
Automated Programming Framework Using
Constraint-Based Static Analysis

by

Yasuhiro Ajiro

A Thesis Submitted

in Partial Fulfillment of the
Requirements for the Degree

of

Doctor of Information and Computer Science

Graduate School of Science and Engineering
Waseda University

March 2002

Keywords: Concurrent Logic Programming, Automated Programming,
Debugging, Static Analysis, Types, Modes, Constraint Satisfaction, GHC

ii

Abstract

We propose an automated programming framework using a constraint-
based, static type system. Our framework infers a correct form of a
program from an almost correct but incomplete version of it. This is
done with the guideline of the consistency of several program properties
imposed by the type system. Furthermore, thanks to the simplicity of
the type system, the framework is compatible with other automation
techniques such as programming by examples, which can also be used for
the specification of types.
There are at least two possibilities of applying this framework. One is au-
tomated error correction in the absence of explicit declarations of types,
and this is the main focus of the thesis. There is an intimate relationship
between automated debugging and automated programming in the sense
that erroneous programs are the most straightforward specification of
programs for experienced programmers to provide. The other is the en-
hancement of automated debugging (i.e. automated programming) with
a few instances of input and output constraints of programs, which are
admittedly the most natural and simplest specification of the programs
in addition to the erroneous programs.
As a practical application of our framework, we have implemented Kima,
an automated error correction system for concurrent logic programs.
Kima corrects near-misses such as wrong variable occurrences in the
absence of explicit declarations of program properties. Strong mod-
ing/typing and constraint-based analysis are turning out to play fun-
damental roles in debugging concurrent logic programs as well as in es-
tablishing the consistency of communication protocols and data types.
Mode/type analysis of Moded Flat GHC is a constraint satisfaction prob-
lem of many simple mode/type constraints, and can be solved efficiently.
We proposed a simple and efficient technique which, given a non-well-
moded/typed program, diagnoses the “reasons” of inconsistency by find-
ing minimal inconsistent subsets of mode/type constraints. Since each
constraint keeps track of the symbol occurrence in the program, a mini-
mal subset also tells possible sources of program errors.
Kima realizes automated error correction by replacing symbol occur-
rences around the possible sources and recalculating modes and types of
the rewritten programs systematically. As long as bugs are near-misses,
Kima proposes a rather small number of alternatives that include an in-
tended program. Search space is kept small because the minimal subset
confines possible sources of errors in advance. This thesis presents the ba-
sic algorithm and various optimization techniques implemented in Kima,
and then discusses both its effectiveness and progress to automated pro-
gramming based on qualitative and quantitative experiments.

iii

iv

Acknowledgments

This thesis could not have been written without the intensive support of
my supervisor, Kazunori Ueda. My technical manner of research owes to
him. If people find well manners in my writing or research talk, Kazunori
Ueda has a key role in its achievement. Also, the principal basis of this
work, a concurrent logic language with a static mode system (Chapter 2)
is attributed to him. The error locating technique (Chapter 3), which is
another (important) basis of the work, is attributed to Kenta Cho.
I would like to thank Mizuhito Ogawa, Khoo Siau Cheng, and Zhenjiang
Hu for their information about related work. I would also like to thank
Norio Kato for his comments on a fault in an algorithm for comput-
ing minimal inconsistent subsets. I am also thankful to thesis commit-
tee members, Setsuo Ohsuga, Yoshihiko Futamura, Katsuhiko Kakehi,
Yoshiaki Fukazawa, et al. for their time and patience. Also, many
(anonymous) referees contributed to the improvement of this thesis via
conferences and paper submissions.
The author is indebted to student administrators for their continual
maintenance of the computing environment of our laboratory. Much
of the administrative work is carried out by volunteer service, which is
really invaluable.

v

vi

Contents

1 Introduction 1
1.1 Concurrent Logic Programming 2
1.2 Debugging by Constraint-Based Mode and Type System . . 3
1.3 Objectives . 4
1.4 Contributions . 5
1.5 Overview of the Thesis . 6

2 Moded Flat GHC and Strong Moding and Typing 9
2.1 Moded Flat GHC . 9

2.1.1 Syntax . 9
2.1.2 Operational Semantics 11

2.2 Mode System . 13
2.2.1 Rationale of Moding Rules 14
2.2.2 Mode Polymorphism 16
2.2.3 An Example . 17
2.2.4 Cost . 19

2.3 Type System . 20
2.3.1 An Example . 20

3 Identifying Program Errors 23
3.1 Kinds of Simple Errors . 23
3.2 Locating Bugs by Computing a Minimal Inconsistent Subset 25

3.2.1 Basic Algorithm . 25
3.2.2 Improved Algorithm 25
3.2.3 Cost . 26
3.2.4 An Example . 27

3.3 Finding Multiple Independent Subsets 28
3.4 Pinpointing Suspicious Constraints 29

4 Automated Debugging 31
4.1 Target of Debugging . 31
4.2 Basic Algorithm . 32

4.2.1 Cost . 34

vii

4.3 Grouping Errors . 35
4.4 Constraints Other Than Modes and Types 36

4.4.1 Prioritizing Alternatives 36
4.4.2 Reinforcing Detection Power 39

4.5 Optimizing Search of Alternatives 40
4.5.1 Optimization of Test 40
4.5.2 Optimization of Generation 42
4.5.3 Optimization Using the Locality of Mode and Type

Constraints . 47

5 Experiments and Examples 49
5.1 Experiments . 49

5.1.1 Single Error Detection and Correction 49
5.1.2 Error Detection Rate 51
5.1.3 The Number of Plausible Programs 51
5.1.4 Search Space Reduced by the Local Analysis of Suspected

Neighborhood . 54
5.2 Examples . 57

5.2.1 Append Program With an Error 58
5.2.2 Fibonacci Sequence Program With an Error 59
5.2.3 Quicksort Program With Two Errors 61

6 Conclusions 63
6.1 Our Framework and the Kima System 63

6.1.1 Experiences of Implementing Kima in KL1 64
6.2 Related Work . 65

6.2.1 Algorithmic and Declarative Debugging 65
6.2.2 Debugging Type Errors 65
6.2.3 Automated Programming 67
6.2.4 Miscellaneous . 68

6.3 Future Work . 68
6.3.1 Automated Variable Placement 68
6.3.2 Error Correction of Function Occurrences 71
6.3.3 Applicability to Other Languages 73

References 75

A Usage of Kima 79
A.1 Examples . 80
A.2 Details of Options . 84

viii

List of Figures

2.1 Clark’s equality theory E , in clausal form 12
2.2 Mode constraints imposed by a program clause h :- G | B

or a goal clause :- B. 15
2.3 The mode graph of an append program. The mode informa-

tion of the toplevel predicate and unification goals is omitted. 19
2.4 Type constraints imposed by a program clause h :- G | B

or a goal clause :- B. 20
2.5 The type graph of an append program. The type information

of the toplevel predicate and unification goals is omitted. . . 22

3.1 Minimal inconsistent subset locates the possible source of an
error . 24

3.2 Basic Algorithm for computing a minimal inconsistent subset 25
3.3 Improved Algorithm for computing a minimal inconsistent

subset . 26
3.4 Algorithm for computing multiple independent minimal in-

consistent subsets . 28
3.5 Algorithm for pinpointing suspicious constraints 30

4.1 Basic algorithm for automated error correction 33
4.2 Grouping minimal inconsistent subsets 36
4.3 Algorithm for automated error correction with grouping . . . 37
4.4 Optimized algorithm 1 for automated error correction 41
4.5 Optimized algorithm 2 for automated error correction 43
4.6 Algorithm for generating high-priority clauses 45

6.1 Algorithm for automated variable placement 72

ix

x

List of Tables

2.1 Classification of function symbols in Kima. The Atom in F6

does not include the empty list “[]”. 21

4.1 Penalty points imposed on unlikely variable occurrences . . . 39

5.1 Single-error detection and correction 50
5.2 Error detection rate for the programs with N mutations . . 52
5.3 The number of plausible programs in the programs with N

mutations . 52
5.4 Effect of local analysis for the programs with N mutations . 55
5.5 Average response time of Kima with local analysis 55

xi

xii

Chapter 1

Introduction

A theoretical framework is indispensable for complicated software to be

developed easily and correctly. The chaotic augmentation of software size

is due to the improvement of CPU performance and to the distribution of

software over parallel and network computers, while the improvement made

most CPU power of even personal computers lie idle. The surplus computing

power should contribute to the safety and productivity of software as well as

produced a predictive interface studied in the field of user interface. Kima

system we have implemented as an application of our framework is the first

step toward a predictive interface (that is to complement the details) of

programs at a program text level.

We propose an automated programming framework that predicts the

correct forms of programs by using “aggressively” a static program anal-

ysis technique with the high computing power. In contrast, so far type

system and abstract interpretation on behalf of static analysis have been

used, as it were, “defensively” for detecting errors and for the reasoning

of program properties assuming that the programs are correct. Kima is

an automated error correction system for concurrent logic programs based

on static, constraint-based type and mode systems in the absence of pro-

grammers’ declarations. So, we mean type and mode correctness by correct

here.

Automated programming is a technique that infers the precise form of

a program from ambiguous specifications such as instances of a pair of in-

put and output of the program, a sequence of trace information, program

behaviors written in a natural language, a program schema that is the skel-

ton of a program, etc. Automated programming was actively studied in

the 1970’s to the early 1980’s, but now is not because of the restriction of

2 CHAPTER 1.

its applicability. The target user of the classical automated programming

seemed to be novice programmers, whereas the most accesssible representa-

tion for experienced programmers is an executable program written in pro-

gramming languages. Automated debugging is hence a kind of automated

programming in the sense that erroneous programs are the straightforward

specifications of programs for experienced programmers to give.

Types can be thought of as values on the simplest abstract domain built

in a laguage specification, and type analysis is the simplest abstract interpre-

tation. In thise sense, type system is eligible for the foundation of analytic

automated programming. In addition, thanks to the simplicity and the close

relationship with a language specification, types are compatible with other

techniques of automated programming such as programming by examples,

which can immediately be used for type specifications. Instances of a pair

of input and output constraints allow programs to be more ambiguous as

well as enhance the quality of automated debugging by reducing the cost

of searching intended programs. For example, few instances and program

schema in which variable occurrences are missing might be sufficient for

programming.

1.1 Concurrent Logic Programming

The mechanism of error correction in Kima is based on the mode and type

systems of Moded Flat GHC [35, 36]. Moded Flat GHC is a concurrent

logic (and consequently, a concurrent constraint) language with a constraint-

based mode system. Concurrent logic languages [32] provide a simple and

powerful model of concurrency as well as a full-fledged programming lan-

guage with

• first-class message channels,

• evolving process structures and channel mobility,

• data structures such as lists and arrays, and

• messages with reply boxes.

All these features are due to the power of logical, single-assignment vari-

ables. Concurrent processes communicate with each other using shared

logical variables. Because a logical variable can be written (or instantiated)

3

only once, repeated message passing is realized by instantiating a shared

variable to a stream (implemented as a list) of messages incrementally from

the first element downwards. When a message has as its argument a reply

box, which is another logical variable, that variable is instantiated by the

receiver of the stream. In this case, the whole data structure of a stream is

determined cooperatively by both the sender and the receiver of the stream.

Languages equipped with strong typing enable the detection of type

errors by checking or reconstructing types. The best-known framework for

type reconstruction is the Hindley-Milner type system [15], which allows us

to solve a set of type constraints obtained from program text efficiently as

a unification problem.

Similarly, the mode system1 of Moded Flat GHC allows us to solve a

set of mode constraints obtained from program text as a constraint satis-

faction problem. Mode reconstruction statically determines the read/write

capabilities of variable occurrences and establishes the consistency of com-

munication protocols between concurrent processes [36]. In other words,

mode reconstruction guarantees the cooperative use of shared variables be-

tween concurrent processes. By cooperative we mean exactly one process

can determine each part of a data structure (such as a stream of messages)

communicated between processes.

The constraint satisfaction problem can be solved mostly (though not

entirely) as a unification problem over feature graphs (feature structures

with cycles) and can be solved in almost linear time with respect to the size

of the program [2]. As we will see later, types in Moded Flat GHC also can

be reconstructed using a similar (and simpler) technique.

1.2 Debugging by Constraint-Based Mode and

Type System

Compared with abstract interpretation usually employed for the precise

analysis of program properties, constraint-based formulation of the analysis

of basic program properties has a lot of advantages. Firstly, it allows sim-

ple and general formulations of various interesting applications including

error diagnosis. Secondly, thanks to its incremental nature, it is naturally

1Modes can be thought of as “types in a broad sense”, but in this paper we reserve
the term “types” to mean sets of possible values.

4 CHAPTER 1.

amenable to separate analysis of large programs.

When a concurrent logic program contains bugs, it is very likely that

mode constraints obtained from the erroneous symbol occurrences are in-

compatible with the other constraints. We have proposed an efficient al-

gorithm that finds a minimal inconsistent subset of mode constraints from

an inconsistent (multi)set of constraints [8]. A minimal inconsistent subset

can be thought of as a minimal “explanation” of the reason of inconsistency.

Furthermore, since each constraint keeps track of the symbol occurrence(s)

in the program that imposed the constraint, a minimal subset tells possible

sources (i.e., symbol occurrences) of mode errors.

The inconsistency comes from the fact that the multiset of mode con-

straints imposed by a program usually has redundancy for two reasons:

1. A non-trivial program contains conditional branches or nondetermin-

istic choices. In (concurrent) logic languages, they are expressed as a

set of rewrite rules (i.e., program clauses) that may impose the same

mode constraints on the same predicate.

2. A non-trivial program contains predicates that are called from more

than one place, some of which may be recursive calls. The same mode

constraint may be imposed by different calls.

Our idea of error correction can be compared with error-correcting codes

in coding theory. Both attempt to correct minor errors using redundant

information. Unlike error-correcting codes that contain explicit redundan-

cies, programs are usually not written in a redundant manner. However,

programs interpreted in an abstract domain may well have implicit redun-

dancies. For instance, the then part and the else part of a branch will

usually compute a value of the same type, which should also be the same

as the type expected by the reader of the value. This is exactly why the

multiset of type or mode constraints usually has redundancies.

1.3 Objectives

The main objective of this work is to develop an automated error correc-

tion system under strong moding and typing by extending the technique

of locating errors. We suppose the situation where neither declaration nor

specification of programs is available in order to investigate the potential of

5

strong moding and typing for automated programming. Another objective

is, as the extension of the automated error correction, the consideration

of a fundamental framework for automated programming. We plan to use

a few instances of a pair of input and output constraints of programs as

the simplest program specification in addition to mode and type analyses,

which are the simplest technique of program analysis.

Although the framework is quite general, whether it is practical or not

may depend on the choice of a language. We targets the error correction

of KL1 [34] programs assuming strong moding and typing of Moded Flat

GHC. KL1 is designed based on Flat GHC that is not equipped with strong

moding/typing, but the debugging of KL1 programs turns out to benefit

from moding and typing. Furthermore, its compiler KLIC provides a nice

platform for our experiments [6].

1.4 Contributions

We have implemented the Kima system, which automatically corrects wrong

occurrences of logical variables in KL1 programs under strong moding and

typing in the absence of the declarations of programs. The function of the

Kima sounds quite restrictive, but is justified in the sense that most simple

errors are caused by the wrong usage of variable symbols, which are used

heavily in (concurrent) logic programs. Even if errors go out of this range of

error correction, most errors can be located by minimal inconsistent subsets

of mode/type constraints as mode/type errors, which are humanly hard to

locate their sources.

