
Type checking data structures
more complex than trees
SWoPP 2022, PRO–3

July 28, 2022
Waseda University, Tokyo, Japan

Jin SANO Naoki YAMAMOTO Kazunori UEDA

Overview

We propose a new purely functional language 𝜆𝐺𝑇 ,
which handles graphs as immutable, first-class data
with pattern matching based on Graph Transformation
and developed a new type system 𝐹𝐺𝑇 for the language.

2/41

Data structures more complex than trees

1 2 4 7 8

Difference List

2 3 5 6 8

Doubly-linked List

Skip List

1 4 5 8 9

Leaf-linked Tree

Threaded Tree

There are several important data structures (graphs) that are beyond trees.

3/41

How Programming Paradigms handle data

Imperative
Heaps and pointers
Not Immutable

Purely Functional
Algebraic Data Types (ADT)
Immutable, First-class functions
Type system
Complex data structures
are difficult to handle

Graph Transformations[Ehr+06]
Graphs and pattern matching on them
Not Immutable, No First-class functions

4/41

Our proposing language 𝜆𝐺𝑇 is

a functional language with graphs as first-class data

Graphs and pattern matching on them
Immutable
First-class functions
Type system

5/41

Key ideas to achieve 𝜆𝐺𝑇

1. To establish the semantics of pattern matching and
(re) construction of graphs, we incorporated HyperLMNtal[SU21];
a syntax-directed graph transformation formalism.

2. To verify the shape of the structure, we used Graph Grammar,
which extends Tree Grammar, on which ADT is based.

6/41

1. Syntax and Semantics of 𝜆𝐺𝑇

2. The type system

3. Extending the type system

4. Related work and Summary

7/41

HyperLMNtal: A syntax-directed graph transformation formalism

Since graphs and their operations are more complex than trees,
there are diverse formalisms.

Most of them use graph isomorphism or bisimulation to establish the
equivalence of graphs and DPO/SPO for the matching and rewriting.
They are NOT syntax-directed.

In the previous study, we proposed HyperLMNtal[SU21].

HyperLMNtal uses structural congruence rules to define the equivalence
of graphs and exploit them in matching and rewriting.
Syntax-directed easier to adopt to the 𝜆-calculus (defined
structurally) and good for local reasoning

8/41

Syntactic conventions

For some syntactic entity 𝐸,
𝐸𝑖

𝑖
= 𝐸1, … , 𝐸𝑛 where |𝐸𝑖

𝑖
| = 𝑛 ≥ 0.

We omit the index 𝑖 when there is no ambiguity.

9/41

HyperLMNtal: Syntax

Graph
𝐺 ∶∶= 0 Null empty graph

| 𝑝(�⃗�) Atom vertex with name 𝑝 and links �⃗�
| (𝐺, 𝐺) Molecule multiset of vertices
| 𝜈𝑋.𝐺 Hyperlink Creation scope of link names

For example, Difference List (List Segment) can be represented as
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

𝑋 C C 𝑌

1 2

10/41

Free names and substitutions of hyperlinks

Links bound by 𝜈 are called Local Links and others are called Free Links
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

𝑋 C C 𝑌

1 2

fn(𝐺) denotes the set of all free links in 𝐺

𝐺⟨𝑌/𝑋⟩ replaces all free occurrences of 𝑋 with 𝑌.

The notion of locality of (link) names is NOT common in graph formalisms
but in the formalisms for PLs; 𝜆-calculus, 𝜋-calculus, …

11/41

Structural Congruence: Axioms of graph equivalences

(E1) (0, 𝐺) ≡ 𝐺
(E2) (𝐺1, 𝐺2) ≡ (𝐺2, 𝐺1)
(E3) (𝐺1, (𝐺2, 𝐺3)) ≡ ((𝐺1, 𝐺2), 𝐺3)
(E4) 𝐺1 ≡ 𝐺2 ⇒ (𝐺1, 𝐺3) ≡ (𝐺2, 𝐺3)
(E5) 𝐺1 ≡ 𝐺2 ⇒ 𝜈𝑋.𝐺1 ≡ 𝜈𝑋.𝐺2

(E6) 𝜈𝑋.(𝑋 ⋈ 𝑌,𝐺) ≡ 𝜈𝑋.𝐺⟨𝑌/𝑋⟩
where 𝑋 ∈ fn(𝐺) ∨ 𝑌 ∈ fn(𝐺)

