w.r.t. a control automaton A = 〈Q,q0,δ ,sel〉 of 〈S ,E 〉. The annotated joint graph transforma-
tion system of S and E w.r.t. A is S ′

A∪E ′A, shortly (SE )′, where for a rule set R ∈ {S ,E }, R ′A denotes
the marked rule set

R ′A = {〈L,q,m〉⇀ 〈R,q′,m′〉 | 〈L,q〉⇀ 〈R,q′〉 ∈RA, m ∈ prem(L ⇀ R), m′ = m(R)}

where for a graph G, a state q, and a marker m, 〈G,q,m〉 denotes the disjoint union of G, a node labeled
with q, and a node labeled with m. In the partial morphism 〈L,q,m〉⇀ 〈R,q′,m′〉, the node lableled with
m is mapped to the node labeled with m′.

A.2 Minimal k Algorithm

We give the algorithm for deciding resilience for general SWSTSs in pseudocode as Alg. 1 on p. 18. The
algorithm uses two methods, namely PREBASIS and MIN. PREBASIS(B) computes the basis of B for a
set B. It is shown in [12], that such a prebasis is computable for GTSs, and described in detail in [20].
The method MIN(B) minimizes a finite set B by deleting every element in B for which there is already a
smaller element in B.

A.3 Basis calculation for Petri nets

In Sec. 5.3 we statet that for every marked Petri net 〈N,M0〉, a basis of post∗(M0) is computable. We
elaborate on this statement. In [23], it is shown that for any ideal I of markings in a Petri net, a basis
of I is computable iff for every ω-marking M it is decidable whether I ∩{M} = ∅. An ω-marking is
a function M : P→ N∪{ω}, and {M} := {M′ ∈M (N) |∀p ∈ P : M′(p) ≤ M(p)∨M(p) = ω} Since
post∗(M0) is an ideal, we can apply this result and ask whether post∗(M0)∩{M}=∅ is decidable. This
is obviously equivalent to post∗(M0)∩{M} ⊆∅, which allows us to apply Lemma 4, since ∅ is an ideal.
Thus, we now ask whether

post∗(M0)∩{M}=∅.

This problem corresponds to the so-called submarking reachability problem, which is decidable (cp.,
e.g., [7]), since it is recursively equivalent the to reachability problem. Therefore, we get that a basis of
post∗(M0) is computable.
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Algorithm 1 Minimal k Algorithm

1: procedure MINIMALSTEP(Bpost,J,B0) . kmin (minimal upper bound for recovery time)/−1
2: B← Bpost∩ J . compute B by taking out elements which are not in J
3: k← 0 . increasing counter
4: B1← B0 . basis of the current Ik; B0 is a given basis of I
5: B2←∅ . basis of the current Ik+1

6: while true do
7: if B⊆ B1 then
8: return k . we found kmin
9: else

10: B2← B0∪PREBASIS(B1) . PREBASIS(B1) computes the basis of B1
11: B2←MIN(B2) . MIN(B2) minimizes the set B2
12: if B2 ⊆ B1 then
13: return −1 . there exists no such k
14: else
15: B1← B2 . continue
16: k← k+1
17: end if
18: end if
19: end while
20: end procedure

A.4 Computations

We implemented Ex. 4/ Ex. 5 as joint GTS to compute a basis of the predecessors in every step of the
minimal k algorithm. The following set BM0

e is the intersection of a basis of post∗(M0) with Je where M0 =
〈0,1,1,1,q0〉. The first coordinate corresponds to P/product, the second coordinate to W /warehouse, and
the third and fourth coordinate correspond to S1/store1 and S2/store2, respectively.

BM0
e = {〈0,1,1,1〉,〈0,5,0,0〉,〈0,0,3,0〉,〈0,0,0,3〉,〈0,1,2,0〉,

〈0,1,0,2〉,〈0,0,2,1〉,〈0,0,1,2〉,〈0,3,1,0〉,〈0,3,0,1〉}×{q0}

We computed Bk, a basis of Ik, for 1 ≤ k ≤ 21. For the sake of comprehensibility, we only give Bk ∩ Je
for 1≤ k ≤ 6:

B1∩ Je = {〈0,1,1,1〉,〈0,2,0,1〉,〈0,2,1,0〉}×{q0}
B2∩ Je = {〈0,0,1,1〉,〈0,2,0,1〉,〈0,2,1,0〉,〈0,3,0,0〉}×{q0}
B3∩ Je = {〈0,0,1,1〉,〈0,1,0,1〉,〈0,1,1,0〉,〈0,3,0,0〉}×{q0}
B4∩ Je = B5∩ Je = B3∩ Je

B6∩ Je = {〈0,0,1,1〉,〈0,1,0,1〉,〈0,1,1,0〉,〈0,3,0,0〉,〈0,0,2,0〉,〈0,0,0,2〉}×{q0}

We obtain BM0
e 6⊆ Bk∩ Je for 1 ≤ k ≤ 5, but BM0

e ⊆ B6∩ Je. Thus, kmin = 6. We also rediscover that we
can reach I from any state in Je in at most 17 steps since

B17∩ Je = {〈0,0,0,0,q0〉}.

We also computed the indices k(I) = 20 and k(Je) = 3.
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The ability to handle evolving graph structures is important both for programming languages and
modeling languages. Of various languages that adopt graphs as primary data structures, a graph
rewriting language LMNtal provides features of both (concurrent) programming languages and mod-
eling languages, and its implementation unifies ordinary program execution and model checking
functionalities. Unlike pointer manipulation in imperative languages, LMNtal allows us to manip-
ulate graph structures in such a way that the well-formedness of graphs is an invariant guaranteed
by the language itself. However, since the shapes of graphs can be complex and diverse compared
to algebraic data structures such as lists and trees, it is a non-obvious important task to formulate
types of graphs to verify individual programs. With this motivation, this paper discusses LMNtal
ShapeType, a type checking framework that applies the basic idea of Structured Gamma to a con-
crete graph rewriting language. Types are defined as generative grammars written as LMNtal rules,
and type checking of LMNtal programs can be done by exploiting the model checking features of
LMNtal itself. We gave a full implementation of type checking using the features of the LMNtal
meta-interpreter.

1 Introduction

The ability to handle dynamically evolving graph structures is important both for programming languages 
and modeling languages. In programming, graphs appear both as data structures supporting efficient 
algorithms and as process structures exchanging messages through channels. In modeling, network 
structures can be found in many fields from the Internet to transportation, which can be modeled as 
graphs. Of various languages that adopt graphs as primary data structures, including GP 2 [1] and 
GROOVE [7], a graph rewriting language LMNtal [16] provides features of programming languages 
(including I/O and various other APIs) and those of modeling languages (including state space search). 
Its implementation, SLIM [8] (available from GitHub), provides ordinary program execution and parallel 
model checking (with 109 states) in a single framework. LMNtal allows us to handle data structures that 
cannot be succinctly modeled in functional languages. An example is a skip list [10] in Fig. 1(a), a 
linked list with additional edges skipping some nodes, which can be encoded into an LMNtal graph as 
in Fig. 1(b). Although LMNtal has simple syntax and semantics consisting of atoms, links and rewrite 
rules, it is Turing-complete and allow the encoding of various process calculi and the strong reduction of 
the λ -expressions in which both term structures and bound variables are represented as graphs [15].

Although LMNtal programs are pointer-safe in the sense that phenomena corresponding to dangling 
pointers and unintended aliasing in imperative languages never happen, it is possible that a graph with 
an unexpected shape is generated as a result of rewriting or computation gets stuck. For instance, see the 
two rewrite rules in Fig. 2. While the correct rule preserves the structure of a skip list, the incorrect one 
destroys the structure. Appropriate static type checking would detect such errors at compile time.
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2
3 5

7 11 13
17 19

23 Nil

n2 n1 n1 n2 n2 n2 n1 n1 n2 nil

2 3 5 7 11 13 17 19 23

List1

List2

(a)

(b)

Figure 1: An example of skip list: (a) with pointers, (b) as an LMNtal graph. An arrowhead of each
non-unary atom indicates the first argument and the ordering of arguments.

n2 n1 n2 n2:- n2 n1 n2 n2:-
correct incorrect

Figure 2: Example rules for skip list.

LMNtal ShapeType [19] is a type checking framework for LMNtal inspired by Shape types [5] which
in turn is based on Structured Gamma [6]. Types are defined as generative grammars represented by
rewrite rules of LMNtal. This makes it possible to do type checking by the non-deterministic execution
of SLIM. Positioning a type description language as a sublanguage of the host language and making full
use of the functionalities of the latter’s implementation is a major strength of the present approach.

LMNtal ShapeType provides two basic type checking algorithms. One is graph type checking to
check that a given graph is of the specified type. The other is rule type checking to check that a given
rule will not destroy the structure of typed graphs.

The main contributions of this paper are threefold. First, we formalize LMNtal ShapeType addressing
various subtleties. In previous studies, rule type checking had no explicit algorithm or correctness proof.
Second, we expand the expressive power of the type checking. In order to handle constraints such as
the balancing of trees and the number of elements an “express” link of a skip list can skip, we propose
extensive types and indexed types1 as new classes of graph types which are broader than context-free
grammars. Finally, we propose a unified approach to check the type safety of functional atoms, i.e., atoms
corresponding to functions (as opposed to data constructors) in other languages. In existing methods,
type safety meant that each rewriting step would not destroy the structure of typed graphs. However, we
often need to perform multi-step operations which may result in graphs of different types. We introduce
a design pattern called functional atoms to check the type safety of such operations.

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 introduces
Flat LMNtal, the base language of the present work. Section 4 introduces LMNtal ShapeType and
describes its type checking algorithms. Section 5 describes notable properties of LMNtal ShapeType.
Section 6 introduces functional atoms and shows how to check their type safety. Section 7 discusses
implementation.

1A variety of graph type definitions including the ones introduced in this paper can be found in http://bit.ly/

LMNtalShapeTypeEx.
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2 Related Work

There are several typing frameworks for graphs. Graph types [9] are a framework based on regular
expressions. Structured Gamma [6] is a framework for graphs in which types are defined by production
rules in context-free grammar. Shape types [5] are a subset of Structured Gamma and handle types which
make the type checking algorithm complete. These methods ensure that graph structures expressed using
pointers in C-like languages are consistent with the type definitions and that one-step operations on the
graph structures will not affect the types of the structure. An algorithm proposed in [2] is able to handle
shape-changing computation by specifying intermediate shapes, whereas our approach achieves the same
objective using functional atoms. Besides, these methods are based on networks of pointers, and express
graph edges by names (such as ‘next’) and graph nodes by variables. This style is dual of our approach
in which edges are expressed by α-convertible variables and nodes are expressed by atom names (such
as ‘cons’). Although various formalisms of graph grammars [13] are well studied for decades, our
technique, formulated in the framework of a practical concrete language, differs from those in many
respects including the formulation of graphs and rewriting.

For our base language LMNtal, the method of [17] deals with ‘microscopic’ properties by giving
capability types, which represent both polarities and sharing of (hyper)links, to local connection between
nodes, while LMNtal ShapeType handles ‘macroscopic’ graph structures, i.e., shapes.

Separation logic [11] is well studied for reasoning about pointer structures, but the approach is dif-
ferent from ours in several respects: it deals with low-level languages and properties, while we consider
graph structures formed by higher-level languages, abstracting pointers and heaps. Reasoning with sep-
aration logic uses proof assistants except for certain properties, while our objective is to pursue what
properties can be established automatically using rather simple typing framework.

There are a lot of studies on handling quantitative properties in type systems [3][12]. Most of them
enhance type systems with dependent types and employ decision procedures such as constraint solvers.
While we pursue a somewhat close approach (Section 5.4), we also pursue an approach that does not
employ numerical types for broader applications in mind (Section 5.1).

3 LMNtal: Graph Rewriting Language

In order to focus on the shape properties of graph rewriting in a concrete setting but without unnecessary
complication, we consider a subset of LMNtal, called Flat LMNtal, which omits another structuring
mechanism called membranes. This results in a significantly simpler fragment compared to the original
setting [16]. We do not handle guards (for operations on built-in data types) or hyperlinks (for multi-point
connectivity) either, but this core language still provides a powerful structuring mechanism. Hereinafter
we simply call this subset LMNtal.

3.1 Syntax

The syntax of LMNtal is shown in Fig. 3. An LMNtal program is represented as a pair of a graph G (a
multiset of atoms) and a ruleset R (a multiset of rewrite rules). This pair is called a process. An atom
consists of an m-ary atom name p followed by m totally ordered link names X1, . . . ,Xm. Names starting
with capital letters are interpreted as link names, and others as atom names. The pair of the name and the
arity of an atom are referred to as the functor of the atom and written as p/m. Atoms and links correspond
to nodes and edges in graph theory, respectively. Unlike many other graph rewriting formalisms, graphs
of LMNtal are defined in a syntax-directed manner and each atom has its own arity.