Using the information of possible locations of bugs, automated error

correction is attempted basically by generate-and-test search, namely the

generation of possible rewritings and the computation of their principal

modes and types. Search space is kept small because the locations of bugs

have been limited to small regions of program text. In this framework,

modes are more fundamental than types, but types are concerned with

aspects of program properties that are different from modes, and can be

used together with modes to reduce the search space, and improve the

quality of error correction.

In terms of the semantics of the mode system, we have found there

are syntactical constraints which plausible programs should observe. The

syntactical constraints we have presented as heuristic rules turned out to

6 CHAPTER 1.

be quite effective not only for multiple alternatives proposed by Kima to

be reduced but also for the optimization of searching alternatives to errors.

Other than heuristic rules, Kima uses two optimization techniques based

on grouping minimal inconsistent subsets and the locality of mode/type

constraints. These optimizations enables the correction of two or three

wrong occurrences of variables in non-trivial programs.

There are two kinds of errors, independent errors whose sources are apart

from each other and interdependent errors whose sources impose mode/type

constraints related closely. First, independent errors do not cause serious

problems of either the quality or the efficiency of error correction. Thanks

both to the incremental nature of constraint-based analysis and to the re-

dundancy of mode/type constraints explained above, even large programs

can be analyzed separately, and independent errors can be coped with in-

dependently of the number of errors. It is a significant feature of our frame-

work that the framework works on a fragment of a program such as a set

of predicate definitions in a particular module.

Second, the efficiency of the correction of interdependent errors deeply

depends on the depth (i.e., the number of errors in this case) of the search

performed for the error correction. However, interdependent errors are of

benfit to error detection, because more errors in a neighboring position can

more possibly cause mode/type errors. An experiment showed that the

error detection rates of a single error and two interdependent errors were

90% and 95%, respectively.

1.5 Overview of the Thesis

The rest part of the thesis is organized as follows. Chapter 2 outlines strong

moding and typing in Moded Flat GHC. Mode/type analysis of the Moded

Flat GHC is a constraint satisfaction problem of mode/type constraints

imposed by program text. Chapter 3 shows some algorithms for comput-

ing minimal inconsistent subsets from constraints inconsistent as a whole.

Since each constraint is imposed by symbol occurrences in a program clause,

the minimal subsets locate the possible sources of the inconsistency result-

ing from errors. Chapter 4 presents the technique of correcting near-misses

located by the minimal inconsistent subsets. Alternatives to errors are com-

puted basically by generate-and-test search. We also show the syntactical

constraints prescribing the plausibility of programs, which can be used not

7

only to enhance the quality of alternatives but also to optimize the search.

Additionally, two other optimization techniqes are presented based on the

grouping of minimal inconsistent subsets and the locality of mode and type

constraints, respectively. Chapter 5 shows some experiments with which

we discuss the effectiveness of the above techniques. Out of examples in

the experiments, we pick up three sample programs including errors to il-

lustrate the actual behavior of automated error correction. We conclude

in Chapter 6, where we also refer to related work. The potentiality of our

framework is then considered toward the advanced automation of program-

ming processes as future work.

8 CHAPTER 1.

Chapter 2

Moded Flat GHC and Strong
Moding and Typing

This chapter outlines the mode and type system of Moded Flat GHC. We

refer to the analysis cost and polymorphism after the definition of the mode

and type system. The readers are referred to [29, 30, 36, 31] for details.

2.1 Moded Flat GHC

Moded Flat GHC is a concurrent logic language where a mode system has

been introduced into Flat GHC, a subset of Guarded Horn Clauses (GHC).

GHC has a lot of similarities to Prolog, a logic language, but they are

essentially different languages. GHC is a “reactive” language while Prolog

is a transformational language. In GHC programs, a rewrite rule says that a

process is reduced into (i.e., defined by) sub-processes. Reduction here can

be thought of both as rewriting in a logic programming sense and as dividing

a process in a parallel/concurrent programming sense. In concurrent logic

programming, logical variables play important roles in communication and

synchronization; writing and reading the values of variables are send and

receive of information, respectively; checking the value of variables (in a

clause guard) is wait for the value to be instantiated.

2.1.1 Syntax

GHC

GHC borrows from logic and logic programming many notions, — variables,

function(symbol)s, constants (regarded as 0-ary functions), predicate(sym-

10 CHAPTER 2.

bol)s, terms, atom(ic formula)s, substitutions, renaming, unification.

A Flat GHC program is a set of guarded clauses. A guarded clause is of

the form

h:- G | B,

where h is an atom, and G and B are multisets of atoms. h is called the

head of the clause; atoms in G are called guard goals ; and atoms in B are

called body goals. The part before the commitment operator “|” is called

the guard, and the part after “|” is called the body.

A clause with an empty body is called a unit clause. The set of all

clauses in a program whose heads have the predicate symbol p is called the

procedure for p. A goal with the predicate symbol p is said to call p.

Informally, each guarded clause is a conditional rewrite rule of goals,

where

• h is the template that should match a goal (say g) to be rewritten,

• G is the auxiliary condition for the rewriting (G must be executed

without instantiating g), and

• B is the multiset of (sub)goals to replace g.

That a program is a set means that the duplication (up to renaming

of variables) of guarded clauses is insignificant, not to mention their order-

ing. On the other hand, G and B are multisets because two syntactically

identical goals may behave differently due to indeterminacy.

To run a program, we use a goal clause of the form

:- B,

which specifies the initial multiset of body goals.

A goal is either a unification goal of the form t1= t2 or a non-unification

goal. A unification goal, whose behavior is predefined in the language, may

generate a substitution and constrain the possible values of variables. A

non-unification goal is rewritten to other goals using guarded clauses, pos-

sibly after observing a substitution. The guard of a guarded clause specifies

what substitution should be observed before rewriting, and provides the

language with a synchronization mechanism.

11

Flat GHC

The above definition of GHC allows any atom to occur as a guard goal.

However, this proved to be unnecessarily expressive as a concurrent lan-

guage. We first define a class of predicates, called test predicates, that are

appropriate for the purpose. A predicate p is called a test predicate if the

procedure for p is defined by a set of unit clauses. Calls to a test predicate

have a property that they do not generate observable substitutions; the only

thing that matters is whether they succeed or not.

A Flat GHC program is a set of flat guarded clauses, clauses in which

guard goals are restricted to unification goals and calls to test predicates.

Note that an empty set of atoms is described as true.

2.1.2 Operational Semantics

Now we formalize the operational semantics of Flat GHC. We follow the

structural approach of Plotkin [20], which is now a standard way of describ-

ing operational semantics formally. The structural operational semantics of

full GHC is found in [24].

Let B be a multiset of goals, and C a multiset of equations that repre-

sents a (binding) environment of B. Let VF denote the set of all variables

occurring in a syntactic entity F . The current configuration is a triple, de-

noted 〈B, C〉: V , such that VB ∪VC ⊆ V . It records the goals to be reduced

and the current environment, as well as the variables already in use for the

current computation. A computation under a program P starts with the

initial configuration 〈B0, ∅〉:VB0 , where B0 is the body of the given goal

clause.

What we are going to define is a transition relation c1 −→ c2, which

reads “the configuration c1 can be reduced to the configuration c2.” When

we need to explicitly mention the program P being used, we use the form

P ` c1 −→ c2, which reads “under the program P , c1 can be reduced to

c2.” By
∗−→ we denote the reflexive, transitive closure of −→. The natural

deduction form
P1 ` t1
P2 ` t2

(if Cond)

says that if the transition t1 can happen under P1 and the condition Cond

holds, the transition t2 can happen under P2. The numerator and the

condition are omitted if they are empty.

12 CHAPTER 2.

¨ ¥

§ ¦

• ∀ .(¬(f(X1, . . . , Xm) = g(Y1, . . . , Yn))), for all pairs f , g of distinct
functions (including constants).

• ∀ .(¬(t=X)), for each term t other than and containing X.

• ∀ .(X=X).

• ∀ .(f(X1, . . . , Xm)=f(Y1, . . . , Ym) ⇒ ∧m
i=1(Xi=Yi)), for each function

f .

• ∀ .(
∧m

i=1(Xi=Yi) ⇒ f(X1, . . . , Xm)=f(Y1, . . . , Ym)), for each function
f .

• ∀ .(X=Y⇒ Y=X)

• ∀ .(X=Y ∧ Y=Z⇒ X=Z)

Figure 2.1: Clark’s equality theory E , in clausal form

We have three rules. In the following rules, F |= G means that G is a

logical consequence of F . ∀VF . F and ∃VF . F are abbreviated to ∀ . F and

∃ . F , respectively. Also, following [24], we denote ∃(VF \V) . F by δV . F ,

where V is a finite set of variables. We assume that there is an injection,

denoted ‘ · ’, from the set of predicates to the set of functions, which is

naturally extended to an injection from the set of atoms to the set of terms.

E denotes Clark’s equality theory (Figure 2.1).

P ` 〈B1, C1〉: V −→ 〈B′
1, C

′
1〉: V ′

P ` 〈B1 ∪B2, C1〉: V −→ 〈B′
1 ∪B2, C ′

1〉: V ′ (i)

P ` 〈{b=hi} ∪Gi, C〉: (V ∪ V(hi,Gi))
∗−→ 〈∅, C ∪ Cg〉: V ′

{hi:- Gi | Bi} ∪ P ` 〈{b}, C〉: V −→ 〈Bi, C ∪ Cg〉: (V ′ ∪ VBi
)

(
if E |= ∀ .(C ⇒ δVb . Cg)
and V(hi,Gi,Bi) ∩ V = ∅

)
(ii)

P ` 〈{t1= t2}, C〉: V −→ 〈∅, C ∪ {t1= t2}〉: V (iii)

Rule (i) expresses concurrent reduction of a multiset of goals. Rule (ii)

says that a goal b can be reduced using a guarded clause “hi :- Gi | Bi” if

the head unification b=hi and the guard goals Gi can be reduced out without

affecting the variables in b. This means that the head unification is restricted

13

to matching effectively. The condition V(hi,Gi,Bi)∩V = ∅ guarantees that the

guarded clause has been renamed using fresh variables. Rule (iii) says that

a unification goal simply publishes (or posts) a constraint to the current

environment.

2.2 Mode System

In concurrent logic programming, modes play a fundamental role in estab-

lishing the safety of a program in terms of the consistency of communication

protocols. The mode system of Moded Flat GHC gives a polarity structure

(that determines the information flow of each part of data structures cre-

ated during execution) to the arguments of predicates that determine the

behavior of goals. A mode expresses this polarity structure, which is rep-

resented as a mapping from the set of paths to the two-valued codomain

{in, out}.
Paths here are strings of pairs, of the form 〈symbol, arg〉, of predicate/function

symbols and argument positions, and are used to specify possible positions

in data structures. Formally, the set PTerm of paths for terms and the set

PAtom of paths for atomic formulae are defined using disjoint union as:

PTerm = (
∑

f∈Fun

Nf)
∗ , PAtom = (

∑

p∈Pred

Np)× PTerm ,

where Fun and Pred are the sets of function and predicate symbols, and Nf

and Np are the sets of possible argument positions (numbered from 1) for

the symbols f and p, respectively. The disjoint union operator
∑

means:

∑

f∈Fun

Nf = {〈f, i〉 | f ∈ Fun, i ∈ Nf} .

Formally, a mode is defined as:

PAtom → {in, out} ,

and the purpose of mode analysis is to find the set of all modes under

which every piece of communication is cooperative. Such a mode is called a

well-moding. Intuitively, in means the inlet of information and out means

the outlet of information. A program does not usually define a unique

well-moding but has many of them. So the purpose of mode analysis is to

compute the set of all well-modings in the form of a principal (i.e., most

14 CHAPTER 2.

general) mode. Principal modes can be expressed naturally by mode graphs,

as described later in this section.

Given a mode m, we define a submode m/p, namely m viewed at the

path p, as a function satisfying

∀q ∈ PTerm ((m/p)(q) = m(pq)) .

We also define IN and OUT as submodes returning in and out , respectively,

for any path:

∀q ∈ PTerm (IN (q) = in) ,

∀q ∈ PTerm (OUT (q) = out) .

An overline ‘ ’ inverts the polarity of a mode, a submode, or a mode value

as:

∀p ∈ PAtom (m(p) 6= m(p)) .

A Flat GHC program is a set of clauses of the form h:- G | B, where

head h is an atomic formula and guard G and body B are multisets of atomic

formulae. Intuitively, each clause is a rewriting rule, where h is a template

matched with a goal to be rewritten; G is a multiset of conditions; and B is

a multiset of subgoals that the goal would be rewritten to. The execution of

a program starts with a goal clause of the form:- B, where B is a multiset

of atomic formulae representing goals to be reduced concurrently. Mode

constraints imposed by a clause h:- G | B are summarized in Figure 2.2.

2.2.1 Rationale of Moding Rules

All rules in Figure 2.2 embody the assumption that every piece of com-

munication is cooperative. In concurrent logic programming, variables can

be considered as communication channels between the head and the body

of a clause or between different body goals of a clause. Rule (BV) means

exactly one of the occurrences of a variable works as the outlet of informa-

tion flow and the other occurrences of the variable work as inlets. Variable

occurrences in a clause head with the mode value in/out work conversely

as the outlet/inlet of information when viewed from inside the clause. The

relation R in (BV) satisfies the relations below:

R({s}) ⇔ s = OUT (2.1)

R({s1, s2}) ⇔ s1 = s2 (2.2)

15

¨ ¥

§ ¦

(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m/p = IN , for a variable symbol occurring more than once
in h at p and somewhere else.

(GV) If some variable occurs both in h at p and in G at p′,
∀q ∈ PTerm(m(p′q) = in ⇒ m(pq) = in).

(BU) m/〈=k, 1〉 = m/〈=k, 2〉, for a unification body goal =k.

(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (≥ 1) times in h
and B at p1, . . . , pn, of which the occurrences in h are at
p1, . . . , pk (k ≥ 0). Then

{R({m/p1, . . . ,m/pn}), if k = 0;
R({m/p1,m/pk+1, . . . ,m/pn}), if k > 0;

where the unary predicate R over finite multisets of sub-
modes represents “cooperative communication” between
paths and is defined as

R(S)
def
= ∀q∈PTerm ∃s∈S(s(q) = out ∧∀s′∈S\{s} (s′(q) = in)).

Figure 2.2: Mode constraints imposed by a program clause h:- G | B or a
goal clause :- B.

16 CHAPTER 2.

R({IN } ∪ S) ⇔ R(S) (2.3)

R({OUT} ∪ S) ⇔ ∀s′ ∈ S (s′ = IN) (2.4)

R({s, s} ∪ S) ⇔ s = IN ∧R(S) (2.5)

R({s, s} ∪ S) ⇔ ∀s′ ∈ S (s′ = IN) (2.6)

R({s} ∪ S1) ∧R({s} ∪ S2) ⇒ R(S1 ∪ S2) (2.7)

R(
⋃

1≤i≤n
{si}) ⇒ R(

⋃
1≤i≤n

{si/q}), q ∈ PTerm (2.8)

Since most variables occur at most twice in a clause, the relation R
is reduced to the unary relation (2.1) or the binary relation (2.2). When

some constraints remain non-binary after solving all unary or binary con-

straints, Kima assumes that nonlinear variables (i.e., variables occurring

more than twice in a clause) involved are used for one-way multicasting

rather than bidirectional communication. Thus, if a nonlinear variable oc-

curs at p and m(p) is known to be in or out , Kima imposes a stronger

constraint m/p = IN or m/p = OUT , respectively. This means that a

mode graph computed by Kima is not always ‘principal’, but the strength-

ening of constraints reduces most non-binary constraints to unary ones.

Our observation is that virtually all nonlinear variables have been used for

one-way multicasting and the strengthening causes no problem in practice

[33].