(E7) 𝜈𝑋.𝜈𝑌.𝑋 ⋈ 𝑌 ≡ 0
(E8) 𝜈𝑋.0 ≡ 0
(E9) 𝜈𝑋.𝜈𝑌.𝐺 ≡ 𝜈𝑌.𝜈𝑋.𝐺
(E10) 𝜈𝑋.(𝐺1, 𝐺2) ≡ (𝜈𝑋.𝐺1, 𝐺2)

where 𝑋 ∉ fn(𝐺2)

For example,
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

≡

𝜈𝑍.(
𝜈𝑍1.(1(𝑍1),Cons(𝑍1, 𝑍, 𝑋)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)
by (E2), (E4) and (E5)

Notice the rules are defined compositionally.
12/41

Abbreviation schemes in HyperLMNtal

1. A nullary atom 𝑝() can be simply written as 𝑝.
2. Term Notation:

𝜈𝑋𝑛.(𝑝(… ,𝑋𝑛, …), 𝑞(𝑋1, … , 𝑋𝑛)) can be written as 𝑝(… , 𝑞(𝑋1, … , 𝑋𝑛−1), …)

For example,
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)
can be abbreviated as
Cons(1,Cons(2, 𝑌), 𝑋)

𝑋 C C 𝑌
𝑍

1

𝑍1

2

𝑍2

13/41

Syntax of 𝜆𝐺𝑇

Expression 𝑒 ∶∶= 𝑇 | (case 𝑒 of 𝑇 → 𝑒 | otherwise → 𝑒) | (𝑒 𝑒)

Graph Template 𝑇 ∶∶= 0 | 𝑣 (�⃗�) | (𝑇, 𝑇) | 𝜈𝑋.𝑇 | 𝑥[�⃗�]

Atom Name 𝑣 ∶∶= ⋈ | 𝐶 | 𝜆 𝑥[�⃗�].𝑒

Value 𝐺 ∶∶= 0 | 𝑣 (�⃗�) | (𝐺, 𝐺) | 𝜈𝑋.𝐺

𝜆𝐺𝑇 is designed to be a small language focusing on handling graphs.
Value in 𝜆𝐺𝑇 is a graph in HyperLMNtal

We allow ⋈, Constructor, and 𝜆-abstraction for the atoms’ names

14/41

Syntax of 𝜆𝐺𝑇: Graph Template

Graph Template
𝑇 ∶∶= 0 | 𝑣 (�⃗�) | (𝑇, 𝑇) | 𝜈𝑋.𝑇

| 𝑥[�⃗�] Graph context wildcard in pattern matching; variable

Since the value in 𝜆𝐺𝑇 is Graph, we use Template of graphs
to represent data with variables.

For example,
𝜈𝑍.(
𝑥[𝑍,𝑋],
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 𝑛[𝑍2])

)

𝑋 𝑥 C 𝑌

𝑛

15/41

Graph Substitution

We define capture-avoiding substitution 𝜃 of a graph context 𝑥[�⃗�] with a
template 𝑇 in 𝑒, written 𝑒[𝑇/𝑥[�⃗�]].

The definition is standard except that it handles the substitution of the
free links of graph contexts as follows.

(𝑥[�⃗�])[𝑇/𝑦[�⃗�]] =
if 𝑥/|�⃗�| = 𝑦/|�⃗�| then 𝑇⟨𝑋1/𝑌1⟩… ⟨𝑋|�⃗�|/𝑌|�⃗�|⟩ reconnect free links
else 𝑥[�⃗�]

For example,

𝑋 𝑥 C 𝑌

2

𝑍 C 𝑊

1
/ 𝑍 𝑥 𝑊 =

𝑋 C C 𝑌

1 2 16/41

Graph Matching is defined with Graph Substitution

𝐺 ≡ 𝑇𝜃 Rd-Case1(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒2𝜃

For example,

𝑋 C C 𝑌

1 2

𝐺

≡
𝑋 𝑥 C 𝑌

2

𝑇

𝑍 C 𝑊

1
/ 𝑍 𝑥 𝑊

𝜃

Here, 𝐺 can be matched to 𝑇 with 𝜃

17/41

Reduction of 𝜆𝐺𝑇

𝐺 ≡ 𝑇𝜃 Rd-Case1(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒2𝜃
match succeeded

¬∃𝜃.𝐺 ≡ 𝑇𝜃 Rd-Case2(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒3
match failed

fn(𝐺) = {�⃗�} Rd-𝛽
((𝜆 𝑥[�⃗�].𝑒)(�⃗�) 𝐺) ⟶val 𝑒[𝐺/𝑥[�⃗�]]

beta reduction

𝑒1 ⟶val 𝑒′1 Rd-App1(𝑒1 𝑒2) ⟶val (𝑒′1 𝑒2)
𝑒 ⟶val 𝑒′ Rd-App2(𝐺 𝑒) ⟶val (𝐺 𝑒′)

𝑒 ⟶val 𝑒′ Rd-Ctx𝐸[𝑒] ⟶val 𝐸[𝑒′]

where 𝐸 ∶∶= [] | (case 𝐸 of 𝑇 → 𝑒 | otherwise → 𝑒) | (𝐸 𝑒) | (𝐺 𝐸) | 𝑇

18/41

Example of the 𝛽-reduction

We can describe a program to append two singleton difference lists as
follows.