95

GCM 2021 Pre-Proceedings



Engineering Grammar-based Type Checking for Graph Rewriting Languages

� �
Process ::= G,R

Graph G ::= 0 (null)
| p(X1, . . .,Xm) (atom, m≥ 0)
| G,G (molecule)

Ruleset R ::= 0 (null)
| [RuleName@@ ] G:- G (rule)
| R,R (molecule)� �
Figure 3: Syntax of LMNtal.

In LMNtal, a multiset of atoms stands for an undirected multigraph, i.e., a graph that al-
lows multi-edges and self-loops. For instance, a multiset of atoms a(L1,F),b(L1,L2,L3,L4),

c(L2,L5,L6,L6),d(L5,L3,L4) stands for the undirected graph shown in Fig. 4.

a b

c

d

F

Figure 4: Pictorial representa-
tion of an LMNtal graph:
a(L1,F),b(L1,L2,L3,L4),

c(L2,L5,L6,L6),d(L5,L3,L4)

A link name occurs at most twice in a graph. Link names occur-
ring twice in a graph are called local links and those occurring once
are called free links (a.k.a. half-edges) one of whose ends remains un-
connected (or connected to the outside of the graph). Graphs without
free links are closed. When we compose two graphs with a comma, we
regard them to be α-converted as necessary to avoid collisions among
local link names.

The following two abbreviations are allowed.

1. An atom written as another atom’s argument is regarded
as connected to the last argument of the outer atom,
that is, p(X1, . . .,Xk−1,q(Y1, . . .,Yn),Xk+1, . . .,Xm)

(1 ≤ k ≤ m,1 ≤ n) is interpreted as
p(X1, . . .,Xk−1,L,Xk+1, . . .,Xm),q(Y1, . . .,Yn,L) where L is a fresh link name. For in-
stance, a(b(c),d) means a(B,D),b(C,B),c(C),d(D).

2. An atom p() with no arguments may be written as p.

A rule (with an optional RuleName) describes rewriting of a subgraph to a subgraph. For instance,
a rule to(X,Y):- from(Y,X) rewrites a binary atom ‘to’ to a binary atom ‘from’ with its arguments
swapped. For readability, rules may be written in a period-terminated form as well as in a comma-
separated form. Because free links must not appear or disappear by rewriting, a link name in a rule must
occur exactly twice.

3.2 Semantics

The semantics of LMNtal consists of structural congruence and reduction relation. We will introduce
them in detail.

3.2.1 Structural Congruence

The syntax defined above does not (yet) characterize LMNtal graphs because the figure depicted in
Fig. 4 corresponds to other syntactic representations of LMNtal graphs as well. We need to define
an equivalence relation “≡”, called structural congruence, to absorb syntactic variations. Structural
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� �
(E1) 0,P ≡ P
(E2) P,Q ≡ Q,P
(E3) P,(Q,R) ≡ (P,Q),R
(E4) P ≡ P[Y/X ] (if X is a local link of P)
(E5) P≡ P′ ⇒ P,Q≡ P′,Q
(E7) X=X ≡ 0
(E8) X=Y ≡ Y=X
(E9) X=Y,P ≡ P[Y/X ] (if P is an atom and X is a free link of P)� �

Figure 5: Structural congruence on LMNtal graphs.� �
(R1)

G1
T :-U−−−−→ G′1

G1,G2
T :-U−−−−→ G′1,G2

(R3)
G2 ≡ G1 G1

T :-U−−−−→ G′1 G′1 ≡ G′2
G2

T :-U−−−−→ G′2
(R6) T T :-U−−−−→U

� �
Figure 6: Reduction relation on LMNtal graphs.

congruence is defined as the minimum equivalence relation satisfying the rules in Fig. 5. Structurally
congruent LMNtal graphs are considered indistinguishable from each other. P[Y/X ] in (E4) and (E9)
means to replace the link name X occurring in the graph P with the link name Y . Note that (E6) and
(E10) in the original definition [16] are omitted because these are rules for membranes.

(E1)–(E3) characterize graph nodes as multisets. (E5) is a structural rule to make ≡ a congruence.
Both of them are standard rules found also in process algebra. (E4) is α-conversion of local link names2.
Rules (E7) to (E9) are about the special binary atom = called a connector. An atom =(X ,Y ), also written
as X =Y , fuses two links X and Y . (E7) says that a self-closed link is regarded as a null graph, (E8) says
that a connector is symmetric, and (E9) says that a connector may be absorbed or emitted by an atom.
Connectors play an important role in writing rewrite rules such as

append(X,Y,Z), nil(X) :- Y=Z.

They play an important role in LMNtal ShapeType also.

3.2.2 Reduction Relation

“ T :-U−−−−→”, called a reduction relation by the rule T :-U , is a binary relation between two graphs, which
describes the principal computation step in LMNtal. It is defined as the minimum binary relation sat-
isfying the rules in Fig. 6. Note that (R2), (R4) and (R5) in [16] are omitted because these are for
membranes.

The most important rule is (R6) which states that if there is a subgraph that matches the LHS of a
rule, the subgraph can be rewritten into the RHS3. This definition can be naturally extended for rulesets,
i.e., we say “G can transition (in one step) to G′ by the ruleset R,” written G R−→ G′, if ∃r ∈ R. G r−→ G′.

2The new link name Y must be “fresh” here; otherwise the graph P[Y/X ] violates the prerequisite that each link name can
occur at most twice.

3For simplicity, we intentionally allow the case where T is null, which readily introduces divergence, though a legitimate
implementation need not compile such rules.
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In order to facilitate the formulation of our type checking method, the syntax and semantics described
above separate graphs and rulesets, while in the standard definition they conjunctively form a process that
may evolve autonomously.

3.3 Reverse Execution in LMNtal

Before we move on to the definition of LMNtal ShapeType, we introduce reverse execution in LMNtal.
First we define the inversion of rules and rulesets.

Definition 1. The inversion rinv of an LMNtal rule r = T :-U is defined by rinv =U :- T . Likewise, the
inversion Rinv of an LMNtal ruleset R is defined by ∀r. r ∈ R⇔ rinv ∈ Rinv.

It is important to note that an inverted rule is also a well-formed rule in LMNtal, and this plays a key
role in our type checking method. Actually, reduction using an inverted rule is equivalent to following
the reduction relation of the original rule in an opposite direction4.

Proposition 1. For an LMNtal rule r = T :-U , G′ r−→ G⇔ G rinv

−−→ G′.

Hence the reduction relation can be followed backward by executing the inversion of the LMNtal
rule. This is called reverse execution.

4 LMNtal ShapeType

A typed language comes with a type description (sub)language, which is called LMNtal ShapeType in
our setting. This section defines LMNtal ShapeType and describes its basic type checking algorithms.
First, we give a formal definition. Following the terminology of formal language theory, LMNtal functors
are hereinafter referred to as symbols also.

Definition 2. A type in LMNtal ShapeType (simply called ShapeType) is a triplet (S,P,N), where

• S = t/m is a functor called the start symbol,

• P is a finite set of rules called production rules, and

• N is a finite set of functors called nonterminal symbols.

4.1 Syntax

The triplet of Definition 2 is written by the syntax of Fig. 7, where the start symbol S is given as an atom
p(X1, . . .,Xm)

5, the production rules P as a ruleset R in Fig. 3, and nonterminal symbols N as a graph
G in Fig. 3. The LHS of each production rule must consist only of one or more nonterminal atoms which
must not include connectors. Abbreviations allowed for LMNtal atoms (Section 3.1) are also allowed.� �

ShapeType ::= defshape S { P } [ nonterminal { N } ]� �
Figure 7: Syntax of ShapeType.

4Proofs of all theorems, propositions and lemmas can be found in Appendix.
5We allow the case where m = 0, i.e., graphs with no roots, and non-connected graphs, for which our algorithms described

in this section work as well.
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n2 skip:-
p2

n1 skip:-
p1

:-
p0

nilskip skip skip

Figure 8: Production rules of the skip-list type skip.

By abuse of notation, functors in S and N are written as atoms in which link names are insignificant.
Note also that S is always considered to be included in the set N of nonterminals (including the case
where the definition of N is omitted).

An important feature of LMNtal ShapeType is that a graph to be typed may have two or more roots
(as in skip lists) whose order is significant. Accordingly, when discussing whether a graph is of a specific
type, a type is referred to as t(L1, . . .,Lm) by explicitly mentioning roots. If the link names are not
important, it is called type t/m (or type t if t is a unique start symbol name).

4.2 Semantics

We define the typing relation “:” using an auxiliary relation “�” called the production relation. Here-
inafter, a graph with free links L1, . . . ,Lm is written as G[L1, . . . ,Lm] and the set of all functors used in
graph G is written as Funct(G).

Definition 3 (Production Relation). For a type (t/m,P,N), a graph G[L1, . . . ,Lm] is generated by the type
t(L1, . . .,Lm), written G[L1, . . . ,Lm]� t(L1, . . .,Lm), iff t(L1, . . .,Lm)

P−→* G[L1, . . . ,Lm].

Definition 4 (Typing Relation). For a type (t/m,P,N), a graph G[L1, . . . ,Lm] has the type t(L1, . . .,Lm),
written G[L1, . . . ,Lm] : t(L1, . . .,Lm), iff G[L1, . . . ,Lm]�t(L1, . . .,Lm) ∧ Funct(G[L1, . . . ,Lm])∩N =∅.

Intuitively, only graphs to which the start symbol of type t can transition in zero or more steps by the
production rules are said to be generated by type t, and only graphs with no nonterminal symbols are said
to have the type t. In these definitions, free links of graphs and types are both explicitly written because
their names and ordering are significant. For instance, given a type

defshape t(X,Y) { t(X,Y) :- a(X,Y) },

a(X,Y)�t(X,Y) holds but a(Y,X)�t(X,Y) does not hold.
The type of skip lists shown in Section 1 can be described as follows.� �

defshape skip(List2,List1){

p0@@ skip(L2,L1) :- nil(L2,L1).

p1@@ skip(L2,L1) :- n1(X1,L1), skip(L2,X1).

p2@@ skip(L2,L1) :- n2(X1,X2,L2,L1), skip(X2,X1).

}� �
Note that elements in the skip list are omitted in order to focus on the structure of the graph, though it is
possible to include elements and specify their types. The production rules can be visualized as in Fig. 8.

4.3 Graph Type Checking

Graph type checking is to check if an LMNtal graph X has a type t. The algorithm is shown in Fig. 9.
GCHECK is to check if the graph X has the type (t/m,P,N). To check that X does not include a

nonterminal symbol, we only have to check all the atoms because the number of atoms in X is finite.
Then, it suffices to check that X is generated by (t/m,P,N). GGCHECK checks that X can transition
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� �
// Checks that the LMNtal graph X has the type (t/m,P,N)

1: function GCHECK(X ,(t/m,P,N))
2: if ∃ f ∈ Funct(X). f ∈ N then return false
3: else return GGCHECK(X ,(t/m,P,N),∅)
4: end function

// Checks that the LMNtal graph X can be generated by the type (t/m,P,N)
1: function GGCHECK(X ,(t/m,P,N),G)
2: if X ≡ t(L1, . . .,Lm) then return true
3: for each Y s.t. X Pinv

−−→ Y ∧ @Y ′ ∈ G. Y ≡ Y ′ do
4: G← G∪{Y}
5: if GGCHECK(Y,(t/m,P,N),G∪{X}) then return true
6: end for
7: return false
8: end function� �

Figure 9: Algorithm of graph type checking.

p0inv p2inv p1inv
n1 n2 nilList1

List2

n1 n2 skipList1

List2

n1 skipList1
List2

skipList1

List2

Figure 10: Reverse execution path of a skip list.

back to the start symbol by reverse execution with production rules P. For example, by reverse execution
shown in Fig. 10, we can verify that the leftmost graph in Fig. 10 has the skip type. For a certain
class of types that will be detailed in Section 5, the graph type checking algorithm satisfies soundness,
completeness and termination for any rule.

4.4 Rule Type Checking

First, we define the type preservation property of an LMNtal rule r for the type t.

Definition 5 (Type Preservation). Let r be an LMNtal rule, t be a type, and L1, . . . ,Lm be a sequence of
links. We say that r preserves t iff

∀G : t(L1, . . .,Lm). G r−→ G′ ⇒ G′ : t(L1, . . .,Lm).