Rule (HV) comes from the semantics of Flat GHC that multiple occur-

rences of a variable in a clause head must receive completely identical terms.

Rule (GV) means the occurrence of a variable in a clause head is regarded

as an inlet if the variable is tested in the guard. Rule (BF) says that a

function symbol in a body goal is a source of information to the callee side,

while Rule (HF) says that a function symbol in a clause head is a receptor

of information from the caller side. Rule (BU) numbers unification body

goals because the mode system allows different body unification goals to

have different modes. This is a special case of mode polymorphism.

2.2.2 Mode Polymorphism

A unification body goal is polymorphic in the sense that its different occur-

rences in program text may have different modes as long as they observe

Rule (BU). Rule (i.e., constraint) (BU) here is considered to represent the

principal mode for unification, and different occurrences may have different

instances of it.

17

Suppose polymorphic predicates should be declared, mode polymor-

phism can be incorporated quite easily. For polymorphic predicates, their

principal mode (i.e., mode graphs) are computed first. To allow different

instantiations of a principal mode, a copy of the mode graph representing

the principal mode is created for each call to a polymorphic predicate, which

is then be merged into the mode graph of the whole program.

This technique has been implemented in Kima as for built-in predicates

including the test predicates of guard goals. All built-in predicates are

distinguished by numbering their occurrences similarly to the case of unifi-

cation goals. Since the principal modes of guard goals have been computed

in advance, the implication in Rule (GV) can readily be reduced to the

unary relation. Although the general polymorphism for user-defined poly-

morphic predicates is yet to be implemented, whether to have polymorphism

is independent of the essence of this work.

In the absence of the declaration of polymorphic predicates, the above

treatment of polymorphism requires that the mode graphs of polymorphic

predicates be obtained before analyzing the rest of the program that uses the

polymorphic predicates. So Moded Flat GHC programs should be stratified

with respect to caller-callee relationship between predicates so that poly-

morphic predicates can be detected in advance [8].

However, from experiences with the early version of Kima, if we deal with

all predicates called from multiple predicates as polymorphic, the power of

error detection by mode analysis proved to be rather corrupted. Since the

number of predicates used polymorphically is quite limited, to require the

declaration of polymorphic predicates might be reasonable also from the

viewpoint of the cost of the stratification.

2.2.3 An Example

Consider a list concatenation (append) program defined as follows:

¨ ¥

§ ¦

R1 : append([], Y,Z):- true | Y= 1Z.

R2 : append([A|X],Y,Z0):- true | Z0= 2[A|Z],append(X,Y,Z).

From Clause R1, we obtain four constraints:

18 CHAPTER 2.

Mode constraint Rule Source symbol
m(〈a, 1〉) = in (HF) “[]”

m/〈=1, 1〉 = m/〈=1, 2〉 (BU) =1

m/〈a, 2〉 = m/〈=1, 1〉 (BV) Y

m/〈a, 3〉 = m/〈=1, 2〉 (BV) Z

From Clause R2, we obtain eight constraints:

Mode constraint Rule Source symbol
m(〈a, 1〉) = in (HF) “.”

m/〈=2, 1〉 = m/〈=2, 2〉 (BU) =2

m(〈=2, 2〉) = in (BF) “.”
m/〈a, 1〉〈., 1〉 = m/〈=2, 2〉〈., 1〉 (BV) A

m/〈a, 1〉〈., 2〉 = m/〈a, 1〉 (BV) X

m/〈a, 2〉 = m/〈a, 2〉 (BV) Y

m/〈a, 3〉 = m/〈=2, 1〉 (BV) Z0

m/〈=2, 2〉〈., 2〉 = m/〈a, 3〉 (BV) Z

Here, “a” stands for append; “.” stands for the list constructor. In total,

twelve constraints are obtained from append, and they are consistent as a

whole. By simplifying the constraints on “ = k”, all the constraints can be

reduced to six constraints below:

m(〈a, 1〉) = in
m/〈a, 1〉〈., 2〉 = m/〈a, 1〉

m(〈a, 2〉) = in
m/〈a, 2〉〈., 2〉 = m/〈a, 2〉

m/〈a, 3〉 = m/〈a, 2〉
m/〈a, 3〉〈., 1〉 = m/〈a, 1〉〈., 1〉

We could regard these constraints themselves as representing the princi-

pal mode of the program, but the principal mode can be represented more

explicitly in terms of a mode graph (Figure 2.3). Mode graphs are a kind

of feature graphs [2] in which

1. a path (in the graph-theoretic sense) represents a member of PAtom ,

2. the node corresponding to a path p represents the value of m(p) (↓ =

in, ↑ = out),

3. each arc is labeled with the pair 〈symbol, arg〉 of a predicate/function

symbol and an argument position, and may have an inversion bubble

(denoted “•” in Figure 2.3) that inverts the interpretation of the mode

values of the paths beyond that arc, and

19

¨ ¥

§ ¦

<a,1> <a,2> <a,3>

< . ,1>

< . ,2>
< . ,1>

< . ,2>

Figure 2.3: The mode graph of an append program. The mode information
of the toplevel predicate and unification goals is omitted.

4. a binary constraint of the form m/p1 = m/p2 or m/p1 = m/p2 is

represented by letting p1 and p2 lead to the same node.

2.2.4 Cost

The cost of mode analysis is almost proportional to the program size. To

be precise, the time complexity is O(nd·α(n)), where α is the inverse of the

Ackermann function; n is the size of the program; and d is the size of the

subgraph of the entire mode graph rooted at each predicate argument [36].

Mode analysis proceeds by merging many simple mode graphs rep-

resenting individual mode constraints. From the observations of various

GHC/KL1 programs, the mode graphs of very large programs are, in gen-

eral, much wider than that of the append program but are not much deeper.

Although larger programs have larger mode graphs because they use more

predicate symbols, the value of d does not become so large (say several tens

of nodes) even for programs using quite complicated communication pro-

tocols. Thus we expect that the mode graphs of very large programs are,

in general, wide and shallow, which is to say most nodes can be reachable

within several steps from the root.

The cost of merging one mode constraint with a mode graph is almost

proportional to the depth of the mode graph, but does not depend on the

20 CHAPTER 2.

¨ ¥

§ ¦

(HBFτ) τ(p) = Fi, for a function symbol occurring at p in h or B.

(HBVτ) τ/p = τ/p′, for a variable occurring both at p and p′ in h
or B.

(GVτ) ∀q ∈ PTerm(m(p′q) = in ⇒ τ(pq) = τ(p′q)), for a variable
occurring both at p in h and at p′ in G.

(BUτ) τ/〈=k, 1〉 = τ/〈=k, 2〉, for a unification body goal =k.

Figure 2.4: Type constraints imposed by a program clause h:- G | B or a
goal clause :- B.

width of the graph [31]. So the total cost is proportional to the number of

constraints that in turn is proportional to the program size.

2.3 Type System

A type system for concurrent logic programming can be introduced by classi-

fying the set Fun of function symbols into mutually disjoint sets F1, . . . , Fn.

A type here is a function from PAtom to the set {F1, . . . , Fn}. Like principal

modes, principal types can be computed by unification over feature graphs.

Constraints on a well-typing τ are summarized in Figure 2.4. The choice of

a family of sets F1, . . . , Fn is arbitrary from the theoretical point of view.

This is why moding is more fundamental than typing in concurrent logic

programming.

The type system employed by Kima classifies function symbols into six

disjoint sets as shown in Table 2.1 and prohibits any two of them from

sharing the same path. Although this is a heuristic classification based on

the fact that these different types do not simultaneously appear in the same

path in most programs, our experiments prove that it is beneficial both to

the power of error detection and to the quality of error correction, as we

will see in Section 5.1.1.

2.3.1 An Example

Consider again the append program:

21

Table 2.1: Classification of function symbols in Kima. The Atom in F6 does
not include the empty list “[]”.

Set Function symbols Wrapped term form in KLIC
F1 integers integer(Int)
F2 floating-point numbers floating-point(Float)
F3 strings string(Str)
F4 vectors vector({Elem, ...})
F5 lists list([Car|Cdr]) or atom([])
F6 functor structures functor(Functor(Arg, ...)) or atom(Atom)

¨ ¥

§ ¦

R1 : append([], Y,Z):- true | Y= 1Z.

R2 : append([A|X],Y,Z0):- true | Z0= 2[A|Z],append(X,Y,Z).

From Clause R1, we obtain four type constraints:

Type constraint Rule Source symbol
τ(〈a, 1〉) = list type (HBFτ) “[]”
τ/〈=1, 1〉 = τ/〈=1, 2〉 (BUτ) =1

τ/〈a, 2〉 = τ/〈=1, 1〉 (HBVτ) Y

τ/〈a, 3〉 = τ/〈=1, 2〉 (HBVτ) Z

From Clause R2, we obtain eight type constraints:

Type constraint Rule Source symbol
τ(〈a, 1〉) = list type (HBFτ) “.”
τ/〈=2, 1〉 = τ/〈=2, 2〉 (BUτ) =2

τ(〈=2, 2〉) = list type (HBFτ) “.”
τ/〈a, 1〉〈., 1〉 = τ/〈=2, 2〉〈., 1〉 (HBVτ) A

τ/〈a, 1〉〈., 2〉 = τ/〈a, 1〉 (HBVτ) X

τ/〈a, 2〉 = τ/〈a, 2〉 (HBVτ) Y

τ/〈a, 3〉 = τ/〈=2, 1〉 (HBVτ) Z0

τ/〈=2, 2〉〈., 2〉 = τ/〈a, 3〉 (HBVτ) Z

In total, twelve type constraints are obtained from append, and they are

consistent as a whole. By simplifying the constraints on “ = k”, all the

constraints can be reduced to six constraints below:

τ(〈a, 1〉) = list type
τ/〈a, 1〉〈., 2〉 = τ/〈a, 1〉

τ(〈a, 2〉) = list type
τ/〈a, 2〉〈., 2〉 = τ/〈a, 2〉

τ/〈a, 3〉 = τ/〈a, 2〉
τ/〈a, 3〉〈., 1〉 = τ/〈a, 1〉〈., 1〉

22 CHAPTER 2.

¨ ¥

§ ¦

<a,1> <a,2> <a,3>

< . ,1>

< . ,2>
< . ,1>

< . ,2>

list list

Figure 2.5: The type graph of an append program. The type information
of the toplevel predicate and unification goals is omitted.

Similarly, we could regard these constraints themselves as representing

the principal type of the program, and the principal type can be represented

more explicitly in terms of a type graph (Figure 2.5), in which

1. a path represents a member of PAtom ,

2. the node corresponding to a path p represents the value of τ(p),

3. each arc is labeled with the pair 〈symbol, arg〉 of a predicate/function

symbol and an argument position, and

4. a binary constraint of the form τ/p1 = τ/p2 is represented by letting

p1 and p2 lead to the same node.

As shown in Figures 2.3 and 2.5, the mode and type graphs of a pro-

gram are often very similar. However, modes and types express different

properties of a program and detect different kinds of errors (Section 4.3).

Chapter 3

Identifying Program Errors

When a concurrent logic program contains an error, it is very likely (though

not always the case) that its communication protocols become inconsistent

and the set of its mode constraints becomes unsatisfiable. A wrong symbol

occurring at some path is likely to impose a mode constraint inconsistent

with constraints representing the intended specification.

Then, suspicious symbols can be located by computing a minimal in-

consistent subset of mode constraints as in Figure 3.1, because the minimal

inconsistent subset must include at least one wrong constraint, and each

constraint is imposed by certain symbol occurrences in a clause (see the

moding rules in Figure 2.2). Type constraints can be used in the same way

to locate type errors.

This chapter shows several algorithms for computing minimal inconsis-

tent subsets. The readers are referred to [8] for a proof of the minimality of

inconsistent subsets obtained by the algorithms below, as well as extensions

for mode polymorphism, and other details.

3.1 Kinds of Simple Errors

From the experiences and observations, programmers often make four kinds

of simple errors that cannot be trapped as syntactic errors:

1. Typos of variable names — Evident typos are easy to detect even

without the declaration of the modes and types of variables. The mode

system is sensitive not only to variable occurrences at unexpected

positions but also to the loss of variable occurrences. This should be

clear by considering how the constraints imposed by rule (BV) (and

24 CHAPTER 3.

¨ ¥

§ ¦

...

...

...

...

...

...

...

...

...

...

...

Program Text

Mode/Type Constraints

Minimal Inconsistent Subset
Suspect

Figure 3.1: Minimal inconsistent subset locates the possible source of an
error

R) will change when one of two variable occurrences is removed.

2. Confusion of two variables — This is less easy to detect if they are

of the same type. Sometimes the error can be corrected using mode

information (cf. Section 5.2.3); sometimes it results in another mean-

ingful program (cf. Section 5.2.1).

3. Missing body goals — Failure to write necessary body goals (such as

those for closing data streams) may cause the loss of variable occur-

rences, which is likely to be detected by the mode system. However,

supplying the missing goal automatically is of course a more difficult

task.

4. Missing clauses in predicate definitions — This cannot be detected

by using modes and types only, because missing clauses impose no

constraints. To detect them would require the analysis of whether the

clause guards of a predicate cover all possible cases.

Thus, strong moding can be a useful (if not almighty) tool for the automated

debugging of concurrent logic programs to which explicit declarations are

usually not provided.

25

¨ ¥

§ ¦

cn+1 ← false;
S ← {};
while S is consistent do
D ← S; i ← 0;
while D is consistent do
i ← i + 1; D ← D ∪ {ci}

end while;
S ← S ∪ {ci}

end while;
if i = n + 1 then S ← {} fi

Figure 3.2: Basic Algorithm for computing a minimal inconsistent subset

3.2 Locating Bugs by Computing a Minimal

Inconsistent Subset

3.2.1 Basic Algorithm

A minimal inconsistent subset can be computed efficiently using a simple

algorithm shown in Figure 3.21. Let C = {c1, . . . , cn} be a multiset of

constraints. The algorithm finds a single minimal inconsistent subset S from

C when C is inconsistent. When C is consistent, the algorithm terminates

with S = {}. The self-inconsistent constraint false is used as a sentinel.

3.2.2 Improved Algorithm

A variant of the basic algorithm will compute a better minimal inconsistent

subset. Let C = {c1, . . . , cn} be such that i < j implies that the symbol

(occurrence) imposing ci occurs textually before the symbol (occurrence)

imposing cj. Then it is likely that a minimal inconsistent subset can be

formed from a rather small range of the sequence c1, . . . , cn, and such a

local subset is considered a good explanation. If this is the case, scanning S

in alternate directions will be more efficient and compute a better solution.

An improved algorithm based on this consideration is shown in Figure 3.3.

1The algorithm described here is a revised version of the one proposed in [8] and takes
into account the case when C is consistent.

26 CHAPTER 3.

¨ ¥

§ ¦

cn+1 ← false;
S ← {};
i ← 0; j ← 1;
while S is consistent do
D ← S;
while D is consistent do
i ← i + j; D ← D ∪ {ci}

end while;
S ← S ∪ {ci}; j ← −j

end while;
if i = n + 1 then S ← {} fi

Figure 3.3: Improved Algorithm for computing a minimal inconsistent sub-
set

3.2.3 Cost

We consider the complexity of the basic algorithm in Figure 3.2. Although

the algorithm above is quite general, its efficiency hinges upon the fact that

there is a pair of efficient algorithms for computing the union of constraint

sets and checking its consistency.

As explained in Section 2.2.4, it takes O(nd·α(n)) time to merge n mode

constraints. The time complexity of finding a minimal subset with k ele-

ments out of n mode constraints is O(nkd · α(n)), because

• in each iteration, we must merge at most n constraints until inconsis-

tency arises, and

• it takes k iterations until a minimal subset with k elements is obtained.