(𝜆 𝑦[𝑌,𝑋].Cons(1, 𝑦[𝑌], 𝑋))(𝑍) Cons(2, 𝑌, 𝑋)

⟶val Cons(1, 𝑦[𝑌], 𝑋)[Cons(2, 𝑌, 𝑋)/𝑦[𝑌, 𝑋]]

= Cons(1,Cons(2, 𝑌), 𝑋)

𝜆 𝑦

C

1

𝑦

C

2

⟶val C C

1 2

19/41

1. Syntax and Semantics of 𝜆𝐺𝑇

2. The type system

3. Extending the type system

4. Related work and Summary

20/41

𝐹𝐺𝑇: Type System for 𝜆𝐺𝑇

We propose a new type system, 𝐹𝐺𝑇 , for the 𝜆𝐺𝑇 language.

The type in 𝐹𝐺𝑇 is a type atom 𝜏 (�⃗�).
We extend the 𝜆-expression to 𝜆𝑥[�⃗�]∶ 𝜏 (�⃗�).𝑒.

We define the type of graphs using graph grammar.
We focus on the handling of graph structures and
keep the language small, e.g. No let rec nor fix.

21/41

Syntax of 𝐹𝐺𝑇: The type in 𝐹𝐺𝑇 is a type atom 𝜏 (�⃗�) where …

Atom Name for types 𝜏 ∶∶= 𝛼 Type Variable
| 𝜏 (�⃗�) → 𝜏 (�⃗�) Arrow

Type Graph 𝒯 ∶∶= 𝜏 (�⃗�) | 𝐶(�⃗�) | 𝑋 ⋈ 𝑌 | (𝒯 ,𝒯) | 𝜈𝑋.𝒯

Production Rule 𝑟 ∶∶= 𝛼(�⃗�) ⟶ 𝒯

For example, production rules of difference lists, 𝑟1 and 𝑟2, are
nodes (𝑌, 𝑋)
⟶ 𝑋 ⋈ 𝑌

nodes (𝑌, 𝑋)
⟶ Cons(nat, nodes (𝑌), 𝑋)

𝑋 nodes 𝑌 ⟶ 𝑋 𝑌

𝑋 nodes 𝑌 ⟶
𝑋 C nodes 𝑌

nat
22/41

Typing relation in 𝐹𝐺𝑇
We introduce typing environment

Γ = {𝑥1 [𝑋1] ∶ 𝜏1 (𝑋1), … , 𝑥𝑛 [𝑋𝑛] ∶ 𝜏𝑛 (𝑋𝑛)}

where the 𝑥𝑖’s are mutually distinct.

The typing relation (Γ, 𝑃) ⊢ 𝑒 ∶ 𝜏 (�⃗�) denotes that
𝑒 has the type 𝜏 (�⃗�)
under the type environment Γ and a set 𝑃 of production rules.

For example,

({𝑛[𝑍1] ∶ nat (𝑍1)}, {𝑟1, 𝑟2}) ⊢ Cons(𝑛, 𝑌, 𝑋) ∶ nodes (𝑌, 𝑋)

23/41

Rules of 𝐹𝐺𝑇 ⟨1/2⟩: typing rules as in functional languages

These are basically the same as the type system of the other ordinary
functional languages, except that the type in FGT is an atom.

(Γ, 𝑃) ⊢ 𝑒1 ∶ (𝜏1(�⃗�) → 𝜏2(�⃗�))(�⃗�) (Γ, 𝑃) ⊢ 𝑒2 ∶ 𝜏1(�⃗�) Ty-App
(Γ, 𝑃) ⊢ (𝑒1 𝑒2) ∶ 𝜏2(�⃗�)

((Γ, 𝑥[�⃗�] ∶ 𝜏1(�⃗�)), 𝑃) ⊢ 𝑒 ∶ 𝜏2(�⃗�) Ty-Arrow
(Γ, 𝑃) ⊢ (𝜆 𝑥[�⃗�] ∶ 𝜏1(�⃗�).𝑒)(𝑊) ∶ (𝜏1(�⃗�) → 𝜏2(�⃗�))(𝑊)