Checking the type preservation property is called rule type checking. The algorithm is shown in Fig. 11.
Intuitively, the algorithm checks if each generation path of L can be transformed to a generation path

of R by structural induction on the production rules used last. RCHECK ensures that both sides of the
given rule consist only of the terminal symbols and then calls RCHECKSUB. RCHECKSUB recursively
follows the production rule of t backwards from the LHS L, supplying a ‘deficient’ graph C to both
sides (line 8), until the LHS reaches the start symbol (line 2) or a graph that appeared before (line
5). If it detects an LHS that appeared before, the algorithm backtracks to the point where the LHS
appeared first. Positive return values are used to inform how many times the function should return
by backtracking. Then REDUCE verifies that the resulting graph augmented with the supplied graphs
accumulated in the previous phase can transition to the RHS. REDUCE shows this by reverse execution
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� �
// Checks that the rule L:- R preserves the type (t/m,P,N)

1: function RCHECK(L:- R,(t/m,P,N))
2: return (Funct(L)∪Funct(R))∩N =∅ ∧ RCHECKSUB(L:- R,(t/m,P,N), [ ]) = 0
3: end function

// Traverses the state space generated by reverse execution
// (L:- R): current state, [v1, . . . ,vn]: stack of visited states in depth first search

1: function RCHECKSUB(L:- R,(t/m,P,N), [v1, . . . ,vn])
2: if L consists only of one t/m atom then
3: if REDUCE(R,L,P,∅) then return 0 . Returns 0 if the rule preserves the type
4: else return −1 . Returns −1 if the rule may destroy the type
5: if ∃ i s.t. 1≤ i≤ n ∧ vi = Li :- Ri ∧ Li ≡ L then
6: if REDUCE(Ri,Li,P,∅) then return n− i . Backtracks n− i steps when a cycle is detected
7: else return −1

8: for each (L′,C) s.t. L,C Pinv
−−→ L′ do . Explore all paths

9: S← RCHECKSUB(L′:-(R,C), (t/m,P,N), [v1, . . . ,vn,L:- R])
10: if S > 0 then return S−1 . Continues backtracking
11: if S =−1 then return −1 . The rule may destroy the type if one or more calls return −1
12: return 0
13: end function

// Checks that there exists a reverse execution path from X to Y , i.e., X Pinv
−−→* Y

// G: visited graphs
1: function REDUCE(X ,Y,P,G)
2: if X ≡ Y then return true
3: for each X ′ s.t. X Pinv

−−→ X ′ ∧ @X ′′ ∈ G. X ′′ ≡ X ′ do
4: G← G∪{X ′}
5: if REDUCE(X ′,Y,P,G∪{X}) then return true
6: return false
7: end function� �

Figure 11: Algorithm of rule type checking.

in order to prevent divergence. Finally, RCHECKSUB returns 0 if there is a state L:- R on every path
such that REDUCE(R,L,P,∅) returns true and returns−1 otherwise. Note that each graph C enumerated
in line 8 of RCHECK must be the minimum one that enables matching with the RHS of rules and lets the
reverse execution proceed.

For example, to verify that the rule in Fig. 12 preserves the skip type, we first go back from the
LHS, supplying and accumulating necessary graphs (Fig. 13, upper), and then check if the resulting
graph (skip in this example) can transition to the RHS with the supplied graphs (Fig. 13, lower).

This algorithm is inspired by that of Structured Gamma [6]. While the algorithm of Structured
Gamma generates the entire state space first and the correspondence of free links in the supplied graphs
was recorded and managed separately, our algorithm avoids this inconvenience by rewriting the target
rule itself to generate the state space, using rewrite rules to represent individual states. This idea is similar
to that of the sequent calculus in that it treats the pair of premise and conclusion as a single object.
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n1 n2L1

L2 X2
X1 n2L1

L2 X2
X1:-

Figure 12: An example rule preserving the skip type.
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p1inv

n1 n2L1
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p2inv
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L2

n2L1

L2 X2
X1

X2
X1 skip, n2L1

L2

skip≡ skipL1

L2
p2inv

Figure 13: Reverse execution from the LHS (upper) and from the RHS (lower) of Fig. 12.

5 Properties of LMNtal ShapeType

This section describes some important properties of LMNtal ShapeType.

5.1 Extensive Types

The type checking algorithms introduced in [5] and [6] handle types with context-free production rules
to ensure termination of graph type checking. Context-free types in our setting are defined as follows:

Definition 6. A production rule α :- β is context-free iff α consists of a single atom and β contains one
or more atoms other than connectors. A type is context-free iff all of its production rules are context-free.

However, to ensure termination of graph type checking, it is sufficient if there is some measure
for graphs whose values will not decrease by production rules, and this extension opens up versatile
applications. Thus we propose graph weighting as a new measure for graphs.

Definition 7. For a type τ , a weighting function w : Funct(τ)→N\{0}weights each functor occurring in
τ with a positive integer. As an exception, connectors’ weight w(=/2) must be zero because connectors
can be arbitrarily absorbed or emitted by the structural congruence rule (E9).

Definition 8. Let w be a weighting function for a type τ and G be a graph which consists only of atoms
with functors contained in Funct(τ). The weight of the graph G, denoted w(G), is defined by

w(G) = ∑
p(L1,...,Lm)∈G

w(p/m).

Note that graph weighting generalizes the concept of the number of atoms.

Definition 9. A type (t/m,P,N) is extensive iff ∃w. ∀(α :- β ) ∈ P. w(α)≤ w(β ).

Context-free types are obviously extensive. An extensive type corresponds to a length-increasing
grammar in formal language theory, which is equivalent to a context-sensitive grammar. This extension
is motivated by the need to handle a variety of types with non-context-free constraints as explained
below6.

For instance, the type of red-black trees can be defined as in Fig. 14. Here, the nonterminal symbol

6However, since LMNtal ShapeType handles graphs, care must be taken when discussing its expressive power. For instance,
the list version of the typical context-sensitive language {anbncn} can be expressed by a simple context-free type in our setting.
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� �
defshape rbtree(R){

s@@ rbtree(R) :- btree(nat,R).

bz@@ btree(z,R) :- leaf(R).

tz@@ tree(z,R) :- leaf(R).

bs@@ btree(s(N),R) :- b(tree(N1),tree(N2),R), cp(N,N1,N2).

ts@@ tree(s(N),R) :- b(tree(N1),tree(N2),R), cp(N,N1,N2).

r@@ tree(N,R) :- r(btree(N1),btree(N2),R), cp(N,N1,N2).

ns@@ nat(R) :- s(nat,R).

nz@@ nat(R) :- z(R).

cs@@ cp(s(N),N1,N2) :- cp(N,M1,M2), s(M1,N1), s(M2,N2).

cz@@ cp(z,N1,N2) :- z(N1), z(N2).

} nonterminal {

rbtree(R), btree(N,R), tree(N,R),

cp(N,N1,N2), nat(R), s(N,R), z(R)

}� �
Figure 14: Type definition of red-black trees
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Figure 15: An example graph of the
rbtree type (l stands for leaf).

btree/2 stands for a red-black tree with a black root and tree/2 stands for a red-black tree with a
black or red root. In this definition, the black height of a tree to be generated is expressed using z/1
(zero) and s/2 (successor) atoms as X=s(s( . . .s(z) . . .)) (as done in Prolog). The atom cp/3 copies
and distributes the numeral connected to the first argument to the second and third arguments, with the
production rules cs and cz. This definition expresses the balance of red-black trees by constraints on
black heights distributed properly to subtrees. For instance, a graph in Fig. 15 has the rbtree type. This
rbtree type is extensive with a weighting function w(x) which returns 2 if x = leaf/2 and returns 1
otherwise. Note that it is easy to find an appropriate weighting since the constraint of extensive types
(Def. 9) reduces to a system of linear inequalities.

The technique that employs z/1 and s/2 atoms can be used also for defining, e.g., skip lists with
constraints on the number of stops that an “express” link can skip. Also, the type of the graph represen-
tation of λ -terms needs to manage a list (of unbounded length) of free links of subterms, which can be
represented using an additional nonterminal symbol representing a list constructor.

For extensive types, the algorithm of graph type checking (Fig. 9) satisfies soundness, completeness,
and termination.

Theorem 1 (Termination of graph type checking). For any LMNtal graph X and an extensive ShapeType
τ , GCHECK(X ,τ) terminates.

Theorem 2 (Soundness of graph type checking). For any LMNtal graph X and a ShapeType (t/m,P,N),
if GCHECK(X ,(t/m,P,N)) returns true, X : t(L1, . . .,Lm) holds.

Theorem 3 (Completeness of graph type checking). For any LMNtal graph X and an extensive
ShapeType (t/m,P,N), if X : t(L1, . . .,Lm) holds, GCHECK(X ,(t/m,P,N)) returns true.

5.2 Production rules with connectors

The data structure called difference lists (d-lists for short), commonly used in Prolog programming since
1970’s, represents a list with two variables representing the two ends. It enables constant-time concate-
nation by virtue of logic variables. Difference lists are extremely useful also in LMNtal programming
where links are a special use of logic variables.

A type of d-lists can be written as in Fig. 16 (left). Since p1 (for an empty d-list) has no atoms in the
RHS except for a connector, there is no increasing weighting function for this type. The inversion of p1
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� �
defshape dlist(X,Y){

p1@@ dlist(X,Y) :- X=Y.

p2@@ dlist(X,Y) :- c(dlist(X),Y).

}� �
� �

defshape dlist(X,Y){

p1@@ dlist(X,Y) :- X=Y.

p2@@ dlist(X,Y) :- c(dlist(X),Y).

p3@@ dlist(X,Y) :- c(X,Y).

}� �
Figure 16: Type definition of d-lists (left) and its normalized definition (right).

is X=Y :- dlist(X,Y), which matches any link, so reverse execution with this rule will not terminate.
However, we cannot describe an empty d-list without such rules.

Let the target graph to be type-checked be G. If two free links of G are connected to each other, G
cannot be expressed without connectors. A connector connecting two free links of G is called global.
Now, we put a restriction that the inversion of a production rule fires only if all connectors in the RHS of
the original production rule are global in G. With this restriction, a connector in the RHS of a production
rule cannot match an arbitrary link.

Although this seems to decrease the flexibility of the types, the type description with this restriction
retains the same expressiveness as the case where connectors can be freely used in the RHS of production
rules. Actually, non-global connectors can be removed by a procedure like the elimination of ε-rules in
the conversion of a context-free grammar to Chomsky normal form. Figure 16 (right) shows the result of
such normalization.

Although we defined that connectors must have zero weight in Definition 7, global connectors may
be weighted in the same way as ordinary functors. This is because only finitely many global connectors
can appear in a graph and they cannot be absorbed or emitted. Note that a global connector cannot be a
nonterminal symbol.

We go back to the dlist example. When all functors including the global connector are weighted
1, the production rules will not decrease the weight. Furthermore, graph type checking ensures that an
empty d-list has the type dlist since X=Y can make reverse transition to dlist(X,Y) by the rule p1.

5.3 Rule type checking

The algorithm of rule type checking (Fig. 11) is sound in the following sense:

Theorem 4. For an LMNtal rule α :- β , a ShapeType (t/m,P,N), and a sequence of links L1, . . . ,Lm, if
RCHECK(α :- β ,(t/m,P,N)) returns true, the following formula (the type preservation property) holds:

∀G : t(L1, . . .,Lm). G
α :- β−−−−→ G′ ⇒ G′ : t(L1, . . .,Lm)

For context-free types, the rule type checking algorithm terminates for any rule because the state
space of our algorithm is the same as that of Structured Gamma [6] if we focus only on the LHS.
However, it may not terminate for extensive types. For example, we can use the production rule cz of
rbtree type (Fig. 14) backwards to transition from one z atom to cp and z atoms. This causes infinitely
many cp atoms to be generated from a single z atom, so the rule type checking does not terminate.

As with other static type checking methods, completeness of rule type checking may not hold in
general [6]. The proof of soundness assumes that there exists a transition path from the start symbol to a
resulting graph of reverse execution from the LHS7, but if there is no such path, the completeness does
not hold. In this sense the algorithm is conservative.

7which is α0 in the proof in Appendix.
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� �
defshape rbtree3(R){

init@@ rbtree3(R) :- btree3(R).

bb3@@ btree3(R) :- b(tree2,tree2,R).

bb2@@ btree2(R) :- b(tree1,tree1,R).

bb1@@ btree1(R) :- b(tree0,tree0,R).

bl@@ btree0(R) :- leaf(R).

tb2@@ tree2(R) :- b(tree1,tree1,R).

tb1@@ tree1(R) :- b(tree0,tree0,R).

tr2@@ tree2(R) :- r(btree2,btree2,R).

tr1@@ tree1(R) :- r(btree1,btree1,R).

tr0@@ tree0(R) :- r(btree0,btree0,R).

tl@@ tree0(R) :- leaf(R).

} nonterminal {

rbtree3(R), btree3(R), btree2(R),

btree1(R), btree0(R),

tree2(R), tree1(R), tree0(R)

}� �

� �
defshape rbtree(R){

init@@ rbtree(R) :- btree($n,R).

bb@@ btree($n,R) :- $m = $n-1

| b(tree($m),tree($m),R).

bl@@ btree(0,R) :- leaf(R).

tb@@ tree($n,R) :- $m = $n-1

| b(tree($m),tree($m),R).

tr@@ tree($n,R)

:- r(btree($n),btree($n),R).

tl@@ tree(0,R) :- leaf(R).

} nonterminal {

rbtree(R), btree($n,R), tree($n,R)

}� �

Figure 17: Type definition of red-black trees as a context-free type (left) and as an indexed type (right).

5.4 Indexed Types

Types with numerical constraints, such as complete binary trees or (balanced) red-black trees of height
n, or lists of length n, cannot be represented as context-free types. We could use extensive types (Sec-
tion 5.1), for which the graph type checking works well, but the rule type checking for such types may
not terminate.

