
A Functional Language with
Graphs as First-Class Data
JSSST 2022

September 1, 2022
Waseda University, Tokyo, Japan

Jin SANO Kazunori UEDA

Overview

We propose a new purely functional language 𝜆𝐺𝑇 ,
which handles graphs as immutable, first-class data
with pattern matching based on Graph Transformation.

We build a reference implementation of the language
in only 500 lines of OCaml code.

Source https://github.com/sano-jin/lambda-gt-alpha

Try it at https://sano-jin.github.io/lambda-gt-online/

2/32

Data structures more complex than trees

1 2 4 7 8

Difference List

2 3 5 6 8

Doubly-linked List

Skip List

1 4 5 8 9

Leaf-linked Tree

Threaded Tree

There are several important data structures (graphs) that are beyond trees.

3/32

How Programming Paradigms handle data

Imperative
! Heaps and pointers

Not Immutable

Purely Functional
Algebraic Data Types (ADT)
Immutable, First-class functions
Type system
Complex data structures
are difficult to handle

Graph Transformations1

Graphs and pattern matching on them
Not Immutable, No First-class functions

1Hartmut Ehrig et al. Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer
Science. 2006. 4/32

Our proposing language 𝜆𝐺𝑇 is

a functional language with graphs as first-class data

Graphs and pattern matching on them
Immutable
First-class functions
Type system

5/32

Contribution

0. We gave 𝜆𝐺𝑇 a semantics based on HyperLMNtal2;
a syntax-directed Graph Transformation formalism3.

Simple and elegant and suitable for the type system but
its implementation is not trivial. Therefore, …

1. We build a reference implementation focusing on simplicity
without regard to efficiency.

2Jin Sano and Kazunori Ueda. “Syntax-driven and compositional syntax and semantics of Hypergraph
Transformation System”. In: Proc. 38nd JSSST Annual Conference. 2021.

3Jin Sano, Naoki Yamamoto, and Kazunori Ueda. Type checking data structures more complex than trees.
Presented at the 141th IPSJ Special Interest Group on Programming, Yamaguchi, Japan. 2022.

6/32

Queues with Lists in Imperative Style

1 2 3 4
sentinel

last_ptr

head_ptr

Adding a new element needs

0. preparing a sentinel node and a pointer to the node,
1. creating a new last node,
2. destructive assignment to the previous last node, and
3. updating last_ptr← forgettable!

7/32

Queues with Lists in 𝜆𝐺𝑇

C C C

1 2 3

In 𝜆𝐺𝑇 , such data structure can be abstracted to a difference list;
a list with a link to the last node.

Adding a new element to the list can be understood as
concatenating a singleton list.

8/32

Difference lists concatenation in 𝜆𝐺𝑇

…can be done with a
type-safe, pure function.

𝜆 𝑥 𝑦

𝑥 𝑦

C

1

C

2

⟶val 𝜆 𝑦

C

1

𝑦

C

2

⟶val C C

1 2
9/32

Pattern matching graphs

If 𝑥 is bound with C C C

1 2 3

, then

Pop the last element of a difference list

case 𝑥 of

𝑦 C

𝑧
→ 𝑦

| otherwise → 𝑥

⟶val
C C

1 2

10/32

Syntax of graphs in HyperLMNtal/𝜆𝐺𝑇

Graph
𝐺 ∶∶= 0 Null empty graph

| 𝑣 (�⃗�) Atom vertex with name 𝑣 and links �⃗�
| (𝐺, 𝐺) Molecule multiset of vertices
| 𝜈𝑋.𝐺 Hyperlink Creation scope of link names

�⃗� = 𝑋1, … , 𝑋𝑛

For example, Difference List (List Segment) can be represented as
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

𝑋 C C 𝑌

1 2

11/32

Free names and substitutions of hyperlinks

Links bound by 𝜈 are called Local Links and others are called Free Links
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

𝑋 C C 𝑌

1 2

fn(𝐺) denotes the set of all free links in 𝐺

𝐺⟨�⃗�/�⃗�⟩ replaces all free occurrences of �⃗� with �⃗�.