Ty-Var
(Γ{𝑥[�⃗�] ∶ 𝜏 (�⃗�)}, 𝑃) ⊢ 𝑥[�⃗�] ∶ 𝜏 (�⃗�)

(Γ, 𝑃) ⊢ 𝑒1 ∶ 𝜏1(�⃗�) ((Γ, Γ′∗), 𝑃) ⊢ 𝑒2 ∶ 𝜏2(�⃗�) (Γ, 𝑃) ⊢ 𝑒3 ∶ 𝜏2(�⃗�) Ty-Case
(Γ, 𝑃) ⊢ (case 𝑒1 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ∶ 𝜏2(�⃗�)

∗ We gave a detailed explanation of Γ′ in the paper. 24/41

Rules of 𝐹𝐺𝑇 ⟨2/2⟩: typing rules for graphs

(Γ, 𝑃) ⊢ 𝑇 ∶ 𝜏 (�⃗�) 𝑇 ≡ 𝑇′
Ty-Cong

(Γ, 𝑃) ⊢ 𝑇′ ∶ 𝜏 (�⃗�)

(Γ, 𝑃) ⊢ 𝑇 ∶ 𝜏 (�⃗�) Ty-Alpha
(Γ, 𝑃) ⊢ 𝑇⟨𝑍/𝑌⟩ ∶ 𝜏 (�⃗�)⟨𝑍/𝑌⟩

where 𝑍 ∉ fn(𝑇)

(Γ, 𝑃) ⊢ 𝑇1 ∶ 𝜏1(𝑋1) … (Γ, 𝑃) ⊢ 𝑇𝑛 ∶ 𝜏𝑛(𝑋𝑛) Ty-Prod
(Γ, 𝑃{𝛼(�⃗�) ⟶ 𝒯 }) ⊢ 𝒯 [𝑇1/𝜏1(𝑋1), … , 𝑇𝑛/𝜏𝑛(𝑋𝑛)] ∶ 𝛼(�⃗�)

where 𝜏𝑖(𝑋𝑖) are all the type variable or arrow atoms appearing in 𝒯

25/41

Ty-Prod Example

(Γ, 𝑃) ⊢ 𝑇1 ∶ 𝜏1(𝑋1) … (Γ, 𝑃) ⊢ 𝑇𝑛 ∶ 𝜏𝑛(𝑋𝑛) Ty-Prod
(Γ, 𝑃{𝛼(�⃗�) ⟶ 𝒯 }) ⊢ 𝒯 [𝑇1/𝜏1(𝑋1), … , 𝑇𝑛/𝜏𝑛(𝑋𝑛)] ∶ 𝛼(�⃗�)

where 𝜏𝑖(𝑋𝑖) are all the type variable or arrow atoms appearing in 𝒯

For example, for

nodes (𝑌, 𝑋) ⟶ 𝜈𝑍1.𝜈𝑍2.(Cons(𝑍1, 𝑍2, 𝑋), nat (𝑍1), nodes (𝑌, 𝑍2)) ⋯ 𝑟2
the Ty-Prod is

(Γ, 𝑃) ⊢ 𝑇1 ∶ nat (𝑍1) (Γ, 𝑃) ⊢ 𝑇2 ∶ nodes (𝑌, 𝑍2) Ty-Prod
(Γ, 𝑃{𝑃2}) ⊢
𝜈𝑍1.𝜈𝑍2.(Cons(𝑍1, 𝑍2, 𝑋), nat (𝑍1), nodes (𝑌, 𝑍2))[𝑇1/nat (𝑍1), 𝑇2/nodes (𝑌, 𝑍2)]
= 𝜈𝑍1.𝜈𝑍2.(Cons(𝑍1, 𝑍2, 𝑋), 𝑇1, 𝑇2) ∶ nodes (𝑌, 𝑋)

26/41

Example: Typing difference list

({𝑛[𝑍1] ∶ nat (𝑍1)}, {𝑟1, 𝑟2}) ⊢ Cons(𝑛, 𝑌, 𝑋) ∶ nodes (𝑌, 𝑋)

where 𝑟1 and 𝑟2 are the followings.

nodes (𝑌, 𝑋) ⟶ 𝑋 ⋈ 𝑌
nodes (𝑌, 𝑋) ⟶ Cons(nat, nodes (𝑌), 𝑋)

can be shown as follows.