On the other hand, types with constant numerical constraints, such as red-black trees with a height
of exactly 3, can be represented by a context-free type as in Fig. 17 (left). The meanings of symbols
in this definition are the same as those in Fig. 14 except that the names of nonterminal symbols are
followed by indices representing the black height. In this definition, the production rules bb3–bb1, tb2–
tb1, tr2–tr0 are quite similar, respectively, so we can simplify them as in Fig. 17 (right), where we
introduced a notation like ‘$n’ to represent integer variables. This notation is borrowed from the typed
process context [16], an extension of LMNtal. While the original typed process context is a mechanism
to match any graph that satisfies the constraints specified in the guard (the part between :- and | ), here
we assume that all typed process contexts match only natural numbers8. This extension allows natural
numbers and typed process contexts to appear in the LHS of the production rule in addition to one non-
terminal symbol. Although this goes beyond the context-freeness assumption, the production rules are
still essentially context-free in the sense that this natural number, which originally played the role of an
index of a non-terminal symbol, can be regarded as an index of the non-terminal symbol. This idea of
indexed nonterminal symbols was derived from indexed grammars in formal language theory.

Since these process contexts represent variables that may take any natural numbers, the rule type
checking can cause state space explosion. Therefore, we ignore the difference of the indices of nonter-
minal symbols and consider them as the same state in the state space construction.

In this setting, the algorithm terminates because the state space of an indexed type is isomorphic
to that of the type without indices. Since multiple states are represented by a single state, this may
affect the completeness of type checking compared to the context-free version with a fixed size (Fig. 17,
left). However, introducing indices is important not only for the simplicity of description but also for the

8In LMNtal, a number is represented as a unary atom with the atom name of that number.
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expressiveness of the types since we cannot represent red-black trees of any height as a context-free type
without indices.

6 Functional Atoms

A functional atom is a design pattern commonly used in LMNtal programming, which behaves like a
function in functional languages. For instance, the atom append/3 with the following rules, depicted in
Fig. 18 (upper), appends two lists like an append function in functional languages. The append/3 atom
expects two lists connected to the first and second arguments as input, handles them by the rules, and
returns the concatenated list through the third argument as in Fig. 18 (lower).

a1@@ R=append(c(L1),L2) :- R=c(append(L1,L2)).

a2@@ R=append(n,L) :- R=L.

a c ac
:-

a n
:-

a c c n

c n

a c n

c n

c a n

c n

cc

c n

cc

Figure 18: Rules of the append/3 atom (upper) and progress of computation (lower).

A functional atom may receive and/or return a value of a type with multiple roots. Consider the
following functional atom t2l/3 (for tree-to-list):

t1@@ t2l(n(N,L,R),T,P) :- t2l(L,c(N,t2l(R,T)),P).

t2@@ t2l(l,T,P) :- T=P.

These rules are depicted in Fig. 19 (upper). The atom t2l/3 receives a binary tree, traverses it in-order,
and returns a difference list as in Fig. 19 (lower).

By generalizing them, we formalize functional atoms as follows:
Definition 10 (Functional property). For types t1, . . . , tn and T , a graph F consisting of a single f/m
atom, and a ruleset R consisting of rules each of which has just one f/m atom in the LHS, F is functional
iff for all graphs Gt1 , . . . ,Gtn which have types t1, . . . , tn respectively,

∀G.
(
F,Gt1, . . .,Gtn

R−→* G
)
∧
(

f/m /∈ Funct(G)
)
⇒ G : T.

This property is written9 as t1, . . . , tn `R F : T , where t1, . . . , tn are called the input types, T the output
type, and R the functional ruleset for F . With this notation, the properties of append and t2l are
expressed as:

list(L1),list(L2) `{a1,a2} append(L1,L2,R) : list(R),
tree(T) `{t1,t2} t2l(T,X,Y) : dlist(X,Y).

The functional property states that, when a functional atom F is given graphs with types t1, . . . , tn as
inputs, it returns a graph with type T upon termination.

The functional property is verified with rule type checking. Here, St , Pt , and Nt stand for the start
symbol, the set of production rules, and the set of nonterminal symbols of type t, respectively.

9In this section, we assume that each type is written as an atom with the functor of its start symbol in order to clarify which
argument of the functional atom is connected to which one of the types.
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Figure 19: Rules of the t2l/3 atom (upper) and progress of computation (lower).

Theorem 5. For a set of production rules P = PT ∪ Pt1 ∪ ·· · ∪ Ptn ∪ {T :- F,t1, . . .,tn} and a set of
nonterminal symbols10 N = NT ∪ Nt1 ∪ ·· · ∪ Ntn , if every rule r ∈ R preserves type (ST ,P,N), then
t1, . . . , tn `R F : T holds.

For example, to check the functional property of t2l, we add a production rule dlist(X,Y) :-

t2l(T,X,Y),tree(T) and the production rules of the type tree to the type dlist and and execute the
rule type checking of t1 and t2. Note that the functional property does not ensure that the computation
with functional atoms will not get stuck because it assumes that the computation successfully terminates
and no functional atom remains in the graph.

7 Implementation

While graph type checking can be easily done using the model checking features of SLIM, rule type
checking is much harder to implement. Since the rule type checking algorithm requires special features
to construct a state space in which states are represented as rewrite rules and states with the same LHSs
are considered identical, we implemented this algorithm with the ideas and features of the LMNtal meta-
interpreter [14].

To implement indexed types (Section 5.4), we need to perform operations on graphs containing num-
bers whose concrete values are not necessarily fixed but constrained. Since the current implementation
of LMNtal cannot handle such indefinite numbers symbolically, we extended the data structure used in
the above implementation on the LMNtal meta-interpreter to handle numerical constraints. These con-
straints belong to Presburger arithmetic, in which all formulas are decidable. We used the Z3 solver [4]
as a backend to solve them. We have tested the implementation by typechecking reasonably complex op-
erations on the graph structures exemplified in the paper, including the insertion operation into red-black
trees (formulated using an indexed type) that requires rotation of trees, using functional atoms.

8 Conclusion and Future Work

We studied LMNtal ShapeType, a static type checking framework for a graph rewriting language LMN-
tal, and proposed extensions to enhance its expressiveness. First, we gave a formalization of the types

10Here we assume that there is no duplication among the nonterminal symbols.
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and type checking algorithms for both graphs and rewrite rules, addressing various subtleties including
those arising from connectors representing link fusion, a key construct in graph rewriting. Second, we
proposed extensive types and indexed types as broader classes of graph types, which enabled us to handle
constraints such as the balancing of trees. Third, we proposed a unified approach for checking the type
safety of functional atoms, i.e., atoms interpreted as functions (as opposed to data constructors) in other
languages, so that we could handle multi-step operations which might result in graphs of different types.
The expressive power of our rather simple framework was demonstrated by defining a variety of graph
types including skip lists with and without constraints, red-black trees, λ -terms represented as graphs,
and rectangular grids with arbitrary or specified size, all available from the website given in Section 1.

For future work, it is important to expand the target language. We focused on Flat LMNtal without
membranes or guards or hyperlinks [18], but they proved to be useful in computing with complicated
graph structures. The challenge here is the handling of process contexts (a wildcard construct in graph
matching) and guards (for expressing operations and constraints over built-in types), which is straight-
forward in forward execution but is challenging in backward execution both in theory and practice. Also,
it is interesting to extend the framework to handle infinite graphs as input of functional atoms because
the conception of LMNtal was the unified modeling of data structures and network of concurrent pro-
cesses that evolve by exchanging messages. Functions modeled in LMNtal naturally allow concurrent
and nonterminating execution, cooperating with each other by dataflow synchronization, and a unified
modeling and reasoning framework of graph types with and without base cases is important future work.
Finally, it is necessary to optimize the type checking algorithms. The algorithms worked well as a proof
of concept and are simple enough to implement within the existing framework of LMNtal, but the ex-
haustive search can be too costly when target graphs or rules become complicated. Effective techniques
for pruning search is an important topic of future work.
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Appendix

Hereinafter, for a set of functors F , Graph(F) stands for the set of every graph G s.t. Funct(G)⊆ F .

Proposition 1. For LMNtal rule r = T :-U , G′ r−→ G⇔ G rinv

−−→ G′

Proof. (⇒) We will prove by structural induction on the last-used reduction relation rule.

• Case (R1): We assume that G′ = P,Q, G = P′,Q and P r−→ P′. By the induction hypothesis,

P′ rinv

−−→ P. By (R1), P′,Q rinv

−−→ P,Q. Therefore, G rinv

−−→ G′.

• Case (R3): We assume that G′ ≡ P, P′ ≡ G, P r−→ P′. By the induction hypothesis, P′ rinv

−−→ P. By

(R3) and G′ ≡ P, P′ ≡ G, we obtain G rinv

−−→ G′.

• Case (R6) is self-evident by (R6).

Hence G′ r−→ G⇒ G rinv

−−→ G′.

(⇐) follows from (rinv)
inv

= r and (⇒).

Lemma 1. For an extensive ShapeType τ = (t/m,P,N), its weighting function w, and an LMNtal graph
G,G′ ∈ Graph(Funct(τ)),

G′ P−→ G⇒ w(G)≥ w(G′)

Proof. By G′ P−→ G, let p = α :- β be a rule s.t. G′
p−→ G. We will show w(G) ≥ w(G′) by structural

induction on the last-used reduction relation rule.

• Case (R1): We assume that G′ = G′1,G2, G = G1,G2 and G′1
p−→ G1. Then w(G1) ≥ w(G′1) by

the induction hypothesis. We have w(G′) = w(G′1)+w(G2), w(G) = w(G1)+w(G2), therefore
w(G)≥ w(G′) holds.

• Case (R3): We assume that G′1 ≡ G′, G ≡ G1, G′1
p−→ G1. Then w(G1) ≥ w(G′1) by the induction

hypothesis. We have w(G1) = w(G), w(G′1) = w(G′), therefore w(G)≥ w(G′) holds.

• Case (R6): We assume that G′ = α, G = β . Since the type (t/m,P,N) is extensive, we have
w(α)≤ w(β ) i.e. w(G)≥ w(G′).

Lemma 2. For an extensive ShapeType τ = (t/m,P,N), its weighting function w, a non-negative integer
n, and a finite set of links L, the number of LMNtal graph G satisfying following formula is finite
regarding structurally congruent graphs as the same.

G ∈ Graph(Funct(τ))∧w(G) = n∧FLink(G) = L

Proof. The number of functors occurring in G is finite and also the number of atoms (excluding non-
global connectors) occurring in G is less than n because of w(G) = n. Since the number of graphs
consisting of finite kinds of functors and finite atoms is finite, the number of G is finite.

Lemma 3. For any LMNtal graph X , an extensive ShapeType (t/m,P,N), and a finite set of LMNtal
graphs G, GGCHECK(X ,(t/m,P,N,G)) terminates.
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Proof. Let the weighting function of type (t/m,P,N) be w. Y given to the first argument of recursive call
at line 5 of GGCHECK satisfies Y P−→* X . By Lemma 1, w(X)≥w(Y ). By this and Lemma 2, the number
of possible Y is finite (regarding structurally congruent graphs are the same). Also, it is verified at line 3
of GGCHECK that structurally congruent graphs cannot be given again to the argument of recursive calls,
so that recursive calls occur finite times at most. Therefore GGCHECK(X ,(t/m,P,N),G) terminates.

Theorem 1 (Termination of graph type checking). For any LMNtal graph X and an extensive ShapeType
τ , GCHECK(X ,τ) terminates.

Proof. This follows by Lemma 3 and the fact that Funct(X) and N are finite.

Lemma 4. For any LMNtal graph X , a ShapeType (t/m,P,N), and a finite set of LMNtal graphs G, if
GGCHECK(X ,(t/m,P,N),G) returns true, X � t(L1, . . .,Lm) holds.

Proof. We will show by induction on the maximum number n of times of recursive calls (i.e. the depth
of recursion) of GGCHECK.

• If n = 0, true is returned at line 2. Also, we have X ≡ t(L1, . . .,Lm). Then it is clear by the
definition that X � t(L1, . . .,Lm).

• If n = k + 1 (k ≥ 0), true is returned at line 5 since recursive calls occur one or more times.
We have Y P−→ X by the line 3 and Y � t(L1, . . .,Lm) by the induction hypothesis. Then
t(L1, . . .,Lm)

P−→* Y follows by the definition of production relations. By Y P−→ X , we have
Y P−→ X , so that t(L1, . . .,Lm)

P−→* X . Therefore X � t(L1, . . .,Lm) holds.

Theorem 2 (Soundness of graph type checking). For any LMNtal graph X and a ShapeType (t/m,P,N),
if GCHECK(X ,(t/m,P,N)) returns true, X : t(L1, . . .,Lm) holds.