From our experiments, k is usually a small value independent of the pro-

gram size. The size of minimal subsets turns out to be independent of the

total number of constraints, and most inconsistencies can be explained by

constraints imposed by a small region of program text. This is due to the

redundancy of mode and type constraints. The actual values of k are shown

in Section 5.1.4.

The size of minimal inconsistent subsets is equal to the number of times

of mode analysis that may occur by using the algorithm. So the cost of

27

computing a minimal inconsistent subset is almost proportional to the pro-

gram size. In reality, the cost is usually much less than the product of the

size of a minimal subset and the cost of mode analysis of the whole program

owing to the improved algorithm in Figure 3.3.

3.2.4 An Example

We consider a quicksort program with the confusion of two variables.

¨ ¥

§ ¦

R1: quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).

R2: qsort([], Ys0,Ys):- true | Ys= 1Ys0.

R3: qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L),qsort(S,Ys0,Ys1),

Ys2= 2[X|Ys1],qsort(L,Ys2,Ys3).

(The body unification goal should have been Ys1= 2[X|Ys2])
R4: part(-,[], S, L):- true | S= 3[],L= 4[].

R5: part(A,[X|Xs],S0,L):- A>=X | S0= 5[X|S],part(A,Xs,S,L).

R6: part(A,[X|Xs],S, L0):- A< X | L0= 6[X|L],part(A,Xs,S,L).

Either basic algorithm or improved algorithm returns the following min-

imal inconsistent subset of mode constraints:

Mode constraint Rule Source symbol

(a) m(〈qsort, 3〉) = in (BF) “[]” in R1

(b) m/〈=1, 1〉 = m/〈qsort, 3〉 (BV) Ys in R2

(c) m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R2

(d) m/〈qsort, 2〉 = m/〈=1, 2〉 (BV) Ys0 in R2

(e) m(〈=2, 2〉) = in (BF) “.” in R3

(f) m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R3

(g) m/〈=2, 1〉 = m/〈qsort, 2〉 (BV) Ys2 in R3

This subset tells not only that the paths appearing above may have both

mode values, in mode and out mode, but also why each path has been

constrained to both mode values. For example, two inconsistent constraints

can be derived from the subset:

m(〈qsort, 2〉) = out , by (a), (b), (c) and (d),
m(〈qsort, 2〉) = in, by (e), (f) and (g).

After all, the source symbols that have imposed the constraints in the

subset are suspicious. In this example, since the variables Ys1 and Ys2

28 CHAPTER 3.

¨ ¥

§ ¦

c0 ← false;
while true do

let c1, . . . , cm be the elements of C;
i ← m + 1; j ← −1; S ← {};
while S is consistent do
D ← S;
while D is consistent do
i ← i + j; D ← D ∪ {ci}

end while;
S ← S ∪ {ci}; j ← −j

end while ;
if i = 0 then exit
else

report(S); C ← C\S
fi

end

Figure 3.4: Algorithm for computing multiple independent minimal incon-
sistent subsets

have wrongly been rewritten to each other, the constraint (g) is (one of)

the culprit. Although Ys1 has not been detected, the subset can identify

the clauses R1, R2 and R3 as the possible sources of the error. The other

clauses R4, R5 and R6 have been considered correct. Even if the definition

of quicksort is a part of large programs, the subset can still locate the

error.

3.3 Finding Multiple Independent Subsets

The two algorithms in Figures 3.2 and 3.3 compute a single minimal incon-

sistent subset S of C. To compute multiple, independent (disjoint) minimal

inconsistent subsets, we can simply re-apply the algorithms after removing

the elements of S from C. The algorithm for computing multiple, indepen-

dent subsets at once is shown in Figure 3.4, where c0 is a self-inconsistent

constraint as a sentinel. Note that independent subsets found by this al-

gorithm does not always correspond to different errors, because multiple

subsets may indicate the same error (cf. Section 4.3).

29

3.4 Pinpointing Suspicious Constraints

Because we are dealing with near-misses, we can assume that most of the

mode constraints obtained from a program represent an intended specifica-

tion and that they have redundancies in most cases. In this case, one can

often pinpoint a bug either

1. by computing a maximal consistent subset of size n−1 and taking its

complement, or

2. by computing several overlapping minimal inconsistent subsets and

taking their intersection.

To reduce the amount of computation, we do not compute all minimal

subsets; instead, for each element (say si) of the initial inconsistent subset

S, we compute a minimal inconsistent subset after removing si from C,

which will lead to another minimal subset if it exists. Thus the two policies

above can be combined into a single algorithm.

Let S = {s1, . . . , sm} be a minimal subset obtained by the algorithm

either in Figure 3.2 or in Figure 3.3, and getminimal(C) be a function which

computes a minimal inconsistent subset from a multiset C of constraints.

Then, the algorithm that combines two policies of pinpointing is described

in Figure 3.5, where T is a multiset of constraints what serves as counters

of the numbers of constraints occurring in S and (various versions of) S ′,
and ∪̇ is a multiset union operator. The multiset T records how many

times each constraint occurred in different minimal subsets. Under Policy

2, constraints with more occurrences in T are more likely to be related to

the source of the error.

However, from our observations, these policies are not effective in ei-

ther of two cases. First, if a program has low redundancy, the function

getminimal(C \ {sj}) cannot find another subset. Second, even if a pro-

gram has high redundancy, multiple, independent subsets are often obtained

even for a single error. As a result, another subset may not be obtained from

a complementary set in which the independent subsets have been removed.

Furthermore, an error may generate multiple wrong constraints, which also

cause multiple, independent subsets to be obtained.

So, the policies are not used in the current version of Kima for efficiency,

although the policies are not always ineffective. In reality, when either of

the policies succeeds in refining suspicious constraints (for a single error),

30 CHAPTER 3.

¨ ¥

§ ¦

T ← S;
for j ← 1 to m do
S ′ ← getminimal(C\{sj});
if S ′ = {} then

output {sj} as a solution of Policy 1
else T ← T ∪̇S ′;

end for

Figure 3.5: Algorithm for pinpointing suspicious constraints

multiple, independent subsets are usually found for the error. Then, the

search of alternatives is performed efficiently by Quick-check (Section 4.3)

even without the policies.

Chapter 4

Automated Debugging

Here we explain the technique for searching alternatives to errors based on

the suspected locations indicated by minimal inconsistent subsets. There

are two problems to be solved for automated error correction. First, in gen-

eral, multiple subsets are found independently, but one subset is not always

corresponding to each independent error. For example, multiple subsets of

mode and/or type constraints are often found for a single error. We have

solved this problem by classifying the subsets into groups corresponding

to individual errors. Second, multiple alternatives are usually found only

with mode and type information. To refine the alternatives, we introduce

plausibility criteria as syntactical constraints, by which we give priority on

the alternatives. These two techniques, grouping and prioritizing, can be

used also for improving the efficiency of searching alternatives. Also the

locality of mode/type constraints contributes to the efficiency. We present

optimized algorithms for automated error correction as well as the basic

algorithm.

4.1 Target of Debugging

Constraints that are considered wrong may be corrected by

• replacing the symbol occurrences that imposed those constraints by

other symbols, or

• when the suspected symbols are variables, by making them have more

occurrences elsewhere, that is, by increasing the number of elements

of the argument of R (cf. Rule (BV) of Figure 2.2).

32 CHAPTER 4.

When some symbol occurrence has been rewritten to another symbol by

mistake, there exists a symbol with less occurrences than intended and

a symbol with more occurrences. A minimal inconsistent subset includes

either (or both) of them.

Kima focuses on programs with a small number of errors in variables.

This focus may sound restrictive, but concurrent logic programs have quite

flat syntactic structures (compared with other languages) and instead make

heavy use of variables. Our experiences show that a majority of simple

program errors arise from the erroneous use of variables, for which the

support of static mode and type systems and debugging tools are invaluable.

Other kinds of error correction are not considered by the current version

of Kima, but the above technique could be applied also to the correction

of the other kinds of symbol occurrences. This is because mode and type

constraints are imposed also on constant symbols and function symbols.

Mutation from a variable symbol to a constant symbol could be corrected by

the same technique. Mutation of constant symbols may be located by type

constraints, but its automated correction is difficult. This is because Kima

would have to choose a particular symbol to substitute, which is difficult to

do based solely on type information. Mutations of function symbols (other

than constant symbols) and predicate symbols can also be located, but their

correction is again difficult because search space would expand too much in

trying to find both appropriate function and predicate symbols and their

arguments.

We aim at a programming tool to assist the input process of programs

into which a lot of trivial errors are prone to intrude. Unfortunately, our

framework is not sufficient for the essential part of programming such as

algorithm design, but mode and type system can be a guideline to develop

reliable and readable programs.

4.2 Basic Algorithm

An algorithm for automated error correction is basically a search proce-

dure whose initial state is the erroneous program, whose operations are the

rewriting of the occurrences of variables, and whose final states are well-

moded and well-typed programs.

Given a possibly erroneous program L, which is a set {l1, . . . , ln} of

33

¨ ¥

§ ¦

w ← misv(L); L1 ← cls(w);
L0 ← L \ L1;
S ← {};
for d ← 1 to dMAX do
for each q ∈ Qd

L1
do

if w ∩mut(q) 6= {} then
if mcs(L0 ∪ q) is consistent ∧ tcs(L0 ∪ q) is consistent then
S ← S ∪ {q}

fi
fi

end for
end for

Figure 4.1: Basic algorithm for automated error correction

clauses, let WL be defined as

WL = {(i, v) | 1 ≤ i ≤ n , v ∈ Vli}

where Vli is the set of variable symbols occurring in the clause li.

An element of WL is called a located variable; it is the pair of a clause

number and a variable occurring in the clause. Since Kima considers errors

in variables, for each minimal inconsistent subset of constraints, we can

think of a corresponding set of all located variables that are responsible for

the inconsistency. By abuse of language, henceforth we call the latter set

a minimal inconsistent subset (of located variables) as well. Let misv(L)

represent the minimal inconsistent subset of located variables corresponding

to the subset computed by the algorithm in Figure 3.2 or 3.3.

The algorithm in Figure 4.1 finds a set S of alternative solutions to the

program L, where cls(w) (w ⊆ WL) stands for the set of clause numbers

included in w, namely

cls(w) = {i | ∃v (i, v) ∈ w} .

Given a set L′ = {lk1 , . . . , lkm} ⊆ L of clauses, we can think of an d-mutated

set, {l′k1
, . . . , l′km

}, in which d variable occurrences have been mutated from

L′. Let Qd
L′ represent the set of all d-mutated sets of clauses. The function

mut(q) (q ∈ Qd
L′) returns the set of mutated located variables, an element of

34 CHAPTER 4.

which is the pair of a clause number (≤ n) and a mutated variable symbol

(either with more occurrences or with less occurrences). That is, mut(q)

represents a subset of Wq. The function mcs(L) stands for mode constraints

obtained from the program L; tcs(L) stands for type constraints. The main

procedure of the algorithm is iterative-deepening search up to the maximum

depth dMAX which is to be given by a user. Note that, instead of iterative-

deepening search, depth-first search may also be used because Kima does

not discriminate between alternatives by the depth at which they are found.

4.2.1 Cost

We consider the cost of the basic algorithm in Figure 4.1, namely depth-d

search of alternatives from one minimal inconsistent subset. Let u be the

number of clauses mentioned in the minimal inconsistent subset of located

variables, r the number of variable occurrences in one clause, and t the

number of different variables in that clause. For simplicity, we assume all

clauses have the same r and the same t.

Then, how many rewritten programs will be generated and checked for

well-typedness and well-modedness can be described as urCd ·t+dPd, which is

the number of possible ways of rewriting d variable occurrences in clauses in-

dicated by a minimal inconsistent subset. urCd is concerned with the choice

of variable occurrences to be rewritten, whereas t+dPd is the maximum num-

ber of ways of rewriting d variable occurrences. The latter is derived from

the following observation: because we need to consider rewriting to a fresh

variable, there are t+1 ways to rewrite the first variable occurrence and the

number of different variables may increase by one after the first rewriting.

Suppose the cost of mode and type analyses is k·n, where k is a constant,

and n is the program size. Then, the cost of the basic algorithm is the

product of the number of programs generated in the search and the cost of

mode and type analyses:

T ≤ urCd · t+dPd · kn

≤ (ur) · (ur − 1) · . . . · (ur − d + 1)

d !
· (t + d)d · kn

≤ k · (ur(t + d))d

d !
· n

The average sizes of r and t are 13.4 and 6.58, respectively, for the case

of the Kima system, which is a KL1 program of 5,200 lines long. For most

35

programs with about 10 variable occurrences in a clause, u is smaller than 4

from our experiences. For programs with more than 10 variable occurrences

in a clause, rather large subsets are often found. We will discuss the value

of u for large programs in Section 5.1.4.

The branching factor of this search problem is not small, but the number

of “plausible” programs is extremely small compared to the number of all

programs generated in the search (Section 5.1.3). We can take advantage

of this fact, as well as Quick-check, to save the number of mode and type

analyses (Sections 4.5.1 and 4.5.2).

4.3 Grouping Errors

As we mentioned in Section 3.3, multiple minimal inconsistent subsets may

independently be found, and some of them may indicate the same clause

as the source of errors. The clause may be indicated by subsets of modes,

types, or both. Modes and types express different properties of a program

and detect different kinds of errors. To use them together makes two im-

provements; one is that more errors can be detected; the other is that errors

can be located more precisely. Kima groups together minimal inconsistent

subsets sharing the same clause (Figure 4.2). A group thus formed plays

the role of a unit of searching alternatives to erroneous clauses.

Formally, the grouping of minimal inconsistent subsets is to classify them

using the reflexive transitive closure of the following relation, ⇀↽, as the

equivalence relation:

x ⇀↽ y ⇔ cls(x) ∩ cls(y) 6= {}

The grouping can be implemented in the following way. For each clause li

mentioned in a minimal inconsistent subset S, we form a pair (i, S). Using

all the pairs generated, we can readily make two-way links between subsets

indicating the same clause. Next, we classify subsets by tracing the links.

The cost of tracing is not a problem because it is unlikely that many subsets

intricately overlap with each other.

Depth-d search of alternatives is carried out independently for each

group. Computation time can be reduced by checking whether a certain

rewriting can possibly dissolve inconsistencies of all minimal inconsistent

subsets in a group before actually computing modes and types, which is

called Quick-check. This is effective because when some symbol occurrence

36 CHAPTER 4.

Group A Group B

Group C

Group D

A minimal inconsistent subset
 of mode or type constraints

Space of clauses in a program

Figure 4.2: Grouping minimal inconsistent subsets

is rewritten, even if the change is small, mode and type analyses may rean-

alyze the whole program.

Suppose that n groups of minimal inconsistent subsets have been formed

from the program L and that a group Gi comprises the subsets wi1, wi2, . . . , wigi
.

Then, a set Si of alternatives for each group Gi is computed by the algorithm

in Figure 4.3.

When multiple groups are found, mode and type analyses are performed

with the clauses indicated by one of the groups and the consistent part

L0, which is the set of all clauses that are not indicated by any minimal

inconsistent subset. Therefore, not all constraints imposed by the whole

program text are considered in error correction. Kima employs this strategy

so that the search of alternatives for one group may not be influenced by

that for another group.