Ty-Var
(Γ, 𝑃) ⊢ 𝑛[𝑍1] ∶ n (𝑍1)

Ty-Prod
(Γ, 𝑃{𝑟1}) ⊢ 𝑋 ⋈ 𝑌 ∶ nodes (𝑌, 𝑋)

Ty-Alpha
(Γ, 𝑃) ⊢ 𝑍2 ⋈ 𝑌 ∶ nodes (𝑍2, 𝑋) Ty-Prod

(Γ, 𝑃{𝑟2}) ⊢ 𝑇′ ∶ nodes (𝑌, 𝑋) where 𝑇′ = 𝜈𝑍1𝑍2.(Cons(𝑍1, 𝑍2, 𝑋), 𝑛[𝑍1], 𝑍2 ⋈ 𝑌) 𝑇 ≡ 𝑇′
Ty-Cong

(Γ, 𝑃) ⊢ 𝑇 ∶ nodes (𝑌, 𝑋) where 𝑇 = Cons(𝑠𝑢𝑐𝑐, 𝑌, 𝑋)

27/41

Theorems of 𝐹𝐺𝑇
We have proved some properties of 𝐹𝐺𝑇 .

Theorem 4.1 Soundness of 𝐹𝐺𝑇 .
If (∅, 𝑃) ⊢ 𝑒 ∶ 𝜏 (�⃗�), and 𝑒 ⟶∗

val 𝑒′ then 𝑒′ is a value or
∃𝑒″.𝑒′ ⟶val 𝑒″.

This can be proved in a same manner as in ordinary type
systems.

Theorem 4.2 Relation between 𝐹𝐺𝑇 and HyperLMNtal reduction.
Typig relation in 𝐹𝐺𝑇 corresponds to the transitive closure of
HyperLMNtal reduction

This allows us to take advantage of research of Graph
Transformations[FM98; FM97; YU21; Bj21].

28/41

𝐹𝐺𝑇 and HyperLMNtal reduction
Theorem 4.1

(Γ, 𝑃) ⊢ 𝑇 ∶ 𝜏 (�⃗�)

⇔ 𝜏 (�⃗�) ⇝∗
𝑃 𝑇[𝜏𝑖(𝑌𝑖)/𝑥𝑖[𝑋𝑖]]

𝑖
[𝜏𝑖(𝑍𝑖)/(𝜆…)𝑖(𝑊𝑖)]

𝑖

where

Γ = 𝑥𝑖[𝑋𝑖] ∶ 𝜏𝑖(𝑋𝑖)
𝑖
,

(𝜆…)𝑖(𝑊𝑖) are all the 𝜆-abstraction atoms in 𝑇, and

(Γ, 𝑃) ⊢ (𝜆…)𝑖(𝑊𝑖) ∶ 𝜏𝑖(𝑍𝑖).

where ⇝𝑃 is a reduction relation with rules 𝑃 in HyperLMNtal.

29/41

Example: Theorem 4.1 on the typing of difference list.

Recall that ({𝑛[𝑍1] ∶ nat (𝑍1)}, {𝑟1, 𝑟2}) ⊢ Cons(𝑛, 𝑌, 𝑋) ∶ nodes (𝑌, 𝑋) holds in
𝐹𝐺𝑇 , which can also be shown using HyperLMNtal reduction as follows.

nodes (𝑌, 𝑋)

⇝{𝑟2} Cons(nat, nodes (𝑌, 𝑍2), 𝑋)

⇝{𝑟1} 𝜈𝑍.(Cons(nat, 𝑍, 𝑋), 𝑍 ⋈ 𝑌)
≡ Cons(nat, 𝑌, 𝑋)
= Cons(𝑛, 𝑌, 𝑋)[nat (𝑍1)/𝑛[𝑍1]]

𝑋 nodes 𝑌

⇝{𝑟1}
𝑋 C nodes 𝑌

nat

⇝{𝑟1}
𝑋 C 𝑌

nat

30/41

1. Syntax and Semantics of 𝜆𝐺𝑇

2. The type system

3. Extending the type system

4. Related work and Summary

31/41

Extending the type system

The type system was actually for parsing when dealing with graphs;

it just checks if the graph can be generated from the annotated type
variable atom, i.e., the start symbol.

Algebraic data types can be handled in this manner
because they only allow adding/removing a root constructor.

However, in 𝜆𝐺𝑇 , more powerful operations are possible,
for example the concatenation of difference lists.

32/41

Example: Difference list concatenation

As a running example, we consider a typed version of the program for
appending two difference lists.

(Γ, 𝑃) ⊢

(𝜆 𝑥[𝑌,𝑋] ∶ nodes (𝑌, 𝑋).
(𝜆 𝑦[𝑌,𝑋] ∶ nodes (𝑌, 𝑋).
𝜈𝑍.(𝑥[𝑍,𝑋], 𝑦[𝑌, 𝑍])

)(𝑍))(𝑍)

∶

(nodes (𝑌, 𝑋) →
(nodes (𝑌, 𝑋) →

nodes (𝑌, 𝑋)
)(𝑍))(𝑍)

However, this program cannot be verified by directly using the rules in the
type system.