Proof. GCHECK(X ,(t/m,P,N)) returns true only when ∃ f ∈ Funct(X). f ∈ N does not hold and then it
just returns the returned value from GGCHECK(X ,(t/m,P,N),∅), so that GGCHECK(X ,(t/m,P,N),∅)
returns true. By Lemma 4, we have X � t(L1, . . .,Lm). Since ¬∃ f ∈ Funct(X). f ∈ N holds, we have
∀ f ∈ Funct(X). f /∈ N. Therefore Funct(X)∩N =∅ holds. Hence we have X : t(L1, . . .,Lm).

Lemma 5. For an LMNtal graph X and a ShapeType (t/m,P,N), if X � t(L1, . . .,Lm),
GGCHECK(X ,(t/m,P,N),∅) returns true.

Proof. By X � t(L1, . . .,Lm), for certain X0, . . . ,Xn (n≥ 0), the following holds:

t(L1, . . .,Lm)= Xn
P−→ . . .

P−→ X1
P−→ X0 = X

Note that Xi is not the start symbol for every i (i < n) and i 6= j⇒ Xi 6≡ X j holds (i.e. no loops in the
path). Consider the case when GGCHECK(Yi,(t/m,P,N),Gi) is called for i (i < n), Yi s.t. Yi ≡ Xi, and a
certain Gi. Since Xi is not the start symbol, Yi is also not the start symbol, so that the condition of the if
statement at line 2 does not hold. Then we have Xi+1

P−→ Yi by Xi+1
P−→ Xi and (R3).

• If @Yi+1 ∈ Gi. Xi+1 ≡ Yi+1, the for-loop from the line 3 is executed for Y ← Xi+1, and then
GGCHECK(Xi+1,(t/m,P,N),Gi+1) is called for a certain Gi+1 at line 5.

• If ∃Yi+1 ∈ Gi. Xi+1 ≡ Yi+1, GGCHECK(Yi+1,(t/m,P,N),Gi+1) has been called for a certain Gi+1
elsewhere.
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Therefore GGCHECK(Yi+1,(t/m,P,N),Gi+1) is called for Yi+1 s.t. Yi+1 ≡ Xi+1 and a certain Gi+1 some-
where in the recursive calls.

From the above reasons, when GGCHECK(X ,(t/m,P,N),∅) is called,
GGCHECK(Yn,(t/m,P,N),Gn) is also called for Yn s.t. Yn ≡ Xn and a certain Gn. This call re-
turns true at line 2 because of Yn ≡ Xn = t(L1, . . .,Lm).

Therefore GGCHECK(X ,(t/m,P,N),∅) returns true since GGCHECK returns true if one or more
recursive calls in it return true.

Theorem 3 (Completeness of graph type checking). For any LMNtal graph X and an extensive
ShapeType (t/m,P,N), if X : t(L1, . . .,Lm) holds, GCHECK(X ,(t/m,P,N)) returns true.

Proof. By X : t(L1, . . .,Lm), we have X � t(L1, . . .,Lm) and Funct(X)∩N = ∅. Therefore ∀ f ∈
Funct(X). f /∈ X , so that the condition of the if statement at line 2 of GCHECK does not hold.
Then GCHECK(X ,(t/m,P,N)) just returns the returned value from GGCHECK(X ,(t/m,P,N),∅).
By X � t(L1, . . .,Lm) and Lemma 5, GGCHECK(X ,(t/m,P,N),G) returns true. Therefore
GCHECK(X ,(t/m,P,N)) returns true.

Definition 11. A transition relation T between LMNtal rules α1:- β1 and α2:- β2 is defined as follows:

α1:- β1
T−→ α2:- β2

iff ∃αp:- βp ∈ P. ∃γ,γ ′.

α2
αp :- βp−−−−→ α1,γ ∧ β2 ≡ β1,γ

∧ βp ≡ γ,γ
′ ∧ γ

′ 6≡ 0

Next, we define a labeling function L : W → 2{s,r} as follows, where W is the whole set of LMNtal
rules:

s ∈L (α :- β ) iff α ≡ T

r ∈L (α :- β ) iff α
P−→* β

If r ∈L (α :- β ), we say α :- β is reducible. Then we consider a Kripke structure S = (W ,T ,L )
which represents the state space of the rule type checking algorithm.

Lemma 6. If α :- β is reducible and α :- β
T−→ α ′:- β ′, then α ′:- β ′ is reducible.

Proof. By the assumption, we have α
P−→* β . By the definition of T , we have ∃γ. α ′

P−→ α,γβ ′ ≡ β,γ .
Then we have α ′

P−→ α,γ
P−→* β,γ ≡ β ′, and α ′

P−→* β ′ holds.

Lemma 7. If P,Q≡R,S holds, P≡A1,A2, Q≡A3,A4, R≡A1,A3, S≡A2,A4 holds for certain graphs
A1,A2,A3,A4.

Proof. This follows by the rules of structural congruence.

Lemma 8. If P
α :- β−−−→ Q holds, there exists a graph C that satisfies P≡C,α, Q≡C,β .

Proof. This follows by the rules of structural congruence and reduction relation.

Lemma 9. If X
p−→ Y ≡ α,C (p = αp:- βp ∈ P) holds, one of the followings holds:
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• ∀β . ∃α ′,β ′,C1,C2. α :- β
T−→ α ′:- β ′ ∧ C ≡C1,C2∧X ≡ α ′,C2∧β ′ ≡ β,C1

• ∃C′. X ≡ α,C′∧C′
p−→C

Proof. By X
p−→Y and Lemma 8, there exists Cp s.t. X ≡αp,Cp, Y ≡ βp,Cp. Then we have Y ≡ βp,Cp≡

α,C and, by Lemma 7, there exist C1,C2,C3,C4 s.t. C ≡C1,C2, α ≡C3,C4, βp ≡C1,C3, Cp ≡C2,C4.

Case 1: C3 6≡ 0
Let α ′ = αp,C4, β ′ = β,C1. Then we have α ′ ≡ αp,C4

p−→ βp,C4 ≡C1,C3,C4 ≡ α,C1. Here we

consider C1,C3 as γ,γ ′ in the definition T respectively, and we have α :- β
T−→ α ′:- β ′. Also,

we have X ≡ αp,Cp ≡ αp,C2,C4 ≡ α ′,C2.

Case 2: C3 ≡ 0
By C1 ≡ βp, we have C ≡ βp,C2. Therefore αp,C2

p−→ C holds. Here we consider C′ s.t. C′ ≡
αp,C2, then C′

p−→C holds. Besides, by α ≡C4, we have Cp ≡C2,α . Then we have X ≡ αp,Cp ≡
αp,C2,α ≡ α,C′.

Lemma 10. If S ,r |= ¬sWr holds, r preserves the type T .

Proof. We assume G�T , G r−→ G′, and S ,r |= ¬sWr, and we will prove G′�T .
By G�T , we have ∀i < n. Xi+1

pi−→ Xi for a certain non-negative integer n, graphs X0, . . . ,Xn (X0 =
G, Xn = T ), and p0, . . . , pn−1 ∈ P. By G r−→G′, there exists C ∈ G (N∪Σ) s.t. G≡ α,C, G′ ≡ β,C where
r = α :- β .

Next, we will show that, if Xi ≡ αi,Ci holds, there exist αi+1,βi+1,Ci+1 such that:

αi:- βi
T−→* αi+1:- βi+1 ∧ Xi+1 ≡ αi+1,Ci+1 ∧ βi+1,Ci+1

P−→* βi,Ci

By Xi+1
pi−→ Xi and Lemma 9, one of the following holds:

1. ∃αi+1,βi+1,C′i ,Ci+1. αi:- βi
T−→ αi+1:- βi+1∧Ci ≡C′i,Ci+1∧Xi+1 ≡ αi+1,Ci+1∧βi+1 ≡ βi,C′i

2. ∃Ci+1. Xi+1 ≡ αi,Ci+1∧Ci+1
pi−→Ci

If 1. holds, it is obvious since we have βi+1,Ci+1 ≡ βi,C′i,Ci+1 ≡ βi,Ci. On the other hand, if 2. holds,
it is obvious when we consider αi+1 = αi, βi+1 = βi.

Thus, there exist αn,βn,Cn s.t. α :- β
T−→* αn:- βn, T ≡ αn,Cn, and βn,Cn

P−→* β,C. Since T
consists only of one atom of the start symbol (with no self loops), we have T ≡αn. Then s∈L (αn:- βn)
holds.

By r T−→* αn:- βn, S ,r |= ¬sWr, and Lemma 6, we also have r ∈L (αn:- βn). Therefore we
have αn

P−→* βn. Thus we have T ≡ αn
P−→* βn

P−→* β,C ≡ G′, that is, G′�T .

Theorem 4 (Soundness of rule type checking). For an LMNtal rule α :- β , a ShapeType (t/m,P,N),
and a sequence of links L1, . . . ,Lm, if RCHECK(α :- β ,(t/m,P,N)) returns true, the following formula
(the rule preserving property) holds:

∀G : t(L1, . . .,Lm). G
α :- β−−−−→ G′⇒ G′ : t(L1, . . .,Lm)

Proof. Since RCHECK(α :- β ,(t/m,P,N)) returns true, on all the paths from the target rule to the
start symbol, there exists a state L:- R such that REDUCE(R,L,P,∅) returns true. Therefore we have
S ,r |= ¬sWr, and the rule preserving property holds by Lemma 10.
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Theorem 5. For a set of production rules P = PT ∪Pt1 ∪ ·· · ∪ Ptn ∪ {T :- F,t1, . . .,tn}, and a set of
nonterminal symbols N = NT ∪Nt1 ∪ ·· · ∪Ntn , if every rule r ∈ R preserves type (ST ,P,N), t1, . . . , tn `R

F : T holds.

Proof. F,Gt1, . . .,Gtn has the type (ST ,P,N) because P includes the production rule T :- F,t1, . . .,tn
and T is the start symbol. Let G be a graph s.t. F,Gt1, . . .,Gtn

R−→* G. Then G has the type (ST ,P,N)
because every rule r ∈ R preserves the type. Here we assume that G contains no f/m atoms. By G :
(ST ,P,N), there exists a production path s.t. ST

P−→* G. Since G contains no f/m atoms, the production
rule T :- F,t1, . . .,tn has not been applied in the production path. Also the nonterminal symbols of the
types t1, . . . , tn do not appear in the production path because they can appear only after the production
rule T :- F,t1, . . .,tn is applied. Therefore the production rules of the types t1, . . . , tn have not been
applied in the production path, so that the nonterminal symbols Nt1 , . . . ,Ntn and the production rules
Pt1 , . . . ,Ptn are redundant in the production path. Hence we have G : (ST ,PT ,NT ) = T . By Definition 10,
t1, . . . , tn `R F : T holds.
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The operational semantics of a programming language is said to be small-step if each transition step
is an atomic computation step in the language. A semantics with this property faithfully corresponds
to the implementation of the language. The previous semantics of the graph programming language
GP 2 is not fully small-step because the loop and branching commands are defined in big-step style.
In this paper, we present a truly small-step operational semantics for GP 2 which, in particular, accu-
rately models diverging computations. To obtain small-step definitions of all commands, we equip
the transition relation with a stack of host graphs and associated operations. We prove that the new
semantics is non-blocking in that every computation either diverges or eventually produces a result
graph or the failure state. We also show the finite nondeterminism property, viz. that each config-
uration has only a finite number of direct successors. The previous semantics of GP 2 is neither
non-blocking nor does it have the finite nondeterminism property.

1 Introduction

GP 2 is a nondeterministic programming language based on graph transformation rules. The previous se-
mantics of GP 2 is defined by both small-step and big-step inference rules [17]. An operational semantics
is small-step if transition steps are atomic computation steps in the language, meaning that the implemen-
tation of the language faithfully corresponds to the semantics. In this paper, we present a truly small-step
operational semantics for GP 2 which, in particular, accurately models diverging computations.

While the previous semantics (Figure 3) has small-step elements, the branching and loop constructs
are not small-step. This can lead to the semantic transition sequence blocking or getting stuck [14], i.e.
reaching a configuration which is neither a graph nor the failure state, such that no inference rule is
applicable.

To illustrate this situation, consider the program P = try (r1!) then skip else skip, with
the rule r1 : 1 ⇒ 1 , applied to the host graph . The statement r1! means that the rule r1 is
called until it is no longer applicable. The try statement attempts to evaluate r1!but will neither branch
to the then nor the else part because the loop r1! diverges on . In the previous semantics, try
statements are handled with the following inference rules :

[try′1]
〈C, G〉 + H

〈try C then P else Q, G〉 〈P, H〉 [try′2]
〈C, G〉 + fail

〈try C then P else Q, G〉 〈Q, G〉

The premises of these inference rules are that the conditional part C of a try statement applied
to host graph G results in either a graph H or failure, which determines whether P or Q is called. If
〈C,G〉 diverges (does not terminate) however, neither rule applies. Since there are no other try rules,
the transition sequence gets stuck.