4.4 Constraints Other Than Modes and Types

4.4.1 Prioritizing Alternatives

Kima searches alternative solutions using mode and type information, but

multiple alternatives are found in many cases. Kima refines the quality of

37

¨ ¥

§ ¦

for i ← 1 to n do
Li ← ⋃gi

j=1 cls(wij);
end for;
L0 ← L \ ⋃n

j=1 Lj;
for i ← 1 to n do
Si ← {};
for d ← 1 to dMAX do
for each q ∈ Qd

Li
do

if quick-check(q, i) then
if mcs(L0 ∪ q) is consistent ∧ tcs(L0 ∪ q) is consistent then
Si ← Si ∪ {q}

fi
fi

end for
end for

end for

function quick-check(q, i)
return

∧gi
j=1(wij ∩mut(q) 6= {})

end.

Figure 4.3: Algorithm for automated error correction with grouping

38 CHAPTER 4.

its output by prioritizing alternatives using two Heuristic Rules:

Heuristic Rule 1. It is less likely that a variable occurs

1. only once in a clause (singleton occurrence),

2. two or more times in a clause head,

3. three or more times in the head and/or the body of a clause, or

4. two or more times as arguments of the same body goal.

Heuristic Rule 2. It is less likely that a list and its elements are of the

same type, that is, it is less likely that a variable occurs both in some

path p and in the path of its elements p〈., 1〉.

Since variable occurrences falling under Heuristic Rules 1.1, 1.2 and 1.3

impose mode constraints IN or OUT (Section 2.2)1 that are stronger than

in and out , we could replace Heuristic Rules 1.1–1.3 by a unified rule on

constraint strength: A solution with weaker mode constraints is more likely

to be an intended one. In general, stronger mode/type constraints make a

program less generic, and the execution of the program more likely to end

in failure. Therefore it is reasonable to insist that the constraint imposed

on a program should be as weak as possible.

Heuristic Rules 1.1 and 1.3 are justified also on the ground that logical

variables are used for one-to-one communication more frequently than for

one-to-many or one-to-zero communication. A logical variable used for one-

to-one communication occurs either exactly twice in a clause body or exactly

once in a clause head and once in a clause body. A body goal with arguments

as mentioned in Heuristic Rule 1.4 either receives duplicated data from

another goal or communicates with itself, which are both unlikely.

The idea behind Heuristic Rule 2 is as follows. Let α be a type variable

and list(α) be the list type whose elements are of type α. Then the rule is

equivalent to saying that the constraint α = list(α) imposes a strong type

constraint on α and is therefore unlikely.

Kima prioritizes multiple alternatives by imposing penalty points on

unlikely symbol occurrences. An alternative with lower total penalty points

has a higher priority. The parameters of penalty points adjusted in Kima

1Variable occurrences falling under Heuristic Rule 1.3 do not directly impose IN or
OUT , but mode constraints imposed by such variable occurrences are strengthened in
many cases (Section 2.2.1).

39

Table 4.1: Penalty points imposed on unlikely variable occurrences

Variable occurrences in Heuristic Rule 1 Penalty
points

1. singleton occurrence
- If the variable name does not begin with an underscore “-”

* If the variable is in a clause head 2
* If the variable is in a clause body 3

- If the variable name begins with an underscore“-” 1
2. two occurrences in a clause head 2

(for one more occurrence) 1
3. three occurrences in the head and/or the body of a clause 1

(for one more occurrence) 1
4. two occurrences as arguments of the same body goal 2

(for one more occurrence) 2

for Heuristic Rule 1 are in Table 4.1. Heuristic Rule 2 does not impose

penalty points but lower the priority by one (Section 4.5.1).

4.4.2 Reinforcing Detection Power

The objective of Kima is to debug a program in the absence of explicit

declarations of program properties such as modes and types. To enhance the

power of the error detection with implicit modes and types, Kima employed

the following auxiliary Detection Rules:

Detection Rule 1.

1. A variable checked for its value or instantiation in a clause guard

must occur also in the head of the clause.

2. The same variable must not occur on both sides of a unification

body goal.

Detection Rule 2. The name of a singleton variable must begin with an

underscore “-”.

Violation of Detection Rule 1.1 means the existence of a variable which

is never instantiated, while violation of Detection Rule 1.2 means that the

unification body goal either fails (e.g. X=f(X)) or does nothing meaningful

(e.g. X=X). Detection Rule 2 is identical to requesting the declaration of

40 CHAPTER 4.

variables that impose strong mode constraints. Detection Rule 2 is effective

because a logical variable in a correct program is likely to occur twice in a

clause (i.e., for one-to-one communication), in which case the variable will

turn into a singleton if either occurrence is missing.

The source of an error detected by Detection Rules is a variable symbol in

a certain clause, and is found independently of minimal inconsistent subsets

of mode and type constraints. Kima uniformly deals with a variable symbol

detected by Detection Rules by considering it as a minimal inconsistent

subset with one element, and groups it with other subsets.

4.5 Optimizing Search of Alternatives

In addition to Quick-check (Section 4.3), prioritizing with Heuristic Rules

(Section 4.4.1) and Detection Rules (Section 4.4.2) are also effective for

the number of mode and type analyses to be reduced in generate-and-test

search. Applying these two techniques before performing the test with mode

and type analyses has an effect not only on the test but also on the gen-

eration of mutated clauses. Furthermore, the cost of inevitable mode and

type analyses can be reduced by taking advantage of the locality of mode

and type constraints.

4.5.1 Optimization of Test

The algorithm shown in Figure 4.4 computes a set Si,k of alternatives for

each group Gi (1 ≤ i ≤ n) and priority k (1 ≤ k ≤ kMAX + 1), where k = 1

means the highest priority and kMAX is to be given by a user.

Prioritizing with Heuristic Rule 1 is cheaper than mode and type anal-

yses because it involves only suspected clauses. For each i and d, Kima

first divides the set Qd
Li

of programs into sets Q1, . . . ,Qhi
by their priori-

ties, where programs in Q1 have the highest priority. The value of hi is not

known until we actually divide Qd
Li

. When we are interested only in high-

priority alternatives, this classification saves the number of mode and type

analyses. However, Prioritizing with Heuristic Rule 2 needs type analysis,

and is performed after the check of well-typedness (i.e., type reconstruc-

tion). The function heuristic-rule2-ok(L) returns true iff the program L

contains no variables that are less likely with respect to Heuristic Rule 2.

The function detection-rules-ok(L) returns true iff the program L ob-

41

¨ ¥

§ ¦

for i ← 1 to n do
Li ← ⋃gi

j=1 cls(wij);
end for;
L0 ← L \ ⋃n

j=1 Lj;
for i ← 1 to n do
for k ← 1 to kMAX + 1 do
Si,k ← {}

end for;
for d ← 1 to dMAX do

prioritize Qd
Li

into Q1, . . . ,Qhi
with Heuristic Rule 1;

j ← 1; k ← 1;
while j ≤ hi ∧ k ≤ kMAX do
for each q ∈ Qj do
if quick-check(q, i) then
if detection-rules-ok(q) then
if mcs(L0 ∪ q) is consistent
∧ tcs(L0 ∪ q) is consistent then
if heuristic-rule2-ok(q) then
Si,k ← Si,k ∪ {q}

else
Si,k+1 ← Si,k+1 ∪ {q}

fi
fi

fi
fi

end for;
if Si,k 6= {} then
k ← k + 1

fi;
j ← j + 1

end while
end for

end for

Figure 4.4: Optimized algorithm 1 for automated error correction

42 CHAPTER 4.

serves Detection Rules, and is called before mode and type analyses. The

test of Detection Rules is cheaper than mode and type analyses, because the

clauses that are not rewritten do not have to be checked again. In contrast,

mode and type analyses may need recalculation of the whole program.

4.5.2 Optimization of Generation

Outline of an Algorithm

From our experiments, it proved to take much time and memory to generate

all programs in the set Qd
Li

, but not all programss are necessary when we

are interested only in high-priority alternatives. Since the generation of

mutated programs itself is a search problem, unnecessary programs can be

not generated at all by pruning low-priority mutations during the search.

The current version of Kima hence generates mutated programs with high

priority on demand by the prioritizing with Heuristic Rule 1 and by the

check with Detection Rule 1.

Let high-priority(L, h, d) be the function that generates sets Q1, . . . ,Qh

of high-priority mutated clauses where at most d variable occurrences have

been mutated from the clauses L. Then the whole algorithm with the opti-

mization of the generation is described as in Figure 4.5, where the constant

MAX h is for termination.

The function detection-rule2-ok(L) returns true iff the program L ob-

serves Detection Rule 2 and a command line option is specified to employ

the rule (Section A.2). Unless the option is specified, the function always

returns true. The employment of Detection Rule 2 is optional, whereas that

of Detection Rule 1 is indispensable. However, in the generation of mutated

clauses, prioritizing with Heuristic Rule 1.1 efficiently prunes low-prirority

clauses with singleton variables instead of Detection Rule 2.

Generating High-Priority Clauses

Among clauses indicated by minimal inconsistent subsets, there are clauses

actually including errors and clauses including no error. In many cases,

errors in a clause corrupt the penalty points of the clause. So the func-

tion high-priority(L, h, d) generates setsQ1, . . . ,Qh of high-priority mutated

clauses by combining high-priority clauses mutated from each clause in L.

Let L = {l1, l2, . . . , ln}, and Li
h,d be the set of priority-h clauses gener-

ated by mutating d variable occurrences from a clause li ∈ L. The union

43

¨ ¥

§ ¦

for i ← 1 to n do
Li ← ⋃gi

j=1 cls(wij);
end for;
L0 ← L \ ⋃n

j=1 Lj;
for i ← 1 to n do
for k ← 1 to kMAX + 1 do
Si,k ← {}

end for;
h ← 1; k ← 1;
while k ≤ kMAX ∧ h ≤ MAX h do
h ← kMAX − k + h;
Q1, . . . ,Qh ← high-priority(Li, h, dMAX);
for j ← 1 to h do
for each q ∈ Qj do
if quick-check(q, i) then
if detection-rule2-ok(q) then
if mcs(L0 ∪ q) is consistent
∧ tcs(L0 ∪ q) is consistent then
if heuristic-rule2-ok(q) then
Si,k ← Si,k ∪ {q}

else
Si,k+1 ← Si,k+1 ∪ {q}

fi
fi

fi
fi

end for;
if Si,k 6= {} then
k ← k + 1

fi
end for

end while
end for

Figure 4.5: Optimized algorithm 2 for automated error correction

44 CHAPTER 4.

⋃dMAX
d=0 Li

1,d is the set of clauses with the least penalty points in
⋃dMAX

d=0 Qd
{li},

and must not be {}. In contrast, the union
⋃dMAX

d=0 Li
h,d for h ≥ 2 is a set of

clauses with penalty points more than the least by h − 1, and may be {}.
Then, Qi is defined as:

Qi = {{l1, . . . , ln}| l1 ∈ L1
h1,d1

, . . . , ln ∈ Ln
hn,dn

,
n∑

j=1

hj = n+i−1,
n∑

j=1

dj ≤ dMAX}

Note that 0-mutated clause is the original clause with no mutation.

During the search/generation of mutated clauses, it is necessary to prune

nodes/clauses that will not be able to mutate into clauses in Li
h,d by checking

both the improvability of priority and the observability of Detection Rule 1.

One mutation of a variable occurrence can be thought of as a pair of a pickup

and a putdown operations. Let Ul be a set of clauses obtained by picking

up a variable occurrence in the clause l. That is, a variable occurrence is

ignored in u ∈ Ul. Let Du be a set of clauses obtained by putting down a

different variable in place of the variable occurrence that has been picked

up in u. Then, given a clause li, the algorithm in Fig 4.6 computes Li
h,d for

priority h (1 ≤ h ≤ hMAX) and depth d (0 ≤ d ≤ dMAX).

The algorithm does not generate mutated clauses with penalty points

more than the constant MAX pp, which is set, by default, to 20 for termi-

nation (see the argument of the option +pp in Section A.2). The constant

MAX h in Fig 4.5 is set to the same value for simplicity. By combining

clauses in each Li
h,d (1 ≤ i ≤ n), the function high-priority(L, hMAX , dMAX)

generates the sets Q1, . . . ,QhMAX
.

The improvability of penalty points and the observability of Detection

Rule 1 are checked after every pickup and putdown operation. The functions

reachable-mid(l, d, pp) and reachable(l, d, pp) return true iff the clause l has

both possibilities after a pickup and a putdown, respectively, for the current

depth d and penalty points pp. The function found(l, pp) returns true iff

the clause l observes Detection Rule 1 and has the penalty points pp.

Let num-violate-dr11 (l) and num-violate-dr12 (l) represent the number

of (not variable occurrences but) variables that violate Detection Rule 1.1

and Detection Rule 1.2, respectively, and penalty-point(l) represent penalty

points the clause l has. Note that these three functions can also be applied

to u ∈ Ul, because they check only the number and the positions of variable

occurrences. Then, the function found(l, pp) is defined as:

found(l, pp) = num-violate-dr11 (l) = 0 ∧ num-violate-dr12 (l) = 0

45

¨ ¥

§ ¦

h ← 1; pp ← 0;
while h ≤ hMAX ∧ pp ≤ MAX pp do
d ← 0; T ← {};
if reachable(li, d, pp) then
T ← {li};
if found(li, pp) then
Li

h,d ← {li}
fi

fi;
for d ← 1 to dMAX do
T ′ ← {}; Li

h,d ← {};
for each l ∈ T do
for each u ∈ Ul do
if reachable-mid(u, d, pp) then
for each l′ ∈ Du do
if reachable(l′, d, pp) then
T ′ ← T ′ ∪ {l′};
if found(l′, pp) then
Li

h,d ← Li
h,d ∪ {l′}

fi
fi

end for
fi

end for
end for

end for;
if h > 1 then
h ← h + 1

else if
⋃dMAX

d=0 Li
h,d 6= {}

h ← 2
fi;
pp ← pp + 1

end while

Figure 4.6: Algorithm for generating high-priority clauses

46 CHAPTER 4.

∧ penalty-point(l) = pp.

An Example of the Evaluation Functions of A* Search

The algorithm in Fig 4.6 is an iterative-deepening A* search with respect to

penalty points (priority), where reachable-mid(l, d, pp) and reachable(l, d, pp)

are the evaluation functions for pruning. In the current version of Kima,

reachable(l, d, pp) is defined as:

reachable(l, d, pp) = (num-violate-dr11 (l) + num-violate-dr12 (l) ≤ drest)

∧ (penalty-point(l) ≤ pp + 2 · 3 · drest),

where drest = dMAX − d. If, for u ∈ Ul, a variable occurrence picked up is in

a clause head and num-violate-dr11 (u) ≥ 1, then reachable-mid(u, d, pp) is

defined as:

reachable-mid(u, d, pp) = (num-violate-dr11 (u) + num-violate-dr12 (u)

≤ drest + 1)

∧ (penalty-point(u) ≤ pp + 2 · 3 · drest + 3);

otherwise

reachable-mid(u, d, pp) = (num-violate-dr11 (u) + num-violate-dr12 (u)

≤ drest)

∧ (penalty-point(u) ≤ pp + 2 · 3 · drest + 3).

The parameters in these definitions are adjusted from two considera-

tions. First, for Detection Rule 1, the pickup operation of a variable occur-

rence either in a clause head or in a clause guard may decrease num-violate-dr11 (l)

by one, whereas that in a clause body may decrease num-violate-dr12 (l) by

one. Also, the putdown operation of a variable occurrence in a clause head

may decrease num-violate-dr11 (l) by one. Accordingly depth-d search (the

mutation of d variable occurrences) may decrease the sum of num-violate-dr11 (l)

and num-violate-dr12 (l) by d. Second, for penalty points, either a pickup

or a putdown operation may decrease the penalty points of a clause by

three (see Table 4.1). A variable occurrence can possibly fall under both

Heuristic Rules 1.2 and 1.3 simultaneously or under both Heuristic Rules

1.3 and 1.4, but even such a variable imposes at most three penalty points.