33/41

Why typing the difference list concatenation fails

We need to prove

((𝑥[𝑌, 𝑋] ∶ nodes (𝑌, 𝑋), 𝑦[𝑌, 𝑋] ∶ nodes (𝑌, 𝑋)), 𝑃)
⊢ 𝜈𝑍.(𝑥[𝑍, 𝑋], 𝑦[𝑌, 𝑍]) ∶ nodes (𝑌, 𝑋)

to verify the present example.

Theorem 4.1 states that, if we can successfully prove the typing relation
using 𝐹𝐺𝑇 , we should be able to prove

nodes (𝑌, 𝑋) ⇝∗
𝑃 𝜈𝑍.(nodes (𝑍, 𝑋), nodes (𝑌, 𝑍)).

However, applying the production rules of difference lists cannot increase
the number of nodes/2 atoms, contradiction.

34/41

Extending 𝐹𝐺𝑇
We extend the previously defined 𝐹𝐺𝑇 to enable such verification.

For a graph template 𝑇
it is sufficient if the typing succeeds 𝑇 ∶ 𝜏 (�⃗�)
after replacing each graph context in 𝑇
by all possible values of the types attached to the graph context.

Or more formally,

∀𝐺𝑖.((
𝑖
⋀((∅, 𝑃) ⊢ 𝐺𝑖 ∶ 𝜏𝑖(𝑌𝑖))) ⇒ (∅, 𝑃) ⊢ 𝑇[𝐺𝑖/𝑥𝑖[𝑋𝑖]]

𝑖
∶ 𝜏 (�⃗�))

(𝑥𝑖[𝑋𝑖] ∶ 𝜏𝑖(𝑌𝑖)
𝑖
, 𝑃) ⊢ 𝑇 ∶ 𝜏 (�⃗�)

35/41

Using the extension on 𝐹𝐺𝑇 in the example

In order to apply the rule to the present example,
we need to prove that,

the substituted result of 𝜈𝑍.(𝑥[𝑍,𝑋], 𝑦[𝑌, 𝑍])
must have the type nodes (𝑌, 𝑋)
for any graphs to which 𝑥[𝑍,𝑋] and 𝑦[𝑌, 𝑍] can be mapped.

that is,

∀𝐺1, 𝐺2.((∅, 𝑃) ⊢ 𝐺1 ∶ nodes (𝑌, 𝑋) ∧ (∅, 𝑃) ⊢ 𝐺2 ∶ nodes (𝑌, 𝑋))
⇒ (∅, 𝑃) ⊢ 𝜈𝑍.(𝑥[𝑍,𝑋], 𝑦[𝑌, 𝑍])[𝐺1/𝑥[𝑌, 𝑋]][𝐺2/𝑦[𝑌, 𝑋]]

= 𝜈𝑍.(𝐺1⟨𝑍/𝑌⟩, 𝐺2⟨𝑍/𝑋⟩ ∶ nodes (𝑌, 𝑋)).

36/41

Proof tree of the difference lists concatenation

nodes2(𝑌, 𝑋) ∶ nodes (𝑌, 𝑋)
𝜈𝑍.(𝑋 ⋈ 𝑍,nodes2(𝑌, 𝑍)) ∶ nodes (𝑌, 𝑋)

nat3(𝑊1) ∶ nat (𝑊1)
𝜈𝑍.(nodes4(𝑍, 𝑋),nodes2(𝑌, 𝑍)) ∶ nodes (𝑌, 𝑋)

Alpha
𝜈𝑍.(nodes4(𝑍,𝑊),nodes2(𝑌, 𝑍)) ∶ nodes (𝑌,𝑊)

Prod 𝑃2𝜈𝑊.(Cons(nat3,𝑊,𝑋), 𝜈𝑍.(nodes4(𝑍,𝑊),nodes2(𝑌, 𝑍))) ∶ nodes (𝑌, 𝑋)
Cong

𝜈𝑍.(Cons(nat3,nodes4(𝑍), 𝑋),nodes2(𝑌, 𝑍)) ∶ nodes (𝑌, 𝑋)
Case nodes1𝜈𝑍.(nodes1(𝑍, 𝑋),nodes2(𝑌, 𝑍)) ∶ nodes (𝑌, 𝑋)

The concatenation of difference lists can be verified as shown
where the arrow ↩ refers to using the induction hypothesis.

37/41

The proposing algorithm

We have developed an algorithm that performs structural induction
automatically.