The new semantics we introduce in this paper handles try statements with the following rules:

[try1] 〈try C then P else Q, S〉 → 〈TRY(C,P,Q), push(top(S), S)〉
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[try2]
〈C, S〉 → 〈C′, S′〉

〈TRY(C,P,Q), S〉 → 〈TRY(C′,P,Q), S′〉 [try3]
〈C, S〉 → S′

〈TRY(C,P,Q), S〉 → 〈P, pop2(S′)〉

[try4]
〈C, S〉 → fail

〈TRY(C,P,Q), S〉 → 〈Q, pop(S)〉

Here S and S′ are stacks of graphs. The rule [try1] duplicates the top of the stack, and the TRY
construct signals that the copy operation has happened. Repeated applications of the inference rule [try2]
model the evaluation of the condition in a small-step fashion. If the condition loops, [try2] can be applied
indefinitely, and we get an infinite transition sequence.

In the implementation of GP 2, P indeed loops. In the previous semantics however, P gets stuck
because r1! diverges, which means that we cannot apply either of the inference rules [try′1] or [try′2] to
resolve the try statement.

The previous semantics tries to remedy this issue in the semantic function which associates to a
program P and host graph G the set JPKG of all possible outcomes of the execution of P on G. These
outcomes can be a graph, the element fail, or ⊥ which represents an infinite transition sequence. The
previous semantic function uses ⊥ as an outcome if the transition sequence gets stuck. However, there
are problems with this approach.

Consider the program P = try Loop then skip else skip, where Loop = {r1,r2}!, r1 is
as previously defined, and r2 : ⇒ /0. The command {r1,r2} is a rule set call, meaning that rules
r1 and r2 are selected nondeterministically. When P is executed on the host graph , an application of
r2 causes the loop to terminate since it removes the marked node which is necessary for either rule to
be applicable. Hence r1 may be applied a number of times, and then r2 is applied once. But it should
also be possible that r2 is never called, resulting in a diverging computation. Hence the set of outcomes
we want is {⊥, /0, , , , . . .}. According to the previous semantics, however, the execution of P
on cannot get stuck since Loop can always transition to a graph; and by the rules [try′1] and [try′2], the
execution cannot diverge either. So ⊥ 6∈ JPK = { /0, , , , . . .}.

This may also lead to two programs being semantically equivalent, even though they should not be.
Programs P and P′ are semantically equivalent if JPK= JP′K, i.e. they have the same outcomes for all host
graphs. Consider the program P = try ({r3,r2}!) then skip else skip, where r3 : 1 ⇒ 1 .
It can diverge but is semantically equivalent to Q = try r2 then skip else skip since the previous
semantics cannot detect that divergence. For instance, JPK = JQK = { /0}, but JPK should include ⊥.

The aforementioned issues can also happen with if statements, which work similarly to try state-
ments, except that the changes the condition made to the host graph are reversed, even if the evaluation
of the condition succeeds. Nested loops such as Loop! can get stuck as well since their inference rules
also assume that the loop body either results in a graph or fails.

Diverging computations not being modelled properly entails an undesirable property, namely infi-
nite nondeterminism, i.e. there can be infinitely many configurations reachable in a single transition
step. Consider the program P = try Loop then skip else skip, where Loop = {r1,r2}!, and
the rules are as previously defined. We have JLoopK = { /0, , , , . . . ,⊥}. In a transition se-
quence starting with 〈P, 〉, since the try statement is resolved within a single step, it only takes one
step to transition to either of the graphs in the set { /0, , , , . . .}, of which there are infinitely
many.

The semantics we introduce in this paper is truly small-step and as such, it accurately models looping
computations with diverging transition sequences. When starting with a valid GP 2 program, it cannot
get stuck, which is a property we call non-blocking. As a consequence of the small-step approach, we
get finite nondeterminism, meaning we can only reach a finite number of configurations within a single
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transition step.
In Section 2, we give a brief overview of the rule-based graph programming language GP 2 along

with the previous semantics. We propose the new semantics in Section 3 and give examples of transition
sequences. In Section 4 we prove several properties of the new semantics, including non-blocking as
well as finite nondeterminism, and define the semantic function along with semantic equivalence.

2 The Graph Programming Language GP 2

This section provides a brief introduction to GP 2 [16], a nondeterministic graph programming language
based on transformation rules. We show the abstract syntax of GP 2 programs below, and refer to [3] for
the full syntax. The language is implemented by a compiler generating C code [4].

GP 2 programs transform input graphs into output graphs, where graphs are labelled and directed and
may contain parallel edges and loops.

The principal programming construct in GP 2 are conditional graph transformation rules labelled
with expressions. For example, Figure 1 shows a program recognising graphs that contain cycles and
the declaration of its rules. The rule delete which has three formal parameters, a left-hand graph and
a right-hand graph which are specified graphically, and a textual condition starting with the keyword
where. The small numbers attached to nodes are identifiers, all other text in the graphs are labels.

Main = delete!; {edge, loop}

delete(a,x,y:list) edge(a,x,y:list) loop(a,x:list)

x y ⇒ x y

1 2 1 2

a
x y ⇒ x y

1 2 1 2

a a
x ⇒ x
1 1

a a

where indeg(1)=0

Figure 1: GP 2 program recognising cyclic graphs

GP 2 labels consist of an expression and an optional mark (explained below). Expressions are of type
int, char, string, atom or list, where atom is the union of int and string, and list is the type
of a (possibly empty) list of atoms. Lists of length one are equated with their entries and hence every
expression can be considered as a list.

The concatenation of two lists x and y is written x:y, the empty list is denoted by empty. Character
strings are enclosed in double quotes. Composite arithmetic expressions such as n∗n must not occur in
the left-hand graph, and all variables occurring in the right-hand graph or the condition must also occur
in the left-hand graph.

Besides carrying list expressions, nodes and edges can be marked. For example, one of the nodes
in rule r1 in the introduction is marked by a grey shading. Marks are convenient to highlight items in
input or output graphs, and to record visited items during a graph traversal. For instance, a graph can
be checked for connectedness by propagating marks along edges as long as possible and subsequently
testing whether any unmarked nodes remain. Note that conventional graph algorithms are often described
by using marks as a visual aid [7].

Additionally, nodes in rules and host graphs can be rooted. If such a node appears in the left-hand
side of a rule, it can only be matched with a root node in the host graph. Their use restricts matching to
the neighbourhoods of root nodes, which can greatly increase efficiency [6].
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Program ::= Declaration { Declaration }
Declaration ::= MainDecl | ProcedureDecl | RuleDecl
MainDecl ::= Main ‘=’ CommandSeq
ProcedureDecl ::= ProcedureID ‘=’ [ ‘[’ LocalDecl ‘]’ ] CommandSeq
LocalDecl ::= ( RuleDecl | ProcedureDecl ) { LocalDecl }
CommandSeq ::= Command {‘;’Command}
Command ::= Block

| if Block then Block [ else Block ]
| try Block [ then Block ] [ else Block ]

Block ::= ‘(’ CommandSeq ‘)’ [‘!’]
| SimpleCommand
| Block or Block

SimpleCommand ::= RuleSetCall [‘!’]
| ProcedureCall [‘!’]
| break
| skip
| fail

RuleSetCall ::= RuleID | ‘{’ [ RuleID { ‘,’ RuleID } ] ‘}’
ProcedureCall ::= ProcedureID

Figure 2: GP 2 Program Syntax

We do not elaborate any further on features such as marks or roots because the GP 2 semantics does
not depend on them.

Rules operate on host graphs which are labelled with constant values (lists containing integer and
string constants). Applying a rule L⇒ R to a host graph G works roughly as follows: (1) Replace the
variables in L and R with constant values and evaluate the expressions in L and R, to obtain an instantiated
rule L̂⇒ R̂. (2) Choose a subgraph S of G isomorphic to L̂ such that the dangling condition and the rule’s
application condition are satisfied (see below). (3) Replace S with R̂ as follows: numbered nodes stay in
place (possibly relabelled), edges and unnumbered nodes of L̂ are deleted, and edges and unnumbered
nodes of R̂ are inserted.

In this construction, the dangling condition requires that nodes in S corresponding to unnumbered
nodes in L̂ (which should be deleted) must not be incident with edges outside S. The rule’s application
condition is evaluated after variables have been replaced with the corresponding values of L̂, and node
identifiers of L with the corresponding identifiers of S. For example, the term indeg(1) = 0 in the
condition of delete in Figure 1 forbids the node g(1) to have incoming edges, where g(1) is the node
in S corresponding to 1.

Formally, GP 2 is based on a form of attributed graph transformation according to the so-called
double-pushout approach [11, 9]. The grammar in Figure 2 gives the abstract syntax of GP 2 programs.
A program consists of declarations of conditional rules and procedures, and exactly one declaration of a
main command sequence. The category RuleID refers to declarations of conditional rules in RuleDecl
(whose syntax is omitted). Procedures must be non-recursive, they can be seen as macros with local
declarations.

The call of a rule set {r1, . . . ,rn} nondeterministically applies one of the rules whose left-hand graph
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[call1]
G⇒R H
〈R, G〉 H [call2]

G 6⇒R
〈R, G〉 fail

[seq1]
〈P, G〉 〈P′, H〉

〈P;Q, G〉 〈P′;Q, H〉 [seq2]
〈P, G〉 H

〈P;Q, G〉 〈Q, H〉

[seq3]
〈P, G〉 fail
〈P;Q, G〉 fail

[if1]
〈C, G〉 + H

〈if C then P else Q, G〉 〈P, G〉 [if2]
〈C, G〉 + fail

〈if C then P else Q, G〉 〈Q, G〉

[try1]
〈C, G〉 + H

〈try C then P else Q, G〉 〈P, H〉 [try2]
〈C, G〉 + fail

〈try C then P else Q, G〉 〈Q, G〉

[alap1]
〈P, G〉 + H

〈P! , G〉 〈P! , H〉 [alap2]
〈P, G〉 + fail
〈P! , G〉 G

[alap3]
〈P, G〉 ∗ 〈break,H〉
〈P! , G〉 H [break] 〈break;P, G〉 〈break, G〉

(a) Inference rules for core commands

[or1] 〈Por Q, G〉 〈P, G〉 [or2] 〈Por Q, G〉 〈Q, G〉

[skip] 〈skip, G〉 G [fail] 〈fail, G〉 fail

[if3] 〈if C then P, G〉 〈if C then P else skip, G〉

[try3] 〈try C then P, G〉 〈try C then P else skip, G〉

[try4] 〈try C else P, G〉 〈try C then skip else P, G〉

[try5] 〈try C, G〉 〈try C then skip else skip, G〉

(b) Inference rules for derived commands

Figure 3: Previous GP 2 Semantics
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matches a subgraph of the host graph such that the dangling condition and the rule’s application condition
are satisfied. The call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C on a copy of
G. If this results in a graph, P is executed on the original graph G; otherwise, if C fails, Q is executed
on G. The try command has a similar effect, except that P is executed on the result of C’s execution in
case C succeeds.

The loop command P! executes the body P repeatedly until it fails. When this is the case, P! termi-
nates with the graph on which the body was entered for the last time. The break command inside a loop
terminates that loop with the current graph and transfers control to the command following the loop.

A program P or Q non-deterministically chooses to execute either P or Q, which can be simulated
by a rule-set call and the other commands [16]. The commands skip and fail can also be expressed by
the other commands: skip is equivalent to an application of the rule /0⇒ /0 (where /0 is the empty graph)
and fail is equivalent to an application of {} (the empty rule set).

Like Plotkin’s structural operational semantics [15], the previous GP 2 semantics is given by infer-
ence rules. The rules in Figure 3 define the transition relation over the following set:

(ComSeq×G ) × ((ComSeq×G ) ∪ G ∪ {fail}).

Here G is the set of all GP 2 host graphs and ComSeq is the set of command sequences as defined
in the syntax (Figure 2), and fail is an element representing the program resulting in a failure state.
The inference rules contain universally quantified variables, namely host graphs G and H, command
sequences in ComSeq C, P, P′, and Q, and rule set call R. The transitive closure of is denoted by +,
and the reflexive transitive closure by ∗.

In general, the execution of a program on a host graph may result in another graph, fail, or diverge.
Also, executions can get stuck in that they reach a non-terminal configuration (neither a graph nor fail) to
which no inference rule is applicable. Let G be the set of all host graphs and G ⊕ = G ∪{⊥, fail}. These
outcomes are described by the semantic function J K : ComSeq→ (G → 2G⊕) which, for a command
sequence P and a host graph G, is defined as

JPKG = {X ∈ G ∪{fail}|〈P,G〉 + X} ∪ {⊥|P can diverge or get stuck from G}.

3 The Small-Step Semantics

In this section, we introduce an improved semantics defined by inference rules, and give examples of
transition sequences.

Due to additional constructs, the new semantics needs to distinguish between command sequences
that are valid GP 2 programs, and command sequences that are intermediary. The former are members of
CommandSeq from the syntax in Figure 2, and are called command sequences. They have to satisfy the
context conditions specified in Appendix A.6 of Bak’s thesis [3]. The following condition is particularly
relevant to this paper: “A break can only be called inside a loop. If a break is in the condition of
a branching statement, the enclosing loop must be within the same condition.” This constraint is not
specific to graph programs: Java, C, and Python have similar restrictions on the use of break statements.