The notion of locality of (link) names is NOT common in graph formalisms
but in the formalisms for PLs; 𝜆-calculus, 𝜋-calculus, …

12/32

Structural Congruence: Axioms of graph equivalences

(E1) (0, 𝐺) ≡ 𝐺
(E2) (𝐺1, 𝐺2) ≡ (𝐺2, 𝐺1)
(E3) (𝐺1, (𝐺2, 𝐺3)) ≡ ((𝐺1, 𝐺2), 𝐺3)
(E4) 𝐺1 ≡ 𝐺2 ⇒ (𝐺1, 𝐺3) ≡ (𝐺2, 𝐺3)
(E5) 𝐺1 ≡ 𝐺2 ⇒ 𝜈𝑋.𝐺1 ≡ 𝜈𝑋.𝐺2

(E6) 𝜈𝑋.(𝑋 ⋈ 𝑌,𝐺) ≡ 𝜈𝑋.𝐺⟨𝑌/𝑋⟩
where 𝑋 ∈ fn(𝐺) ∨ 𝑌 ∈ fn(𝐺)

(E7) 𝜈𝑋.𝜈𝑌.𝑋 ⋈ 𝑌 ≡ 0
(E8) 𝜈𝑋.0 ≡ 0
(E9) 𝜈𝑋.𝜈𝑌.𝐺 ≡ 𝜈𝑌.𝜈𝑋.𝐺
(E10) 𝜈𝑋.(𝐺1, 𝐺2) ≡ (𝜈𝑋.𝐺1, 𝐺2)

where 𝑋 ∉ fn(𝐺2)

For example,
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)
≡
𝜈𝑍.(
𝜈𝑍1.(1(𝑍1),Cons(𝑍1, 𝑍, 𝑋)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)
by (E2), (E4) and (E5)

Notice the rules are defined compositionally.
13/32

Fusion
Structural Congruence

(E6) 𝜈𝑋.(𝑋 ⋈ 𝑌,𝐺) ≡ 𝜈𝑋.𝐺⟨𝑌/𝑋⟩
where 𝑋 ∈ fn(𝐺) ∨ 𝑌 ∈ fn(𝐺)

𝜈𝑊𝑍.(𝑊 ⋈ 𝑋,Cons(𝑍, 𝑌,𝑊), 1(𝑍))

≡ 𝜈𝑊𝑍.(Cons(𝑍, 𝑌, 𝑋), 1(𝑍))

𝑋 ⋈ C 𝑌𝑊

1

𝑋 C 𝑌

1

14/32

Abbreviation schemes in HyperLMNtal

1. 𝜈𝑋1. … 𝜈𝑋𝑛.𝐺 can be abbreviated as 𝜈𝑋1…𝑋𝑛.𝐺
2. A nullary atom 𝑝() can be simply written as 𝑝
3. Term Notation:

𝜈𝑋𝑛.(𝑝(… ,𝑋𝑛, …), 𝑞(𝑋1, … , 𝑋𝑛)) can be written as 𝑝(… , 𝑞(𝑋1, … , 𝑋𝑛−1), …)

For example,
𝜈𝑍.(
𝜈𝑍1.(Cons(𝑍1, 𝑍, 𝑋), 1(𝑍1)),
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)
can be abbreviated as
Cons(1,Cons(2, 𝑌), 𝑋)

𝑋 C C 𝑌
𝑍

1

𝑍1

2

𝑍2

15/32

Syntax of 𝜆𝐺𝑇

Value 𝐺 ∶∶= 0 | 𝑣 (�⃗�) | (𝐺, 𝐺) | 𝜈𝑋.𝐺

Expression 𝑒 ∶∶= (case 𝑒 of 𝑇 → 𝑒 | otherwise → 𝑒) | (𝑒 𝑒) | 𝑇

Graph Template 𝑇 ∶∶= 0 | 𝑣 (�⃗�) | (𝑇, 𝑇) | 𝜈𝑋.𝑇 | 𝑥[�⃗�]

Atom Name 𝑣 ∶∶= ⋈ | 𝐶 | 𝜆 𝑥[�⃗�].𝑒 wildcard

𝜆𝐺𝑇 is designed to be a small language focusing on handling graphs.
Value in 𝜆𝐺𝑇 is a graph in HyperLMNtal

We allow ⋈, Constructor, and 𝜆-abstraction for the atoms’ names

16/32

Syntax of 𝜆𝐺𝑇: Graph Template

Graph Template
𝑇 ∶∶= 0 | 𝑣 (�⃗�) | (𝑇, 𝑇) | 𝜈𝑋.𝑇

| 𝑥[�⃗�] Graph context wildcard in pattern matching; variable

Since the value in 𝜆𝐺𝑇 is Graph, we use Template of graphs
to represent data with variables.