47

(Penalty points are thus adjusted cooperatively with the evaluation func-

tions.) Accordingly depth-d search may decrease the penalty points of a

clause by 2 ·3 ·d. Though more precise evaluation functions might of course

be defined, it is the problem of tradeoff between efficiency and the concise-

ness of definition.

Equivalence of Programs

After the execution of the algorithm in Fig 4.6, with respect to the equiva-

lence of clauses, Kima eliminates duplicate clauses in
⋃dMAX

d=0 Li
h,d generated

from the clause li for each priority h. Clauses (programs) are equivalent

1. up to the renaming of variables, and

2. up to the exchanging of arguments of calls to commutative built-in

predicates such as unification.

Out of equivalent clauses, one of clauses with the smallest d (i.e., the number

of mutations) is left, and the other equivalent clauses are all eliminated.

Different numbers of the mutations of a clause may generate equivalent

clauses.

Programs with different penalty points (priority) are not considered

equivalent even if the programs are equivalent according to the two con-

ditions above. All this intention is to discriminate between a program in-

cluding a singleton variable whose name begins with an underscore “-” and

a program including, at the same position, a singleton variable whose name

does not.

For a quicksort program containing two wrong variable occurrences in

the same clause (Section 5.2.3), the above optimization of both the gener-

ation and the test improved the response time of computing the highest-

priority alternatives from 7.78 seconds to 0.37 seconds on the KLIC system

running on a PC/AT compatible machine with PentiumIII 733 MHz and

768 MB of memory.

4.5.3 Optimization Using the Locality of Mode and
Type Constraints

Checking modes and types of a rewritten program requires the cost propor-

tional to the program size (Section 2.2.4), but inconsistency usually occurs

48 CHAPTER 4.

within a small region of program text (Section 3.2.3). The performance

of the test of mutated programs is therefore improved by analyzing those

constraints imposed by suspected neighborhood, that is, the suspected pred-

icates and predicates closely related to them with respect to caller-callee

relationship before taking other constraints into account.

We considered two kinds of suspected neighborhoods to be analyzed in

advance, and compared them:

1. all the definition clauses of predicates (say L) including a clause indi-

cated by a group of minimal inconsistent subsets, and

2. in addition to L, the definition clauses of both predicates calling a

predicate in L and predicates called from L.

The clauses indicated directly by other groups of minimal inconsistent sub-

sets are removed from the suspected neighborhood, because those clauses

may contain errors.

The region in the second way is definitely larger than that in the first

way. This chain of predicate call relation can be traced at any number

of steps until the suspected neighborhood covers the whole program, but

the current version of Kima employed the first way from experiments in

Section 5.1.4.

Chapter 5

Experiments and Examples

We show four experiments with which we discuss both the effectiveness

and the ability of the Kima system. We then explain the details of our

framework by illustrating the behavior of Kima based on three examples.

5.1 Experiments

In the first three experiments, we investigated how many of programs with

a couple of errors were detected as erroneous by Kima, how many alterna-

tives it proposed given an erroneous program, and how many “plausible”

programs there were in the neighborhood of a correct (original) program.

Sample programs we used here are list concatenation (append), the genera-

tor of a Fibonacci sequence (fibonacci), and quicksort. They are admit-

tedly simple but the aim of the experiment is to investigate the fundamental

power of our technique based on exhaustive experiments.

In the last experiment, we investigate the current ability of Kima based

on other sample programs of non-trivial size. Simultaneously, we do not

only discuss the effectiveness of the local analysis (Section 4.5.3) but also

compare the two ways of delimiting suspected neighborhoods.

5.1.1 Single Error Detection and Correction

We systematically generated near-misses (each with one wrong occurrence

of a variable) of three programs and examined how many of them could be

detected, whether automated correction reported an intended program, and

50 CHAPTER 5.

Table 5.1: Single-error detection and correction

Program Analysis Level Priori- Total Dete- Proposed Alternatives
tizing cases cted 1 2 3 4 5 6 ≥7

append mode only 0 no 58 36 1 3 8 3 6 5 10
type only 0 no 58 0 0 0 0 0 0 0 0

mode & type 0 no 58 36 1 3 8 3 6 5 10
mode & type 0 yes 58 36 27 9 0 0 0 0 0
mode & type 1 yes 58 40 29 11 0 0 0 0 0
mode & type 2 yes 58 58 39 19 0 0 0 0 0

fibonacci mode only 0 no 118 57 10 7 9 6 4 1 20
type only 0 no 118 47 0 0 4 20 0 18 5

mode & type 0 no 118 72 18 13 2 15 9 0 15
mode & type 0 yes 118 72 54 11 1 6 0 0 0
mode & type 1 yes 118 88 68 12 7 0 1 0 0
mode & type 2 yes 118 99 71 18 8 0 2 0 0

quicksort mode only 0 no 300 177 34 70 1 12 19 0 41
type only 0 no 300 106 0 2 12 40 0 32 20

mode & type 0 no 300 221 49 76 8 59 0 9 20
mode & type 0 yes 300 221 164 41 16 0 0 0 0
mode & type 1 yes 300 236 175 61 0 0 0 0 0
mode & type 2 yes 300 286 199 84 2 1 0 0 0

how many alternatives were reported. Table 5.1 shows the results1. Here,

we considered all possible ways of the mutation of a variable occurrence,

that is, mutation to a fresh (i.e., singleton) variable as well as mutation

to another variable in the same clause, but did not consider mutation to

the variable whose name began with “-”, which would be very unlikely as

human errors. We used only the definitions of predicates in error correction,

that is, we did not use the constraints that might be imposed by the caller

of these programs. Of course, the caller information, if available, would

enhance the quality of correction as well as the redundancy of constraints.

The column “Level” indicates detection levels. At detection level 0, only

mode and/or type information was used; at detection level 1, Detection Rule

1 was used in addition; and at detection level 2, Detection Rules 1 and 2

were used together. The two Detection Rules raised the average detection

1In a similar experiment shown in our early paper [3], the numbers are different
because (i) errors in the clause guard and those concerning Detection Rule 1 were not
counted and (ii) errors detected by types but not detected by modes were not considered
by automated debugging.

51

rate from 69.1% (329/476) to 93.1% (443/476).

A row with “yes” in the column “Prioritizing” shows the number of

proposed alternatives with the highest priority. The number of proposed

alternatives under prioritizing was usually 1 or quite small. The exceptions

were in erroneous fibonacci programs. Some variable occurs four times in

the correct fibonacci program (N2 in the program in Section 5.2.2), and

there were a few cases where one of its body occurrences was mutated to

some fresh variable and their highest-priority corrections were to replace

another occurrence of N2 to that fresh variable.

5.1.2 Error Detection Rate

We investigated the error detection rate for programs with two or three

mutated variable occurrences in the same clause. Errors of this kind are

looked on as depth-2 and depth-3 errors in the same group, respectively, and

their correct alternatives can be obtained by depth-2 and depth-3 search.

Table 5.2 shows the results. Note that the mutation of variable occurrences

does not always cause errors. For example, certain mutations make a pro-

gram equivalent to the original (Section 4.5.2).

When multiple errors exist in some clause of a program, the error is

detected as long as at least one of the errors cause inconsistency. So the

detection rate of multiple errors was higher than that of a single error. The

detection rate with Detection Rules 1 and 2 was above 95% in every case.

5.1.3 The Number of Plausible Programs

We explored the number of “plausible” programs in the set of programs with

N mutations on variable occurrences in the same clause. By “plausible” we

mean the programs have the same (or higher) priority as the original pro-

gram. The result is shown in Table 5.3. In this experiment, we investigated

not only the possibility for Kima to find an intended program by search,

but also what the programs that passed our plausibility criteria looked like.

In contrast to the experiments in Section 5.1.1 and 5.1.2 (and the next

5.1.4), here we included the mutation of variables to those whose names

began with “-” in order to precisely count the number of plausible programs.

In the column “Plausible programs”, equivalent programs (Section 4.5.2)

were counted as one program, and the original, intended programs were not

counted.

52 CHAPTER 5.

Table 5.2: Error detection rate for the programs with N mutations

Program N Level Total Detected Detection
cases cases rate (%)

append 2 0 1200 937 78.1
2 1 1200 1004 83.7
2 2 1200 1141 95.1
3 0 16980 14597 86.0
3 1 16980 15411 90.8
3 2 16980 16674 98.2

fibonacci 2 0 4668 3982 85.3
2 1 4668 4330 92.8
2 2 4668 4489 96.2
3 0 133045 125300 94.2
3 1 133045 130325 97.9
3 2 133045 131810 99.1

quicksort 2 0 12102 11263 93.1
2 1 12102 11460 94.7
2 2 12102 12005 99.2
3 0 337455 330769 98.0
3 1 337455 332416 98.5
3 2 337455 336943 99.8

Table 5.3: The number of plausible programs in the programs with N mu-
tations

Program N Total Plausible With Unrelated
cases programs caller info to guard

append 1 58 0 0 0
2 1200 5 1 1
3 16980 14 3 3
4 167842 27 5 5

fibonacci 1 118 10 9 5
2 4668 64 3 0
3 133045 307 5 0

quicksort 1 300 8 4 0
2 12102 27 17 13
3 337455 72 48 32

53

From Table 5.3 we see that the number of plausible programs did not

increase as rapidly as the number of total cases. This can be explained by

the fact that the ways of placing variable symbols which make a program

well-moded and well-typed are extremely limited compared to arbitrary

ways of placing.

Now we focus on the number of alternatives proposed by Kima under

prioritizing. Suppose, for example, a program contains two errors on vari-

able occurrences and depth-2 search is performed. In this case, programs

in the search space have up to four occurrences rewritten from the origi-

nal, correct program. Of these programs, those with four mutations will be

the majority. However, since two of the four mutations have already been

done by the given erroneous program, only part of the programs with up to

four mutations are generated. The total number of programs generated for

inspection is very close to the number of cases with N = 2 in Table 5.3.

Caller information (i.e., examples of clauses containing calls to the predi-

cates to be debugged) can reduce the number of plausible programs, because

it plays the role of mode and type specifications. The column “With caller

info” indicates the number of plausible programs in the existence of caller

information. Out of those programs, programs whose guard goals have not

essentially been rewritten are indicated in the column “Unrelated to guard”.

That is, the rightmost column shows the number of mutated but plausible

programs in which neither (i) a variable tested in a clause guard was mu-

tated, nor (ii) a variable tested in a clause guard was made to occur at a

different argument position in the clause head.

In programs “Unrelated to guard”, while more than half of those pro-

grams diverge or cause deadlock, the other programs return unintended

output. For example, we found:

1. a program that merges two input lists by taking their elements alter-

nately in the neighborhood of append (see Example 1 in Section A.1),

2. a program that returns the list of all natural numbers ([0,1,2, ...])

in the neighborhood of the generator of a Fibonacci sequence, and

3. a program that sorts list items in descending order in the neighbor-

hood of quicksort that sorts list items in ascending order.

However, most of the programs were such that we could not give any concise

meaning to their behavior and output.

54 CHAPTER 5.

5.1.4 Search Space Reduced by the Local Analysis of
Suspected Neighborhood

We investigated how mutated programs generated in the search of alter-

natives would be sieved through the mode and type analyses of suspected

neighborhoods and through the analyses of the whole program. Sample pro-

grams we used here are nqueen (of 67 lines long) and three modules of Kima

itself, gen-test (of 200 lines long), tgraph (of 218 lines long) and graph (of

390 lines long); the program nqueen computes the number of the solutions

of N-queen problem in parallel; the module gen-test is the top module

that calls two modules for the generation and the test of alternatives, and

is the version where the second way about suspected neighborhoods was

implemented; the module tgraph is the solver of type constraints, while the

module graph is the solver of mode constraints.

For each sample program, we randomly generated 100 cases of programs

into which one or two mutations of variable occurrences in the same clause

were inserted, and applied depth-1 or depth-2 search of alternatives, re-

spectively. Here, we used two versions of Kima that implemented the two

ways of delimiting suspected neighborhoods (Section 4.5.3). We then com-

pared how many of mutated programs generated in the search were well-

moded and well-typed within a suspected neighborhood. The result is shown

in Tables 5.4 and 5.5. Here, error detection was performed at detection

level 2. The experiment was performed on a PC/AT compatible machine

with PentiumIII 733 MHz and 768 MB of memory. Although there were

several predicate calls of other modules in the sample modules of Kima,

callee side information was not used. Nevertheless it did not cause problem

to the quality of error correction.

In Table 5.4, the column “Canceled cases” indicates the number of cases

where errors were detected but their correction was canceled (impossible)

for either of two reasons. One is the occurrence of memory swap, and the

other is that the error correction took over twenty minutes. The column

“Generated programs” indicates the average number of high-priority pro-

grams generated by the function high-priority(L, h, d) with the algorithm

in Figure 4.6 except the canceled cases. The column “Passed local analy-

sis” indicates the average number of programs that were well-moded and

well-typed within a suspected neighborhood delimited in the two ways. The

column “Final alternatives” indicates the average number of programs pro-

55

Table 5.4: Effect of local analysis for the programs with N mutations

Detected Canceled Generated Passed local Final al-
Program N cases cases programs analysis ternatives

first second
nqueen 1 96 0 2.45 1.96 1.89 1.10

2 96 1 53.0 27.7 20.0 2.17
gen-test 1 99 0 2.45 2.05 1.94 1.67

2 83 3 60.6 40.2 21.5 5.74
tgraph 1 100 0 2.42 1.82 1.68 1.21

2 100 37 28.4 19.2 13.3 2.35
graph 1 98 1 1.98 1.40 1.33 1.15

2 97 39 24.5 10.9 8.14 2.28

Table 5.5: Average response time of Kima with local analysis

Program Clauses Variable Kinds of N Response time (sec)
occurrences variables first second

nqueen 34 10.4 5.12 1 0.439 0.481
2 19.1 19.2

gen-test 77 11.6 5.84 1 2.04 2.10
2 16.5 16.1

tgraph 79 17.6 8.84 1 10.9 11.9
2 60.4 61.8

graph 155 16.8 8.46 1 21.7 25.1
2 87.4 91.8

56 CHAPTER 5.

posed as alternatives by the mode and type analyses of the whole program.

The average response time of Kima except the canceled cases is shown in

Table 5.5. The number of clauses, the average number of variable occur-

rences in a clause, and the average number of different variables in a clause

are shown also. From the column “Passed local analysis” in both Tables,

the two ways of delimiting suspected neighborhoods turned out not to make

much difference to the efficiency of the search. So the current version of

Kima employed the first (simpler) way.

In most cases, the number of final alternatives was one or quite small

even for errors in the programs of rather long lines. The correction of a

program with two mutations does not always need depth-2 search because

of the equivalence of programs. This is why the number of detected cases

in the row with gen-test and N = 2 was relatively small. The mutations

of variable occurrences may rewrite a program into its equivalent program.

Since gen-test has more than ten clauses with at most only four variable

occurrences, two mutations of such clause are likely to make an equiva-

lent program. There were also cases where an excessive mutation for the

search increased the number of alternatives finally reported. In the row

with gen-test and N = 2 , there was a case where 184 alternatives were

accidentally found for a clause with two out of 25 variable occurrences mu-

tated. If we exclude this case, the average number in the column “Final

alternatives” is improved to 3.44.

The Limit of Kima’s Abilities and Its Solution

In canceled cases, the reason why a large amount of the resource of time

and/or space was consumed is that a lot of clauses were indicated by a group

of minimal inconsistent subsets. The cost of the error correction is sensitive

to the number of the suspected clauses (the value of u in Section 4.2.1).