We define extended command sequences (set ExtComSeq) to be command sequences with additional
auxiliary constructs ITE and TRY. They do not follow context conditions since we may want a break

outside of a loop in an intermediary transition step. The ITE and TRY statements serve to advance
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the command sequence in the condition in a small-step fashion, as well as to maintain the stack of
host graphs. When we enter an ITE or TRY statement, the top of the stack (and current host graph) is
duplicated in order to keep a backup. When exiting these statements we either pop the top, modified
graph, or the second graph on the stack which is the unmodified backup copy depending on the outcome
of the condition. The stack structure is needed because if and try statements may be nested. Whenever
we enter an ITE or TRY construct, we push a graph, and whenever we exit one, we pop a graph. This
ensures that the stack always contains enough graphs to pop.

The rules in Figure 4 inductively define a transition relation→ over the following set:

(ExtComSeq×S ) × ((ExtComSeq×S ) ∪S ∪ {fail}),

where S is the set of all stacks of GP 2 host graphs (explained below). We call an element of the set
(ExtComSeq×S ) ∪S ∪ {fail} an extended configuration, whereas (CommandSeq×S ) ∪S ∪ {fail}
is the set of configurations. A configuration (or extended configuration) C is terminal if C = fail or C = S
for some graph stack S.

The set S is the set of all non-empty stacks of GP 2 host graphs where the top element is the
current host graph, and where the other elements are backup copies to revert to or discard after the
resolution of conditions of branching statements. Such a stack S = [G1,G2,G3, . . . ,Gn] is a finite ordered
list of GP 2 host graphs with unary operations top(S) = G1, pop(S) = [G2,G3, . . . ,Gn] and pop2(S) =
[G1,G3, . . . ,Gn], as well as the binary operation push(G,S) = [G,G1,G2, . . . ,Gn], where G is a GP 2 host
graph.

Most of the inference rules in Figure 4 have a horizontal bar. These rules consist of a premise above
the bar and a conclusion below. The conclusion defines a transition step provided that the premise holds.
A rule without a bar is called an axiom and can be applied to a configuration without any precondition.

There are several universally quantified meta-variables within the inference rules. P, P′, Q, Q′, C, and
C′ stand for extended command sequences in ExtComSeq, S stands for a graph stack in S , G represents
a host graph, and R represents a rule set. We denote the transitive closure of→ by→+, and the reflexive
transitive closure by→∗.

The inference rules inductively define the transition relation→. The rules [call1] and [call2] are base
cases. Their premises are GP 2 derivations. Which of the two premises is satisfied depends on whether
top(S)⇒R G or top(S) 6⇒R, i.e. whether a rule in the rule set can be applied to the current host graph or
not. The if and try statements are modelled by the [ifi] and [tryi] rules.

Sequential composition of commands is covered by [seq1], [seq2], and [seq3], covering the cases of
whether the first command called on a host graph results in a configuration, a graph stack, or fail.

Loops are semantically described as a try statement in [alap1]. Calling a command sequence as long
as possible is modelled by trying to apply the command sequence, and if it succeeds, keep applying it
as long as possible. Breaking from a loop is handled by [break], which makes sure commands following
the break are discarded, and [alap2], which terminates the loop if there is an isolated break in the TRY
condition.

Figure 4a shows the inference rules for the core commands of GP 2, while Figure 4b gives the infer-
ence rules for derived commands such as or, skip, and fail, as well as some if and try statements
with omitted then and else clauses. These commands are referred to as derived commands because
they can be defined by the core commands [16].

Let us look at a couple of examples of transition sequences in Figure 5, the first to illustrate loops,
and the second to illustrate if and try statements. For each transition, we note the applied inference
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[call1]
top(S)⇒R G

〈R, S〉 → push(G,pop(S)) [call2]
top(S) 6⇒R
〈R, S〉 → fail

[seq1]
〈P, S〉 → 〈P′, S′〉

〈P;Q, S〉 → 〈P′;Q, S′〉 [seq2]
〈P, S〉 → S′

〈P;Q, S〉 → 〈Q, S′〉

[seq3]
〈P, S〉 → fail
〈P;Q, S〉 → fail [break] 〈break;P, S〉 → 〈break, S〉

[alap1] 〈P! , S〉 → 〈try P then P! else skip, S〉 [alap2] 〈TRY(break, P! , skip), S〉 → pop2(S)

[if1] 〈if C then P else Q, S〉 → 〈ITE(C,P,Q), push(top(S), S)〉

[try1] 〈try C then P else Q, S〉 → 〈TRY(C,P,Q), push(top(S), S)〉

[if2]
〈C, S〉 → 〈C′, S′〉

〈ITE(C,P,Q), S〉 → 〈ITE(C′,P,Q), S′〉 [try2]
〈C, S〉 → 〈C′, S′〉

〈TRY(C,P,Q), S〉 → 〈TRY(C′,P,Q), S′〉

[if3]
〈C, S〉 → S′

〈ITE(C,P,Q), S〉 → 〈P, pop(S′)〉 [try3]
〈C, S〉 → S′

〈TRY(C,P,Q), S〉 → 〈P, pop2(S′)〉

[if4]
〈C, S〉 → fail

〈ITE(C,P,Q), S〉 → 〈Q, pop(S)〉 [try4]
〈C, S〉 → fail

〈TRY(C,P,Q), S〉 → 〈Q, pop(S)〉

(a) Inference rules for core commands

[or1] 〈Por Q, S〉 → 〈P, S〉 [or2] 〈Por Q, S〉 → 〈Q, S〉

[skip] 〈skip, S〉 → S [fail] 〈fail, S〉 → fail

[if5] 〈if C then P, S〉 → 〈if C then P else skip, S〉

[try5] 〈try C then P, S〉 → 〈try C then P else skip, S〉

[try6] 〈try C else P, S〉 → 〈try C then skip else P, S〉

[try7] 〈try C, S〉 → 〈try C then skip else skip, S〉

(b) Inference rules for derived commands

Figure 4: Improved GP 2 Semantics
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rule as a subscript. If the conclusion of [rule1] is used as a premise for [rule2], we denote it by [rule2]
[rule1]

.

Example 3.1. Consider the program P=r! and the rule r : 1 ⇒1 . Let us examine a transition
sequence of P applied to the graph , as seen in Figure 5a.

We start by applying [alap1] which turns the loop into a try statement. Unlike in the previous
semantics, we model a loop by trying to apply its body, and if it is successful, we call the loop again.

The inference rule [try1] transforms the try statement into the auxiliary TRY construct, which ad-
vances the program in a small-step fashion, unlike the previous semantics. There is a similar ITE con-
struct which models if statements. The top of the graph stack is duplicated since the changes made by
the condition of the try may be discarded.

We then apply r to the current host graph (top of the stack) so [call1] can be applied. This serves as
a premise for [try3], which ends the TRY statement, pops the second element of the stack, and moves on
to the then part which is the original loop.

We repeat this process until r is no longer applicable to the host graph. At this point, [call2] serves as
the premise for [try4] which exits the TRY statement. This time, the condition results in fail, so we move
on to the else part which is skip and the loop terminates.

Now consider program P’=try(if (r1;r1) then (r1;r1)) and the rule r1 : 1 ⇒1 . A
transition sequence of P’ applied to host graph can be found in Figure 5b.

Since the try statement does not have a then or else part, we first apply [try7], which adds skip as
both the then and else parts.

The inference rule [try1] turns the try statement into the auxiliary TRY statement and duplicates the
top of the stack. For most of the remaining transition sequence, we apply [try2] under various premises
to advance the condition.

Since the if has no else part, [if5] completes it with a skip. The if statement is then turned into
the auxiliary ITE statement, duplicating the top of the stack once again.

The rule r1 is applied to the host graph which advances the concatenation with [seq2], the ITE with
[if2], and the TRY with [try2]. Calling r1 a second time resolves the ITE, and the top of the stack is
popped since changes made by the conditions of if statements are reversed.

We keep applying the condition of the TRY, until we resolve it with [try3]. This time the second
graph on the stack is popped since changes made by the condition of a try that did not result in fail are
preserved.

4 Properties of the Semantics

In this section, we show that the semantics is non-blocking, i.e. if a transition sequence ends in an
extended configuration, we can always apply an inference rule (Proposition 4.3). Note that we can only
guarantee the non-blocking property for extended configuration that are part of a transition sequence
originating in a valid GP 2 program. We call those reachable extended configurations. This is reasonable
because there can be no other types of configurations in a transition sequence modelling a GP 2 program.

Furthermore, we will describe the outcomes of a transition sequence starting with a valid GP 2 pro-
gram (Proposition 4.5), and show that we have finite nondeterminism (Proposition 4.7), i.e. there are
only finitely many one-step transitions starting from any configuration, and what it means for the seman-
tic function.

Let us first look at a lemma that guarantees we can make a transition step from extended configura-
tions that do not contain a break, which is the first step towards showing the non-blocking property.
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〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call1]
[try3]

〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call1]
[try3]

〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call2]
[try4]

〈skip, [ ]〉

→ [skip] [ ]

(a) Transition sequence of program P applied to graph .

〈try(if(r1;r1) then(r1;r1)), [ ]〉

→[try7] 〈try (if (r1;r1) then (r1;r1)) then skip else skip, [ ]〉

→[try1] 〈TRY(if (r1;r1) then (r1;r1), skip, skip), [ , ]〉

→ [if5]
[try2]

〈TRY(if (r1;r1) then (r1;r1) else skip, skip, skip), [ , ]〉

→ [if1]
[try2]

〈TRY(ITE(r1;r1, r1;r1, skip), skip, skip), [ , , ]〉

→[call1]
[seq2]
[if2]
[try2]

〈TRY(ITE(r1, r1;r1, skip), skip, skip), [ , , ]〉

→[call1]
[if3]
[try2]

〈TRY(r1;r1, skip, skip), [ , ]〉

→[call1]
[try2]

〈TRY(r1, skip, skip), [ , ]〉

→[call1]
[try3]

〈skip, [ ]〉

→[skip] [ ]

(b) Transition sequence of program P’ applied to graph .

Figure 5: Examples of transition sequences
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Lemma 4.1 (Progress from Extended Configurations). Let 〈P,S〉 be an extended configuration in ExtComSeq×
S . Then one of the following applies:

• 〈P,S〉 → 〈P′,S′〉 for some extended configuration 〈P′,S′〉.

• 〈P,S〉 → S′ for some graph stack S′ ∈S .

• 〈P,S〉 → fail.

• P is not a command sequence and contains a break.

Proof. We shall prove this lemma by going through what P could be according to the syntax and the
semantics.

Case 1: P is a rule set call. Then either top(S)⇒P G or top(S) 6⇒P. So either [call1] or [call2] can be
applied.

Case 2: P is a loop. If P is a loop, [alap1] can be applied.
Case 3: P is fail, skip or an or statement. Then [fail], [skip], or [or1] can be applied respectively.
Case 4: P is of the form if P1 then P2 else P3 or try P1 then P2 else P3. Then [if1] or [try1] can

be applied. If any then-clause or else-clause is omitted as specified by the syntax, [if5], [try5], [try6], or
[try7] can be applied.

Case 5: P is of the form ITE(P1, P2, P3) or TRY(P1, P2, P3). If P contains a break, the fourth point
of the lemma is satisfied, as containing ITE or TRY statements makes P not a command sequence. So
for the remainder of this case, assume P does not contain a break. If P1 is a sequential composition, let
P1 =P′1; P′′1 where P′1 is atomic. Otherwise let P1 =P′1. We shall show the lemma’s statement by induction
on how many ITE or TRY statements are nested in P′1 via the first atomic command of the condition.

• For the base case, assume P′1 is not an ITE or TRY statement. Then P′1 is atomic and either covered
by cases 1 to 4 (P′1 cannot be break since P contains no break).

• Now for the induction step, assume that P′1 is an ITE or TRY statement. Then P′1 does derive either
a configuration 〈P′′′1 ,S′〉, a graph stack S′ or fail by the induction hypothesis. Hence one of [if2],
[if3], [if4], [try2], [try3], or [try4] can be applied to 〈P,S〉.

Case 6: P is a sequential composition. Then we can decompose P into P = P1;P2 where P1 is
atomic, i.e. not a sequential composition. We can apply [seq1], [seq2], or [seq3] since 〈P1,S〉 → 〈P′1,S′〉,
〈P1,S〉 → S′, or 〈P1,S〉 → fail respectively by cases 1 to 5.

Lemma 4.1 has a case where the extended command sequence contains a break. This is because for
a transition sequence not to get stuck on a break, we need to start with a command sequence where the
break is within a loop, which we cannot guarantee if we consider a single transition step like in Lemma
4.1. In order to deal with this case, we prove that we can construct a transition sequence that leads to a
state with no break in the following lemma. However, we need to restrict it to extended configurations
reachable from a valid GP 2 program. We say that an extended configuration C is reachable if there is
a configuration 〈P, [G]〉 such that 〈P, [G]〉 →∗ C. This will still allow us to work towards non-blocking,
since we only care about transition sequences that start with valid GP 2 programs.