For example,
𝜈𝑍.(
𝑥[𝑍,𝑋],
𝜈𝑍2.(Cons(𝑍2, 𝑌, 𝑍), 2(𝑍2))

)

𝑋 𝑥 C 𝑌

2

17/32

Graph Substitution

We define capture-avoiding substitution 𝜃 of a graph context 𝑥[�⃗�] with a
template 𝑇 in 𝑒, written 𝑒[𝑇/𝑥[�⃗�]].

The definition is standard except for the graph contexts.

(𝑥[�⃗�])[𝑇/𝑦[�⃗�]] =
if 𝑥/|�⃗�| = 𝑦/|�⃗�| then 𝑇⟨�⃗�/�⃗�⟩ reconnect free links
else 𝑥[�⃗�]

For example,

𝑋 𝑥 C 𝑌

2

𝑍 C 𝑊

1
/ 𝑍 𝑥 𝑊 =

𝑋 C C 𝑌

1 2

18/32

Graph Matching is defined with Graph Substitution

𝐺 ≡ 𝑇𝜃 Rd-Case1
(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒2𝜃

For example,

𝑋 C C 𝑌

1 2

𝐺

≡
𝑋 𝑥 C 𝑌

2

𝑇

𝑍 C 𝑊

1
/ 𝑍 𝑥 𝑊

𝜃

Here, 𝐺 can be matched to 𝑇 with 𝜃

19/32

Reduction of 𝜆𝐺𝑇

𝐺 ≡ 𝑇𝜃 Rd-Case1
(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒2𝜃

match succeeded

¬∃𝜃.𝐺 ≡ 𝑇𝜃 Rd-Case2(case 𝐺 of 𝑇 → 𝑒2 | otherwise → 𝑒3) ⟶val 𝑒3
match failed

fn(𝐺) = {�⃗�} Rd-𝛽
((𝜆 𝑥[�⃗�].𝑒)(�⃗�) 𝐺) ⟶val 𝑒[𝐺/𝑥[�⃗�]]

beta reduction

𝑒 ⟶val 𝑒′ Rd-Ctx𝐸[𝑒] ⟶val 𝐸[𝑒′]
where 𝐸 ∶∶= [] | (case 𝐸 of 𝑇 → 𝑒 | otherwise → 𝑒) | (𝐸 𝑒) | (𝐺 𝐸) | 𝑇

20/32

Example of the 𝛽-reduction

We can describe a program to append two singleton difference lists as
follows.

𝜆 𝑦[𝑌,𝑋].
Cons(1, 𝑦[𝑌], 𝑋)

(𝑍) Cons(2, 𝑌, 𝑋)

⟶val Cons(1, 𝑦[𝑌], 𝑋)
Cons(2, 𝑌, 𝑋)⁄𝑦[𝑌,𝑋]

= Cons(1,Cons(2, 𝑌), 𝑋)

𝜆 𝑦

C

1

𝑦

C

2

⟶val C C

1 2

21/32

Pop the last element of a difference list

let pop[𝑍] = (𝜆 𝑥[𝑌,𝑋].
case 𝑥[𝑌,𝑋] of
𝜈𝑊𝑍.(𝑦[𝑊,𝑋],Cons(𝑍, 𝑌,𝑊), 𝑧[𝑍]) → 𝑦[𝑌,𝑋]
| otherwise → 𝑥[𝑌,𝑋]

)(𝑍)
in pop[𝑍] 𝐺

𝑦 C

𝑧

We need to find graph substitutions such that

𝐺
≡ 𝜈𝑊𝑍.(𝑦[𝑊,𝑋],Cons(𝑍, 𝑌,𝑊), 𝑧[𝑍])

 ? /𝑦[𝑊,𝑋] ? /𝑧[𝑍]
22/32

Pattern matching graphs

If 𝐺 is Cons(1,Cons(2, 𝑌), 𝑋), then it can be matched as follows.