So, how many suspected clauses is the limit of error correction not can-

celed? In the row with graph and N = 1, there was only a case where

depth-1 search was canceled. In this case, four minimal inconsistent sub-

sets (of located variables) were found; two subsets on modes had 7 and 25

elements, respectively, and the other two subsets on types had 20 and 25

elements. The four subsets indicated 29 clauses in total. In the canceled

cases with N = 2, a group of subsets indicated more than ten (often twenty)

clauses.

57

For programs with a number of variable occurrences included in a clause,

the size of minimal inconsistent subsets was prone to be large. When an

error is in a predicate, the size of a subset depends on the number of both

predicates calling the erroneous predicate and predicates called from the

erroneous predicate. This number is then related to the number of variable

occurrences in a clause. Also, the size of a subset of type constraints was

usually larger than that of mode constraints, when the subsets of both

modes and types were found at a time. A minimal inconsistent subset of

type constraints traces between two function occurrences of different types,

but the two occurrences that cause inconsistency are often far from each

other. The number of the occurrences of function symbols are quite small

compared to all symbol occurrences in a program, whereas the two mode

values (in and out) are ubiquitous over any clause, predicate and program.

A lot of clauses are suspected by a group of subsets because

1. one of the subsets consists of a lot of constraints indicating a lot of

clauses, and/or

2. several subsets classified into a group amount to indicate a lot of

clauses.

In most canceled cases, both situations were observed simultaneously, but

one of the subsets in a group had less than 10 constraints. Therefore,

suppose errors are in the intersection of the subsets of the same group,

error correction that was canceled might be completed. This assumption

is true as for this experiment in which errors were inserted into the same

clause, but is not considered in the current version of Kima.

5.2 Examples

We illustrate three examples of automated error correction. The first two are

the correction of a single error. By these examples, we explain the grouping

and the prioritizing. The last one is the correction of two interdependent

errors, and is a little advanced example including the correction of a variable

occurrence to a constant symbol.

58 CHAPTER 5.

5.2.1 Append Program With an Error

We discuss an append program with a single error. This example is simple

and yet instructive.

¨ ¥

§ ¦

R1: append([], Y,Z):- true | Y= 1Z.

R2: append([A|Y],Y,Z0):- true | Z0= 2[A|Z], append(X,Y,Z).

(The head should have been append([A|X],Y,Z0))

Either algorithm in Figure 3.2 or 3.3 computes the following minimal

inconsistent subset of mode constraints:

Mode constraint Rule Source symbol
m/〈append, 1〉〈., 2〉 = IN (HV) Y in R2

m/〈append, 1〉 = OUT (BV) X in R2

Here, we do not consider Detection Rule 2, though it can detect the variable

X in Clause R2 as an error.

This tells that we should suspect the variables X and Y in Clause R2.

Because the variable X has wrongly been mutated into the variable Y, this

indication is legitimate. A symbol either with more occurrences or with less

occurrences caused by the wrong mutation is likely to be detected, but both

symbols are detected in this case.

Then, depth-1 search tries to rewrite each variable occurrence in two

ways; one way is to rewrite the variable X or Y to the other variables in

Clause R2; the other way is to rewrite the other variables to the variable X

or Y. Without prioritizing, the search finds six well-moded and well-typed

alternatives:

(1) R2: append([A|X],Y,Z0):- true | Z0= 2[A|Z], append(X,Y,Z).

(2) R2: append([A|Y],X,Z0):- true | Z0= 2[A|Z], append(X,Y,Z).

(3) R2: append([A|Y],Y,Z0):- true | Z0= 2[A|Z], append(Z0,Y,Z).

(4) R2: append([A|Y],Y,Z0):- true | Z0= 2[A|Z], append(A,Y,Z).

(5) R2: append([A|Y],Y,Z0):- true | Z0= 2[A|Z], append(Z,Y,Z).

(6) R2: append([A|Y],Y,Z0):- true | Z0= 2[A|Z], append(Y,Y,Z).

59

Types do not help much in this example, although Alternative (5) is

given a low priority by Heuristic Rule 2 with respect to types (Section 4.4.1).

Further, if the elements of the input lists received by append were not

of list type on the caller side (e.g., append([1,2,3],[4,5,6],Out)) and

this information was available, Alternative (5) would have been eliminated.

Additionally, Heuristic Rule 1 imposes penalty points on Alternatives (3),

(4), (5) and (6). Heuristic Rule 1.1, 1.2 and 1.3 are applied to all of them,

and Heuristic Rule 1.4 are applied to Alternatives (5) and (6). In reality,

these four alternatives are programs that cause reduction failure for most

input data because of the two occurrences of the variable Y in the clause

heads.

What are Alternatives (1) and (2) with the highest priority (with no

penalty point)? Alternative (1) is the intended program, and Alternative (2)

is a program that merges two input lists by taking their elements alternately.

It’s not ‘append’, but is a quite meaningful program compared with the

other alternatives! The actual output of Kima for this error can be found

in Section A.1.

The optimization technique of generating mutations (Section 4.5.2) effi-

ciently generates only high-priority mutations (1) and (2) both by making

less occurrences of Y and by making more occurrences of X simultaneously.

Although the optimization is not so important in this example, the gener-

ation of mutated programs is itself costly for deep search.

5.2.2 Fibonacci Sequence Program With an Error

We consider the generator of a Fibonacci sequence with one error:

¨ ¥

§ ¦

R1: fib(Max,-, N2,Ns0):- N2 >Max | Ns0= 1[].

R2: fib(Max,N1,N2,Ns0):- N2=<Max |

N1= 2[N2|Ns1], N3:=N1+N2, fib(Max,N2,N3,Ns1).

(The body unification in R2 should be Ns0= 2[N2|Ns1])

The algorithm computes three independent minimal inconsistent sub-

sets; two on modes and one on types.

60 CHAPTER 5.

Minimal inconsistent subset 1 (on modes):
Mode constraint Rule Source symbol

m(〈=1, 2〉) = in (BF) “[]” in R1

m/〈=1, 1〉 = m/〈fib, 4〉 (BV) Ns0 in R1

m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R1

m(〈fib, 4〉) = IN (BV) Ns0 in R2

Minimal inconsistent subset 2 (on modes):
Mode constraint Rule Source symbol

m(〈=2, 2〉) = in (BF) “.” in R2

m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R2

m(〈=2, 1〉) = IN (BV) N1 in R2

Minimal inconsistent subset 3 (on types):
Type constraint Rule Source symbol

τ/〈fib, 2〉 = τ/〈:=, 2〉〈+, 1〉 (HBVτ) N1 in R2

τ(〈=2, 2〉) = list type (HBFτ) “.” in R2

τ/〈fib, 2〉 = τ/〈=2, 1〉 (HBVτ) N1 in R2

τ/〈=2, 2〉 = τ/〈=2, 1〉 (BUτ) =2 in R2

τ(〈:=, 2〉〈+, 1〉) = integer type built-in := in R2

These three subsets are classified into the same group because all the subsets

indicate Clause R2. Suspected variable symbols are extracted as in the table

below:

Clause Variable symbol Subset number

R1 Ns0 1
R2 Ns0 1
R2 N1 2, 3

When depth-1 search is attempted, Quick-check detects that rewritings

which increase or decrease the number of occurrences of Ns0 in Clause R1

need not be considered, because such changes may dissolve the subset 1 but

neither the subset 2 nor 3. After all, Quick-check finds that the only possible

ways to dissolve all inconsistencies are either to replace Ns0 by N1 or vice

versa in Clause R2. Since the number of occurrences of Ns0 and N1 is four in

total, only four ways of rewriting each variable occurrence need mode and

type analyses. Without Quick-check, a great number of mutations would

have had to be attempted in the search.

In this example, Kima finally finds only one alternative, which is the

program we have intended. If we consider Detection Rule 2, it detects the

variable Ns0 in the clause head of R2 as an error. This variable is dealt with

61

as the fourth minimal inconsistent subset with one element. In this case,

the table of suspected variable symbols is as follows:

Clause Variable symbol Subset number

R1 Ns0 1
R2 Ns0 1, 4
R2 N1 2, 3

This leads to the same process of the search as for this example. However,

Detection Rules provably reduce the cost of searching alternatives as well

as reinforce the detection power.

5.2.3 Quicksort Program With Two Errors

We consider a little advanced error correction by using a quicksort pro-

gram with two interdependent errors, which is the same example as in

Section 3.2.4. We consider the correction of constant symbols as well as

the correction of variable occurrences by the similar technique.

¨ ¥

§ ¦

1: R1: quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).

2: R2: qsort([], Ys0,Ys):- true | Ys= 1Ys0.

3: R3: qsort([X|Xs],Ys0,Ys3):- true |

4: part(X,Xs,S,L),qsort(S,Ys0,Ys1),

5: Ys2= 2[X|Ys1],qsort(L,Ys2,Ys3).

(The body unification goal should have been Ys1= 2[X|Ys2])

Here, the definition clauses of the predicate part are omitted.

We re-present the minimal inconsistent subset of mode constraints ob-

tained from the erroneous quicksort program:

Mode constraint Rule Source symbol

m(〈qsort, 3〉) = in (BF) “[]” in R1

m/〈=1, 1〉 = m/〈qsort, 3〉 (BV) Ys in R2

m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R2

m/〈qsort, 2〉 = m/〈=1, 2〉 (BV) Ys0 in R2

m(〈=2, 2〉) = in (BF) “.” in R3

m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R3

m/〈=2, 1〉 = m/〈qsort, 2〉 (BV) Ys2 in R3

We consider the correction of both constants and variables here, but do

not consider Detection Rules for your information. Depth-1 search is first

62 CHAPTER 5.

tried but cannot find any alternative to the errors. Then, in the following

depth-2 search, one mutation is performed on the possible sources of errors

above, but the other mutation is attempted exhaustively in Clauses R1, R2

and R3. Finally, however, the search successfully finds six well-moded and

well-typed alternatives:

(1) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,Zs,Zs).

(2) Line 1: quicksort(Xs,Ys):- true | qsort(Zs,Ys,Zs).

(3) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,c,Ys).

(4) Line 1: quicksort(Xs,Ys):- true | qsort(c,Ys,Xs).

(5) Line 5: Ys2= 2[X|Ys2], qsort(L,Ys1,Ys3).

(6) Line 5: Ys1= 2[X|Ys2], qsort(L,Ys2,Ys3).

Here, c is some constant.

Alternatives (3), (4) and (6) have the highest priority, while (1), (2)

and (5) have low priority due to Heuristic Rule 1.4. Heuristic Rule 1.1

imposes further penalty points on Alternatives (1) and (2). Alternative (5)

causes occur-check error (Detection Rule 1.2), which is a (strong) kind of

the constraints of Heuristic Rule 1.4.

If usage information is available, that is, if we know that quicksort is

used as m(〈quicksort, 1〉) = in and m(〈quicksort, 2〉) = out , Alternatives

(1), (2) and (4) are excluded.

Of the remaining, Alternative (6) is the intended program that sorts

items in ascending order. It is interesting to see that Alternative (3) is a

program for sorting items in descending order by choosing ‘[]’, the simplest

element of list type, as the constant c. This is not an intended program,

but is a reasonable and approximately correct alternative which should not

be rejected in the absence of program specification. The current version of

Kima finds nothing but Alternative (6) (Example 3 in Section A.1).

Chapter 6

Conclusions

6.1 Our Framework and the Kima System

We proposed a framework for automated (systematic) debugging with the

strong support of mode and type system, static analysis, and constraint

satisfaction. The framework comprises the techniques below:

• locating errors by computing minimal inconsistent subsets of mode/type

constraints and by grouping the subsets,

• searching alternatives to an erroneous program by means of a pair of

the generation of mutated programs and the test of the programs with

mode/type analysis,

• enhancing the quality of alternatives by heuristic rules prescribing the

(syntactical) “plausibility” of programs, and

• optimizing the generate-and-test search by using both the iterative-

deepening search with respect to the plausibility and the locality of

mode/type constraints.

With a few instances of a program, this framework could be used to infer

a correct form of the program from a more ambiguous representation than

an erroneous program (Section 6.3.1).

We embodied our framework in the Kima system, an automated error

correction system for concurrent logic programs. Kima has three significant

features:

• Kima corrects a few wrong occurrences of variable symbols in the

absence of explicit mode/type declarations,

64 CHAPTER 6.

• Kima corrects both multiple independent errors in a single execution

and k interdependent errors by depth-k search, and

• Kima can work on a fragment of a program.

We confirmed the effectiveness of our framework by experiments with

Kima. By the exhaustive experiments for simple programs and experiments

randomly chosen for rather large programs, we showed that

• Kima proposed one or a few alternatives to an erroneous program,

• heuristic rules we presented were quite effective not only in enhanc-

ing the quality of alternatives but also in optimizing the search of

alternatives, and

• the density of (well-moded and well-typed) plausible programs in the

syntactical neighborhood of the original (correct) program was very

low.

We have released the Kima system as a freeware from

http://www.ueda.info.waseda.ac.jp/~ajiro/study-e.html .

6.1.1 Experiences of Implementing Kima in KL1

Kima is a KL1 program (of 5,200 lines long) that consists of 31 modules.

KL1 has an efficient compiler named KLIC, KL1-to-C compiler system. The

KLIC system has achieved high portability by employing C as an interme-

diate language, and can be worked on most popular Unix systems with gcc

or some other C compilers.

KL1 and the KLIC system have provided the nice platform for describing

the search problem (symbol processing) and for our experiments. Although

KL1 has lost the feature of the automatic exhaustive search possessed in-

herently by Prolog, implementing Kima in KL1 might not be so inefficient

in describing the search problem. This is because Kima requires detailed

control of iterative-deepening A* search. In this case, even Prolog should

explicitly deal with a certain part of the search procedure.

Kima has been implemented to correct KL1 programs by assuming

strong moding and typing of Moded Flat GHC. KL1 is designed based

on Flat GHC, and the debugging of KL1 programs turned out to benefit

from moding and typing. In reality, Kima is nor well-moded nor well-typed

65

as a whole, but this is not an essential problem. Kima can deal with most

features of KL1, and yet several built-in predicates cause their usage to

be non-well-moded and non-well-typed. However, this problem could be

solved in the following (rather ad hoc) way even for the current specifica-

tion of KL1. We define, in a certain module, new well-moded and well-typed

built-in predicates that have the same function as “ill-mannered” built-in

predicates by using the ill-mannered built-in predicates themselves. We

then prepare the (principal) mode constraints of the new predicates. In an-

alyzing a program (set of modules), if we do not include the module of the

new predicates but use the mode and type constraints imposed by the new

predicates for their usage, the program can be well-moded and well-typed.

Kima’s function of error correction is rather experimental, but the func-

tion of locating errors by computing minimal inconsistent subsets was very

useful in developing Kima itself.

6.2 Related Work

6.2.1 Algorithmic and Declarative Debugging

Algorithmic debugging was first proposed by Shapiro [27] for diagnosing

wrong and missing answers in Prolog. This technique locates the source of

errors by performing the “binary search” of a proof tree in execution of a

Prolog program. Basically, algorithmic debugging technique analyzes the

difference between the intended and observed behaviors. Debugging with

(partial or abstract) specification has been studied as declarative debugging

for many programming languages. For instance, debugging of (concurrent

or constraint) logic programs is found in [11, 19, 21].

Analysis of malfunctioning systems based on their intended logical spec-

ification has been studied in the field of artificial intelligence [22] and known

as model-based diagnosis, which has some similarities with our work in the

ability of searching minimal explanations and multiple faults. However, the

purpose of model-based diagnosis is also to analyze the differences between

intended and observed behaviors based on the specification of the system.