Lemma 4.2 (Removing the break Statement). Let 〈P,S〉 be an extended configuration in ExtComSeq×
S that is reachable and non-terminal. Suppose that P contains break. Then one of the following applies.

• There is an extended configuration 〈P′,S′〉 containing no break statement such that 〈P,S〉 →∗
〈P′,S′〉.
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• There is a graph stack S′ such that 〈P,S〉 →+ S′.

• 〈P,S〉 →+ fail

Proof. First assume that 〈P,S〉 satisfies context conditions, i.e. the break is contained within a loop,
and if the break is in the condition of an if or try statement, the enclosing loop must be in the same
condition.

We will apply various inference rules to construct a transition sequence starting in 〈P,S〉. Remember
that whenever we apply such an inference rule, it results in either a non-terminal extended configuration,
a graph stack, or fail. If it results in a graph stack or fail, the second or third point of the lemma is
satisfied. So at each step of the transition sequence we construct, we only need to consider the case
where an inference rule results in a non-terminal extended command sequence.

If there are multiple loops with break statements, they are either in different sequential composition
components, or nested. So let us show this lemma by induction on nesting and sequential composition.

As a base case, assume P contains a single loop with a break, and want to show we can apply a
sequence of inference rules that ultimately removes the break. So P is of the form Q0;Q1!;Q2, where
Q1 contains a break, and neither Q0 nor Q2 do. (What follows also applies if P is of the form Q1!;Q2,
Q0;Q1!, or Q1!.) We can repeatedly apply Lemma 4.1 to transition to Q1!;Q2. Then we apply [alap1]
followed by [try1] to get TRY(Q1,Q1! ,skip). We can then use Lemma 4.1 repeatedly as a premise for
[try2] until we get TRY(Q3;Q4,Q1! ,skip), where Q3 contains break and is atomic (i.e. not a sequential
composition). We know Q3 cannot be a loop since we assumed Q1! is the enclosing loop of the break.
So Q3 is either an or, if, or try statement. If it is an or statement, we can apply [or1] or [or2] to either
remove the break or lead to TRY(break;Q5,Q1! ,skip). Similarly, if Q3 is an if or try statement,
the break must be in the then or else part due to context conditions, and we can use inference rules
to either remove the break or lead to TRY(break;Q5,Q1! ,skip). We can now apply [try2] under the
premise of [break] to get TRY(break,Q1! ,skip). To this, we can apply [alap2], which gets rid of the
break.

For the induction step, let us first consider the case of nesting. Assume that P is of the form
Q0;(Q1;Q2;Q3)! ; Q4, where Q2 satisfies the lemma statement, and either Q1 or Q2 contain a single
break. We can use the same arguments as in the base case in addition to [seq1] under the premise of the
induction hypothesis to get rid of the break.

Now consider sequential composition. As an induction step, assume that P is of the form Q0;Q1! ;Q2;
Q3! ;Q4, where one of Q1 or Q3 satisfies the lemma statement, and the other contains a single break.
Again, we can use the arguments from the base case as well as the induction hypothesis in conjunction
with [seq1] to remove the break.

Finally, assume that 〈P,S〉 does not satisfy context conditions, i.e. break statements must appear
within a loop, and if one appears in the condition of a branching statement, the enclosing loop must be
within the same condition. Since 〈P,S〉 is reachable, the latter condition is verified since the transition
relation preserves it (loops can only be removed by inference rules, they cannot be “moved”). Suppose
there is a breakwithout an enclosing loop. This must be because [alap1] is applied earlier in the transition
sequence, so it must be within the condition of a try or TRY. So we can use the same arguments as earlier
in the proof, except that we need not argue that some of the inference rule, such as [alap1] or [try1] need
to be applied.

Now that we have Lemmata 4.1 and 4.2, we can prove that the non-blocking property holds.

Proposition 4.3 (Non-Blocking Property). Let 〈P,S〉 be an extended configuration that is reachable and
non-terminal. Then there is a transition step 〈P,S〉 →C for some extended configuration C.
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Proof. If P does not contain a break, this proposition follows from Lemma 4.1. Otherwise, it follows
from Lemma 4.2.

Let us now introduce a lemma that makes various statements about the size of host graph stacks in
order to ensure that the inference rules are well-defined. Since we defined stacks to be nonempty, we
want to make sure that if a transition sequence starts with a nonempty stack, it cannot lead to an empty
stack, which the following lemma shows. Furthermore, when a transition sequence terminates in a graph
stack, we want that stack to only contain one host graph.

For this lemma, we want to start from a valid GP 2 program, not extended command sequences in
general (since they may contain auxiliary constructs like ITE and TRY). So we consider configurations
in CommandSeq×S . These follow the context conditions on where the break statement can appear as
specified in [3].

Lemma 4.4 (Stack Size). Let 〈P, [G]〉 be a configuration in CommandSeq×S .

(a) If 〈P, [G]〉 →∗ 〈P′,S〉, where 〈P′,S〉 is an extended configuration, then |S|≥ 1.

(b) If 〈P, [G]〉 →+ S, where S is a graph stack, then |S|= 1.

Proof. The statement in (a), is satisfied for zero transition steps. So let us examine the inference rules
that contain push, pop, and pop2. The rule [call1] contains both push and pop, but preserves the size of
the stack. The rules that push a graph onto the stack are [if1] and [try1] which are exactly the rules that
introduce an ITE or a TRY. The rules that pop a graph from the stack are [alap2], [if3], [if4], [try3], and
[try4]. These are exactly rules that remove an ITE or TRY from the extended command sequence. Since
〈P, [G]〉 contains no ITE or TRY statements and only one host graph, we have |S|= #(P′) + 1, where
# counts the combined number of ITE and TRY statements in an extended command sequence. Since
|S|= #(P′)+1, we have |S|≥ 1.

Now in case (b), we can break down the transition sequence into 〈P, [G]〉→∗ 〈P′,S′〉→ S. Like in the
proof of (a), the formula |S′|= #(P′)+1 applies. Let us examine which inference rules can be applied in
the final step of the transition. It can only be either [skip], [call1], or [alap2]. To apply [skip], P′ must be
skip and #(skip)= 0, so |S|= |S′|= 1. To apply [call1], P′ must be rule set call, and hence cannot contain
ITE or TRY, so |S|= |S′|= 1. To apply [alap2], P′ must be of the form TRY(break,P′′! ,skip), where P′′

is an extended command sequence. We know P′′ cannot contain an ITE or TRY statement because they
can only be nested in their first argument. Indeed, if an extended command sequence already starts with
an ITE or TRY, no inference rule allows for said ITE or TRY statement to be nested within another one.
So the only way to nest statements is via the rule [try2], which modifies the first argument. But the first
argument of P′ is break, which contains no ITE or TRY statements. So #(P′) = 1 and |S′|= 2. Since we
apply [alap2], we have S = pop2(S′), so |S|= |S′|−1 = 1.

We also want to make sure that if we call pop2 on a stack to pop its second element, the stack does
indeed contain at least two elements. More precisely, under the premise of Lemma 4.4, if 〈P, [G]〉 →+

〈P′,pop2(S)〉 (an extended configuration) or 〈P, [G]〉 →+ pop2(S) (a graph stack), then |S|≥ 2. This
follows directly from Lemma 4.4 since |pop2(S)|= |S|−1.

Let us now use Lemmata 4.1, 4.2, and 4.4 is to describe what the possible outcomes of a transition
sequence starting in a valid GP 2 program are.

Proposition 4.5 (Outcomes of Transition Sequences). Let 〈P, [G]〉 be a configuration in CommandSeq×
S . Then one of the following applies:
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• There is an infinite transition sequence 〈P, [G]〉 → 〈P1,S1〉 → 〈P2,S2〉 → . . . where 〈Pi,Si〉 is an
extended configuration for all i≥ 1.

• 〈P, [G]〉 →+ [G′] for some host graph G′.

• 〈P, [G]〉 →+ fail.

Proof. Lemma 4.4 guarantees that if a transition sequence starts in 〈P, [G]〉 and ends in a stack, that stack
only contains one graph. So for this proposition, it is enough to show that transition sequences end in a
stack in the relevant cases.

In order to get rid of a potential break statement in P, we can apply Lemma 4.2 to 〈P, [G]〉. If we get
a graph stack or fail, we fulfil the second or third case of this proposition. Otherwise we get an extended
configuration 〈P′,S〉 that contains no break.

Since there is now no break in either 〈P, [G]〉 or 〈P′,S〉, we can apply the first, second, and third
cases of Lemma 4.1 either indefinitely to get an infinite transition sequence, or until we get a graph stack
or fail.

Now that we know the possible outcomes of a transition sequence, we can define the semantic func-
tion J K : CommandSeq→ (G → 2G⊕), where G is the set of host graphs, [G ] the set of stacks consisting
of exactly one host graph (which we can identify with single host graphs), and G ⊕= [G ] ∪ {fail,⊥}. The
symbol ⊥ is used to represent an infinite transition sequence, i.e. divergence. The function is defined as

JPKG = {X ∈ [G ]∪{fail}|〈P,G〉 →+ X} ∪ {⊥|P can diverge from G}.

This functions differs from the one presented in [17] and Section 2 since ⊥ is only used when P
diverges, not when P gets stuck, i.e. there is a non-terminal configuration.

Let us now examine the property of finite nondeterminism as specified by Apt in Section 4.1 of [1],
i.e. the set of elements reachable from a configuration in one transition step is finite. A related concept
is bounded nondeterminism, where the cardinality of the aforementioned set depends on the program
only (and not on the size of the input). GP 2 has finite nondeterminism, but not bounded nondetermin-
ism, which the following example illustrates. It also shows that bounded nondeterminism is a stronger
property than finite nondeterminism.

Example 4.6. Consider the rule r : 1 ⇒1 and the comb graph G4 as shown in Figure 6. There

Figure 6: The comb graph G4

are four possible matches for the left-hand side of rule r in graph G4, so applying the rule can result in
four different non-isomorphic graphs, which is a finite amount. When applying r to comb graph Gk, we
get k non-isomorphic graphs, which depends on the size of the host graph and hence is not bounded.

Proposition 4.7 (Finite Nondeterminism). Let γ ∈ ExtComSeq×S be an extended configuration, and
Tγ = {γ ′ |γ → γ ′ ∈ ExtCommSeq×S }. Then |Tγ | is finite.
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Proof. The only inference rules that cause nondeterminism are [or1], [or2], and [call1]. If the rules [or1]
and [or2] are applicable to γ then there are exactly two configurations reachable from γ . In [call1], the
nondeterminism comes from several GP 2 rules being called non-deterministically as part of a rule set,
as well as from all the ways these rules can be matched in the host graph. Since rule sets and host graphs
are finite, the number of configurations reachable from γ in one step via the inference rule [call1] is finite
as well.

Reynolds [18] defines this kind of nondeterminism using the semantic function instead of the set
of configurations reachable in one step. The following corollary shows that this semantics fulfils that
definition as well.

Corollary 4.8. Let P ∈ CommandSeq and G ∈ G such that JPKG is infinite. Then ⊥ ∈ JPKG.

Proof. Let γ0 = 〈P, [G]〉. Then T ∗γ0
= {γ |γ0→∗ γ ∈ExtCommSeq×S } is infinite as well since it contains

all elements of JPKG except perhaps fail or ⊥. The set T ∗γ0
can be seen as a tree whose nodes are

configurations and whose edges are defined by transition relations. Since Tγ is finite for all configurations
γ by Proposition 4.7, each node in the tree only has finitely many adjacent nodes. By König’s Lemma
[12], the tree contains an infinite path. Since every node of the tree is reachable from the root γ0, there
is an infinite path starting from γ0. By definition of the tree, this means there’s an infinite transition
sequence starting with γ0. By definition of the semantic function, we can conclude that ⊥ ∈ JPKG.

Many references [8, 10, 18, 19] equate the concepts of finite and bounded nondeterminism and call
it “bounded nondeterminism”. This is likely because imperative programming languages, unlike GP 2,
usually satisfy both properties, so there is no need to distinguish between them.

5 Conclusion

We have introduced a new small-step operational semantics for the graph programming language GP 2.
Unlike the previous semantics, this one is entirely small-step and non-blocking. As a consequence, it
accurately models diverging computations. In particular, the new semantic function correctly lists ⊥ as
an outcome when there is a computation in which the condition of a branching statement or the body of a
loop diverges. We also obtain finite nondeterminism, meaning that for every configuration there are only
finitely many choices for the next transition step.

In future work, the new semantics should serve as a solid underpinning for setting up a time and
space complexity theory for GP 2. Its small-step nature is crucial to defining atomic computation steps.
Such a theory could possibly be automated akin to the resource analysis in [13].

Another aspect of the GP 2 semantics is that it is orthogonal to the definition of the transformation
rules. The inference rules that depend on the domain of graph transformation only need the definition
of a rule application ([call1]) and the information when such an application fails ([call2]). Hence this
semantics could be used as a foundation for GP 2-like programming languages over other rule-based
domains, such as string rewriting [5] or term rewriting [2].
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