The proof obtained by the algorithm may contain cycles
since it uses induction hypothesis.
We have proved that the algorithm is sound using infinite decent.

We implemented it in OCaml and tested with the examples in p3.

38/41

1. Syntax and Semantics of 𝜆𝐺𝑇

2. The type system

3. Extending the type system

4. Related work and Summary

39/41

Related work

Structured Gamma[FM98], Shape Types[FM97] provides a typing framework
using graph grammar for graph transformation system

FUnCAL[MA17] is a functional language with Graph Transformation. The
equality of graphs is defined with bisimulation. FUnCAL comes
with its type system but does not support user-defined data
types.

Initial algebra semantics for cyclic sharing tree structures[Ham10] discusses
how to express graphs by lambda expressions.

Separation Logic[Rey02] is a verification framework for imperative programs
with heaps and pointers.

Cyclic Proof, Inductive Predicate/SLRD[BGP12; IRS13; TNK19] discusses how
to prove properties of heaps using induction.

40/41

Summary

We propose a new purely functional language 𝜆𝐺𝑇 ,
which handles graphs as immutable, first-class data
with pattern matching based on Graph Transformation
and developed a new type system 𝐹𝐺𝑇 for the language.

1. To establish the semantics of pattern matching and
(re) construction of graphs, we incorporated HyperLMNtal;
a syntax-directed graph transformation formalism.

2. To verify the shape of the structure, we used Graph Grammar,
which extends Tree Grammar, on which ADT is based.

41/41

References I

[FM97] Pascal Fradet and Daniel Le Métayer. “Shape types”. In: Proc. POPL’97. ACM.
1997, pp. 27–39. DOI: 10.1145/263699.263706.

[FM98] Pascal Fradet and Daniel Le Métayer. “Structured Gamma”. In: Science of
Computer Programming 31.2 (1998), pp. 263–289. ISSN: 0167-6423. DOI:
10.1016/S0167-6423(97)00023-3.

[Rey02] J.C. Reynolds. “Separation logic: a logic for shared mutable data structures”. In:
Proc. LICS 2002. IEEE. 2002, pp. 55–74. DOI: 10.1109/LICS.2002.1029817.

[Ehr+06] Hartmut Ehrig et al. Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2006.
ISBN: 978-3-540-31187-4. DOI: 10.1007/3-540-31188-2.

42/41

https://doi.org/10.1145/263699.263706
https://doi.org/10.1016/S0167-6423(97)00023-3
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/3-540-31188-2

References II

[Ham10] Makoto Hamana. “Initial Algebra Semantics for Cyclic Sharing Tree Structures”.
In: Log. Methods Comput. Sci. 6.3 (2010). URL:
http://arxiv.org/abs/1007.4266.

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. “A
Generic Cyclic Theorem Prover”. In: APLAS. Vol. 7705. Lecture Notes in Computer
Science. Springer, 2012, pp. 350–367.

[IRS13] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. “The Tree Width of Separation
Logic with Recursive Definitions”. In: Automated Deduction – CADE-24. Ed. by
Maria Paola Bonacina. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 21–38. ISBN: 978-3-642-38574-2.

43/41

http://arxiv.org/abs/1007.4266

References III

[MA17] Kazutaka Matsuda and Kazuyuki Asada. “A Functional Reformulation of UnCAL
Graph-Transformations: Or, Graph Transformation as Graph Reduction”. In:
Proc. POPL’97. Paris, France: ACM, 2017, pp. 71–82. ISBN: 9781450347211. DOI:
10.1145/3018882.3018883. URL: https://doi.org/10.1145/3018882.3018883.

[TNK19] Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. “Completeness of Cyclic
Proofs for Symbolic Heaps with Inductive Definitions”. In: Programming
Languages and Systems. Ed. by Anthony Widjaja Lin. Cham: Springer
International Publishing, 2019, pp. 367–387. ISBN: 978-3-030-34175-6.

[Bj21] Henrik Bj’́orklund et al. “Uniform parsing for hyperedge replacement
grammars”. In: J.Computer and System Sciences 118 (2021), pp. 1–27. ISSN:
0022-0000. DOI: 10.1016/j.jcss.2020.10.002.

44/41

https://doi.org/10.1145/3018882.3018883
https://doi.org/10.1145/3018882.3018883
https://doi.org/10.1016/j.jcss.2020.10.002

References IV

[SU21] Jin Sano and Kazunori Ueda. “Syntax-driven and compositional syntax and
semantics of Hypergraph Transformation System”. In: Proc. 32nd JSSST Annual
Conference (JSSST 2021). 2021.