𝜈𝑊𝑍.(Cons(1,𝑊,𝑋) , Cons(𝑍, 𝑌,𝑊) , 2(𝑍))

≡ 𝜈𝑊𝑍.(𝑦[𝑊,𝑋] , Cons(𝑍, 𝑌,𝑊) , 𝑧[𝑍])

Cons(1,𝑊,𝑋)/𝑦[𝑊,𝑋]2(𝑍)/𝑧[𝑍]

…seems not that difficult?

23/32

The corner case in pattern matching graphs

If 𝐺 is Cons(1, 𝑌, 𝑋),

𝜈𝑊𝑍.(Cons(𝑍, 𝑌, 𝑋) , 1(𝑍))

≡ 𝜈𝑊𝑍.(𝑦[𝑊,𝑋] , Cons(𝑍, 𝑌,𝑊) , 𝑧[𝑍])

 ? /𝑦[𝑊,𝑋]1(𝑍)/𝑧[𝑍]

…fails matching? NO

24/32

Pattern matching with a supplying fusion

This time, we need to firstly supply a fusion atom.

Structural Congruence

(E6) 𝜈𝑋.(𝑋 ⋈ 𝑌,𝐺) ≡ 𝜈𝑋.𝐺⟨𝑌/𝑋⟩
where 𝑋 ∈ fn(𝐺) ∨ 𝑌 ∈ fn(𝐺)

The matching proceeds as follows.

𝜈𝑊𝑍.(Cons(𝑍, 𝑌, 𝑋), 1(𝑍))
≡ 𝜈𝑊𝑍.(𝑊 ⋈ 𝑋,Cons(𝑍, 𝑌, 𝑋), 1(𝑍))
= 𝜈𝑊𝑍.(𝑦[𝑊,𝑋],Cons(𝑍, 𝑌,𝑊), 𝑧[𝑍])

𝑊 ⋈ 𝑋/𝑦[𝑊,𝑋]1(𝑍)/𝑧[𝑍]
25/32

Implementation overview

The goal of this study is to
implement as simple as possible,
without regard to efficiency.
Our implementation consists of
only 500 lines of OCaml code.

File LOC

eval/match_ctxs.ml 79
parser/parser.mly 70
parser/lexer.mll 51
eval/syntax.ml 47
eval/eval.ml 43
eval/pushout.ml 42
eval/match_atoms.ml 36
eval/preprocess.ml 36
parser/syntax.ml 16
eval/match.ml 11
parser/parse.ml 4
bin/main.ml 3

SUM 438
26/32

Preprocessing
In the formal syntax Data structure in the interpreter

𝜈𝑍.(Cons(𝑍, 𝑌, 𝑋), 1(𝑍)) Cons(𝐿0, 𝐹𝑌, 𝐹𝑋), 1(𝐿0)
Host Graph

𝜈𝑊𝑍.(𝑦[𝑊,𝑋],Cons(𝑍, 𝑌,𝑊), 𝑧[𝑍])
Cons(𝐿1000, 𝐹𝑌, 𝐿1001),

𝑦[𝐿1001, 𝐹𝑋], 𝑧[𝐿1000]
Graph Template

where

⎧⎪⎪⎨
⎪⎪⎩
𝐿𝑖 Local Link

𝐹𝑋 Free Link
27/32

Matching atoms

Host Graph Cons(𝐿0 , 𝐹𝑌 , 𝐹𝑋), 1(𝐿0)

Graph Template
Cons(𝐿1000 , 𝐹𝑌 , 𝐹1001),

𝑦[𝐿1001, 𝐹𝑋], 𝑧[𝐿1000]

1. Match atoms with a mapping from the local links in the graph template
to the links in the host graph.

{𝐿1000 ↦ 𝐿0, 𝐿1001 ↦ 𝐹𝑋}

2. Remove the matched atoms. Backtrack if fails.

28/32

Supplying a fusion

The rest host graph 1(𝐿0) 1(𝐿1000), 𝐿1001 ⋈ 𝐹𝑋

{𝐿1000 ↦ 𝐿0, 𝐿1001 ↦ 𝐹𝑋}

1. Substitute link names in the host graph with the inverse of the obtained
link mapping.

2. Supply the fusion atom 𝐿𝑖 ⋈ 𝐹𝑋 to the host graph if there exists a
mapping 𝐿𝑖 ↦ 𝐹𝑋

29/32

Matching graph contexts

Host Graph 1(𝐿1000) , 𝐿1001 ⋈ 𝐹𝑋

Graph Template 𝑦[𝐿1001, 𝐹𝑋] , 𝑧[𝐿1000]