[YU21] Naoki Yamamoto and Kazunori Ueda. “Engineering Grammar-based Type
Checking for Graph Rewriting Languages”. In: Proc. 12th Int. Workshop on Graph
Computation Models (GCM 2021). 2021.

45/41

Appendix

5. Comparison with Separation Logic

6. HyperLMNtal reduction

7. Extension on 𝐹𝐺𝑇

46/41

Comparison between Imperative Languages with 𝜆𝐺𝑇

Imperative Languages
Heaps and pointers
Not Immutable

! Verification techniques
Hoare triple, Separation Logic,
Shape Analysis, …

Proposing language 𝜆𝐺𝑇

Graphs and pattern matching
on them
Immutable
First-class functions
Type system
simpler and automatic

our contribution!

47/41

Comparison between HyperLMNtal and Separation Logic

Separation Logic 𝜆𝐺𝑇/HyperLMNtal
Heap segment/Atom 𝑥 ↦ �⃗� 𝐶(�⃗�)

Variable 𝑥 −
Address/Hyperlink 𝑠(𝑥) 𝑋

Separating Conjunction/Molecule ∗ ,
emp/null emp 0

part of pure logic/fusion 𝑥 = 𝑦 𝑋 ⋈ 𝑌
inductive predicate/non-terminal symbol 𝑃x⃗ 𝛼(�⃗�)

existence quantifier/hyperlink creation ∃ 𝜈

48/41

Appendix

5. Comparison with Separation Logic

6. HyperLMNtal reduction

7. Extension on 𝐹𝐺𝑇

49/41

HyperLMNtal reduction

For a set {P} of rewrite rules, the reduction relation ⇝𝑃 on graphs is defined
as the minimal relation satisfying the rules in the following.

(R1) 𝐺1 ⇝𝑃 𝐺2
(𝐺1, 𝐺3) ⇝𝑃 (𝐺2, 𝐺3)

(R2) 𝐺1 ⇝𝑃 𝐺2
𝜈𝑋.𝐺1 ⇝𝑃 𝜈𝑋.𝐺2

(R3) 𝐺1 ≡ 𝐺2 𝐺2 ⇝𝑃 𝐺3 𝐺3 ≡ 𝐺4
𝐺1 ⇝𝑃 𝐺4

(R4) (𝐺1 ⟶ 𝐺2) ∈ 𝑃
𝐺1 ⇝𝑃 𝐺2

50/41

Appendix

5. Comparison with Separation Logic

6. HyperLMNtal reduction

7. Extension on 𝐹𝐺𝑇

51/41

Extension on 𝐹𝐺𝑇 in the example

In order to apply the rule to the present example,
we need to prove that,

for any graphs to which 𝑥[𝑌,𝑋] and 𝑦[𝑌,𝑋] can be mapped,
the substituted result must have the type nodes (𝑌, 𝑋),

that is,

∀𝐺1, 𝐺2.((∅, 𝑃) ⊢ 𝐺1 ∶ nodes (𝑌, 𝑋) ∧ (∅, 𝑃) ⊢ 𝐺2 ∶ nodes (𝑌, 𝑋))
⇒ (∅, 𝑃) ⊢ 𝜈𝑍.(𝑥[𝑍,𝑋], 𝑦[𝑌, 𝑍])[𝐺1/𝑥[𝑌, 𝑋]][𝐺2/𝑦[𝑌, 𝑋]]

= 𝜈𝑍.(𝐺1⟨𝑍/𝑌⟩, 𝐺2⟨𝑍/𝑋⟩ ∶ nodes (𝑌, 𝑋)).

52/41

Abbreviation in the proof

From now on, we omit the “(∅, 𝑃) ⊢” for brevity. Then the above can be
rewritten using Ty-Alpha of 𝐹𝐺𝑇 as follows.

∀𝐺1, 𝐺2.(𝐺1 ∶ nodes (𝑍, 𝑋) ∧ 𝐺2 ∶ nodes (𝑌, 𝑍)
⇒ 𝜈𝑍.(𝐺1, 𝐺2) ∶ nodes (𝑌, 𝑋))

(1)

For brevity, we denote the graph 𝐺 of the type 𝜏 (�⃗�) as 𝜏 (�⃗�) and omit ∀𝐺.
Then (1) can be rewritten as

𝜈𝑍.(nodes1(𝑍, 𝑋), nodes2(𝑌, 𝑍)) ∶ nodes (𝑌, 𝑋)

53/41

	Syntax and Semantics of Lambda GT
	The type system
	Extending the type system
	Related work and Summary
	References
	Appendix
	Comparison with Separation Logic
	HyperLMNtal reduction
	Extension on FGT