Finally, we obtain the graph substitution

𝐿1001 ⋈ 𝐹𝑋 ⁄ 𝑦[𝐿1001,𝐹𝑋], 1(𝐿1000) ⁄ 𝑧[𝐿1000]

30/32

What’s next?

We did not focus on efficiency.
To improve performance, static analysis is necessary for
1. efficient matching and
2. ensuring safety over destructive rewriting and enabling it.

We are planning to extend the type system.

31/32

Summary

We propose a new purely functional language 𝜆𝐺𝑇 ,
which handles graphs as immutable, first-class data
with pattern matching based on Graph Transformation.

We build a reference implementation of the language
in only 500 lines of OCaml code.

Focused on simplicity without regard on efficiency.

We are developping static analysis and
planning to build an efficient compiler.

32/32

Appendix

Related work

Comparison with Separation Logic

33/32

Related work

FUnCAL4 is a functional language with Graph Transformation. The equality
of graphs is defined with bisimulation. FUnCAL comes with its
type system but does not support user-defined data types.

Initial algebra semantics for cyclic sharing tree structures5 discusses how to
express graphs by lambda expressions.

4Kazutaka Matsuda and Kazuyuki Asada. “A Functional Reformulation of UnCAL Graph-Transformations: Or,
Graph Transformation as Graph Reduction”. In: Proc. POPL’17. 2017.

5Makoto Hamana. “Initial Algebra Semantics for Cyclic Sharing Tree Structures”. In: Log. Methods Comput. Sci.
6.3 (2010). URL: http://arxiv.org/abs/1007.4266.

34/32

http://arxiv.org/abs/1007.4266

Related work
There are several languages based on graph transformations. However, as
far as we know, few published implementations have focused on simplicity.

HyperLMNtal, which is the language we have incorporated, has the compiler6

and the runtime SLIM7. The compiler is written in Java in around 12,000 lines
and the runtime is written in C++ in around 47,000 lines.

GP 2 has a reference interpreter8. This is written in around 1,000 lines of
Haskell sources.

6LMNtal. https://github.com/lmntal/lmntal-compiler.
7SLIM. https://github.com/lmntal/slim; Masato Gocho, Taisuke Hori, and Kazunori Ueda. “Evolution of the

LMNtal Runtime to a Parallel Model Checker”. In: Computer Software (2011).
8Christopher Bak et al. “A Reference Interpreter for the Graph Programming Language GP 2”. In: Proceedings

Graphs as Models. 2015.

35/32

Appendix

Related work

Comparison with Separation Logic

36/32

Comparison between Imperative Languages with 𝜆𝐺𝑇

Imperative Languages
Heaps and pointers
Not Immutable

! Verification techniques
Hoare triple, Separation Logic,
Shape Analysis, …

Proposing language 𝜆𝐺𝑇

Graphs and pattern matching
on them
Immutable
First-class functions
Type system
simpler and automatic

37/32

Comparison between HyperLMNtal and Separation Logic

Separation Logic 𝜆𝐺𝑇/HyperLMNtal
Heap segment/Atom 𝑥 ↦ �⃗� 𝐶(�⃗�)

Variable 𝑥 −
Address/Hyperlink 𝑠(𝑥) 𝑋

Separating Conjunction/Molecule ∗ ,
emp/null emp 0

part of pure logic/fusion 𝑥 = 𝑦 𝑋 ⋈ 𝑌
inductive predicate/non-terminal symbol 𝑃x⃗ 𝛼(�⃗�)
existence quantifier/hyperlink creation ∃ 𝜈

38/32

	Informal Introduction to Lambda GT
	Syntax and Semantics of Lambda GT
	Program Examples in Detail
	Implementation
	Summary
	Appendix
	Related work
	Comparison with Separation Logic