6.2.2 Debugging Type Errors

Type declaration can be thought of as a kind of partial specification. In

languages equipped with static typing and automatic type reconstruction,

66 CHAPTER 6.

types need not be declared explicitly. This is the approach Kima has em-

ployed, but there has been a lot of work on explaining the source of type

errors for strongly typed functional languages such as ML [37, 4, 9, 14, 38].

When a type error has been found, these systems explain why and how

a particular type has been deduced. As far as we can see, they were im-

plemented by extending the unification algorithm for type reconstruction.

They recorded which symbol occurrence imposed which constraint in the

type deduction process. Such extension is necessary because Milner’s type

checking algorithm W [15] is not eligible to trace (backward) the deduction

steps. The general polymorphism introduced by let constructor makes

that problem difficult, because the polymorphic environment creates global

dependencies in a type reconstruction tree.

In contrast, our framework is built outside any underlying framework

of constraint solving. It does not incur any overhead for well-moded/typed

programs or modify the constraint-solving algorithm. Furthermore, the

diagnosis guarantees the minimality of the explanation and often refines it

further (Section 3.4 and 4.3). Yang presented a manifesto of seven properties

for a good type error reporting system to have [39]. Our system has all the

properties as far as a minimal inconsistent subset (or the intersection of

subsets as discussed in Section 5.1.4) is small.

A recent work by Chitil [7] defined a compositional type system in

Haskell. His type system seems to be similar to our constraint-based mode/type

system. His system managed, instead of types, typing relation between sym-

bol occurrences and types for compositional (i.e., incremental) type recon-

struction. His system solved the problem of let-polymorphism by copying

the subtree created by a polymorphic (type) variable to every occurrence of

the variable in a type reconstruction tree. This solution is very similar to

the way of handling polymorphism in our framework. Further, he proposed

to pinpoint the source of errors by applying classical algorithmic debugging

to a type reconstruction tree.

A soft typing approach introduces static type systems to dynamically

typed languages such as Lisp and Scheme [5, 1]. The MrSpidey system [10]

has a programming environment that visually presents the explanation of

type errors of Lisp programs based on soft typing and set-based analysis

[12]. In this approach, debugging is performed interactively because the

judgment of whether suspected fragments of a program are really wrong

necessarily depends on the programmer. Additional information given by

67

the programmer in the interaction could be thought of as declarations. The

choice between static and dynamic approaches is a question of tradeoff be-

tween safety and the flexibility of program description, but we think static

typing approach is suited for large-scale and/or complicated programs in

parallel and distributed computing.

Tenma’s system automatically corrects Lisp programs under typing [28].

When a change is made on a certain software component, the system au-

tomatically replaces the components that do not adapt to the change by

alternative components. Thus the purpose of the system is very different

from Kima. Kima works in the situation where the locations of errors are

entirely unknown, and it works at the program symbol (primitive) level

rather than the software component level.

6.2.3 Automated Programming

Automated programming is a technique of programming by partial specifi-

cation such as examples, demonstration, trace information, etc. At present,

automated programming technique is not studied hard, but there is one

field where the technique has achieved a success. That is the field of visual

programming and (graphical) user interface. Programming by examples,

demonstration, rehearsal has a great advantage in that field, because the

textual representation of the GUI part in a program code is far from the

actual GUI.

There are currently two techniques related to automated programming.

They are Inductive Logic Programming (ILP) and Genetic Programming

(GP). Their subjects are not a programming itself, but mode and type

information is beneficial to optimization for both techniques [18, 16].

Inductive logic programming [17, 23] is the latest system for inductive

inference that infers rules from examples. The ILP system succeeded to

Model Inference System (MIS) by Shapiro [25, 26]. The subject of ILP is

conceptual learning. That is, when given positive and negative examples,

the ILP system computes the rules of classifying examples as a logic program

both by generalizing the positive examples and by specializing the rules not

to include the negative examples.

Our framework might be formalized as genetic programming [13]. Fitness

values would be computed based on mode/type correctness and the plau-

sibility criteria for our framework. When given parts of a program (i.e.,

68 CHAPTER 6.

geneses), the GP system evolves them into an optimum program under a

certain fitness evaluation by using genetic manipulations such as mutation

and crossing. However, the GP system is not for generic programming en-

vironment in the sense that whether to succeed in the evolution strongly

depends on the choice of geneses.

6.2.4 Miscellaneous

Incidentally, we heard from a referee that some Fortran compilers of the

1970’s were equipped with automated error correction. The input was on

punched cards, and since resubmitting a job took a long time, the com-

pilers did go rather far in correcting syntactical errors; in many cases, the

correction was correct, and this saved a lot of time.

6.3 Future Work

Specifications or declarations of program properties, if available, will achieve

more advanced error correction. Our future plan is to let Kima accept

instances of a pair of input and output constraints. We plan to investigate

the possibility of automated programming with a relatively small number

of examples and strong support of static analysis.

6.3.1 Automated Variable Placement

We expect that most variable occurrences in a predicate definition could

automatically be specified by actually executing high-priority alternatives

with an interpreter or a compiler. Suppose that a program is developed in a

bottom up fashion and that the mode values of the arguments of predicates

called from the predicate in question have already been solved correctly.

For example, suppose the instance of an append program is given as:

¨ ¥

§ ¦
:- instance append(in([a,b,c]),in([d,e]),out([a,b,c,d,e])).

The function symbols “in/1” and “out/1” represent their arguments are

the instances of input and output, respectively. Next, the append program

with variable occurrences not specified (called predicate schema) is given

as:

69

¨ ¥

§ ¦

R1: append([], X,X):- true | X = 1X.

R2: append([X|X],X,X):- true |

X = 2[X|X],append(X,X,X).

Here, the variable X means an unspecified variable. Then, the mode values

of most paths are determined by the instance.

All paths whose mode values cannot be determined even with the in-

stance are those in the arguments of built-in (or user-defined) polymor-

phic predicates such as unification body goals. However, the moding rules

(HF), (BF) and (BU) (other than (HV), (GV) and (BV) as to variables) in

Figure 2.2 may determine the mode values of paths that have not yet been

determined by the instance. In the append case, the constraint below

m(〈=2, 1〉) = out

is derived from the two constraints:

Mode constraint Rule Source symbol
m(〈=2, 2〉) = in (BF) “.” in R2

m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R2

Also, if unspecified variables Xs are at the same position on both sides of

commutative predicates like X = 1X, then, without the loss of generality, we

can assume that the mode value on the left-hand side 〈=1, 1〉 is out mode

and the value on the right-hand side 〈=1, 2〉 is in mode.

The number of different variables in a clause is at least the number of

the paths of variable occurrences that are constrained to the mode value

out (OUT) in a clause body. If, in a clause head, there are paths of variable

occurrences constrained to the mode value in (IN), the number of different

variables increases by at least one. Now, the predicate schema takes one

step forward as:

¨ ¥

§ ¦

R1: append([], Y1,X):- true | V1= 1X.

R2: append([Y1|Y2],Y3,X):- true |

V1= 2[Z1|Z2],append(X,X,V2).

Here, there are four kinds of variables, Vn, Yn, Zn, and X for n ≥ 1. The

variable Vn is specified, and the others are unspecified.

First, the variable Vn means that the path of its occurrence has out mode

in a clause body. The variable Vn is a fixed, specified variable that is never

70 CHAPTER 6.

mutated (but may be mutated into “-” for penalty points to be improved).

Second, the variable Yn means that the path of its occurrence has in mode

in a clause head. The variable Yn is either promoted to the specified variable

Yn or mutated into other Yn in the same clause head. Third, the variable

Zn means that the mode value of the path of its occurrence has not been

determined yet. The variable Zn is either promoted to the specified variable

Zn or mutated into other variables, Vn, Yn or Zn in the same clause. Fourth,

the variable X means that the path of the variable has either out mode in a

clause head or in mode in a clause body. The variable X must be mutated

into the other variables Vn, Yn or Zn.

If we think of definition clauses as suspected clauses indicated by a

minimal inconsistent subset (or a group of subsets), the search of a complete

definition is the search of alternatives in the debugging sense. For each

clause li in a predicate definition, we compute the set Li
h,d of mutated clauses

by the algorithm in Figure 4.6. There are two differences from the original

way of mutating variable occurrences in the error correction. One is that

the mutation is performed under the mutating rules above. The other is

that the (partial) specification of modes and types has been provided by the

instance. So, we redefine the consistent set Li
h,d of mutated clauses, each

of which is mode and type consistent with the instance (and is observing

Detection Rules).

In the initial state of this search, different (singleton) variables should

temporarily be placed on the occurrences of unspecified variables including

X, because singleton variables impose a lot of penalty points on the initial

state and help the A* search efficiently prune implausible mutations. The

depth d of the search is the total number of unspecified variables, Yn, Zn,

and X, in the clause. If we consider the mutation of a variable Vn into “-”,

the depth is the total number of both unspecified and specified variables.

For definition clauses {l1, . . . , ln}, we then define a set Qi of mutated

definition clauses of a predicate as:

Qi = {l1, . . . , ln| l1 ∈ L1
h1,d1

, . . . , ln ∈ Ln
hn,dn

,
n∑

j=1

hj = n + i− 1},

where di is the total number of unspecified variables in the clause li. In the

append case, the set L1
1,3 consists of the single (consistent and intended)

clause of R1:

(1) append([],Y1,V1):- true | V1= 1Y1.

71

The set L2
1,8 consists of the six consistent clauses of R2:

(1) append([Y1|Y2],Y3,V1):- true | V1= 2[Y1|V2], append(Y3,Y2,V2).

(2) append([Y1|Y2],Y3,V2):- true | V1= 2[Y1|Y3], append(V1,Y2,V2).

(3) append([Y1|Y2],Y3,V1):- true | V1= 2[Y1|V2], append(Y2,Y3,V2).

(4) append([Y1|Y2],Y3,V2):- true | V1= 2[Y1|Y3], append(Y2,V1,V2).

(5) append([Y1|Y2],Y3,V2):- true | V1= 2[Y1|Y2], append(V1,Y3,V2).

(6) append([Y1|Y2],Y3,V2):- true | V1= 2[Y1|Y2], append(Y3,V1,V2).

With the integrated assistance of an interpreter or a compiler, the in-

tended combination, (1) of R1 and (3) of R2, could be obtained by executing

six (1 × 6) alternatives (i.e., six definitions) after the check of their well-

modedness and well-typedness of the whole program.

Let clauses {l1, . . . , ln} be a predicate schema with specified and un-

specified variables, and L0 be all clauses but {l1, . . . , ln}. Then, given the

instance(s) and predicate schema, an algorithm for this automated variable

placement is outlined in Figure 6.1.

6.3.2 Error Correction of Function Occurrences

The correction of function occurrences (including constants) might be real-

ized with type information provided by the instances of a pair of input and

output constraints. As far as the structure of the abstract syntax tree of an

erroneous program is preserved, there are three kinds of the error correction

of function occurrences, that is, the correction of

1. a function occurrence to a function occurrence,

2. a constant to a variable occurrence, and

3. a variable occurrence to a constant.

The second correction is possible even by the technique similar to the cur-

rent version of Kima. In the first, the correction to function symbols except

constants is not so difficult with type information. The main reason why the

correction of numbers 1 and 3 is difficult is that we cannot choose an appro-

priate constant symbol to mutate into especially for integer numbers used in

72 CHAPTER 6.

¨ ¥

§ ¦

Compute the mode values of the paths of variable occurrences with
the instances and the moding rules (HF), (BF) and (BU);

Place specified variable, Vn, and unspecified variables, Yn, Zn and X
based on the mode values computed above;

h ← 1;
while a solution is not found ∧ h ≤ MAX h do

Generate sets Li
h,di

for 1 ≤ i ≤ n;

Reset the sets Li
h,di

by clauses consistent with both the instances
and predicates called from the predicate schema;

Generate sets Q1, . . . ,Qh of mutated definition clauses from
the sets L1

h,d1
, . . . ,Ln

h,dn
;

for each q ∈ Qh do
if mcs(L0 ∪ q) is consistent ∧ tcs(L0 ∪ q) is consistent then
if the results of executing a program (L0 ∪ q) matches

the instances then
Report the predicate definition q as a solution

fi
fi

end for;
h ← h + 1

end while

Figure 6.1: Algorithm for automated variable placement

73

most programs. However, in reality, the most occurrences of constants have

charastristic values such as 0, 1, [], [[]], {}, etc. So, with the instances

of a pair of input and output, the correction of function occurrences might

be possible by executing alternatives.

Other kinds of error correction that cause the structure of the abstract

syntax tree to mutate are again difficult. The elimination of symbol occur-

rences would relatively be easy, but supplying appropriate predicates is not

because of the enormous search space of programs. It might be possible to

supply a small number of function symbols, for example, mutating X into

[X] rather ad hoc. To supply appropriate predicates and their arguments

is the very topic of genetic programming and inductive inference.

6.3.3 Applicability to Other Languages

We take an interest in the applicability of our framework to other program-

ming languages, especially tyepd functional languages such as ML. Although

our framework could apparently be applied to the languages equipped with

strong typing, there are many characteristic problems of each programming

language to solve. The first subject of automated debugging is the target

of debugging and the definition of simple errors, while the final goal is to

keep the number of alternatives small (by additional heuristics if necessary).

Furthermore, the alternatives have to be proposed in a certain short time.

In our framework, two techniques play important roles in automated de-

bugging. One is to locate errors by computing minimal inconsistent subsets.

This technique works on the ground that small number of suspected con-

straints can be obtained. The number of the elements of a minimal subset

depends on the shape of a mode/type graph, which is wide but shallow. In

contrast, the type graphs of functional programs are deep in general, and

the “explanation” of errors is prone to be long.

The other is the heuristics used for the refinement of alternatives and

for the optimization of searching alternatives. Intuitively, similar techniques

seem to be necessary also for other languages. Automated error correction

of even variables would be difficult without heuristics. Thus, we conclude

that much consideration is necessary for applying our framework to other

languages.

74 CHAPTER 6.

References

[1] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft Typing with

Conditional Types. In Proc. 21st ACM Symp. on Principles of

Programming Languages, pages 167–173. ACM, 1994.

[2] H. Aı̈t-Kaci and R. Nasr. LOGIN: A Logic Programming Language

with Built-In Inheritance. J. Logic Programming, 3(3):185–215, 1986.

[3] Y. Ajiro, K. Ueda, and K. Cho. Error-Correcting Source Code.

In Proc. Fourth Int. Conf. on Principles and Practice of Constraint

Programming (CP’98), number 1520 in LNCS, pages 40–54. Springer,

1998.

[4] M. Beaven and R. Stansifer. Explaining Type Errors in Polymorphic

Languages. ACM Letters on Programming Languages and Systems,

2(1–4):17–30, 1993.

[5] R. Cartwright and M. Fagan. Soft Typing. In Proc.

ACM SIGPLAN’91 Conf. on Programming Language Design and

Implementation (PLDI’91), SIGPLAN Notice 26(6), pages 268–277.

ACM, 1991.

[6] T. Chikayama, T. Fujise, and D. Sekita. A Portable and Efficient

Implementation of KL1. In Proc. Sixth Int. Symp. on Programming

Language Implementation and Logic Programming (PLILP’94), num-

ber 844 in LNCS, pages 25–39. Springer, 1994.

[7] O. Chitil. Compositional Explanation of Types and Algorithmic

Debugging of Type Errors. In Proc. Sixth Int. Conf. on Functional

Programming (ICFP’01), pages 193–204. ACM Press, 2001.

75

76 REFERENCES

[8] K. Cho and K. Ueda. Diagnosing Non-Well-Moded Concurrent Logic

Programs. In Proc. 1996 Joint Int. Conf. and Symp. on Logic

Programming (JICSLP’96), pages 215–229. The MIT Press, 1996.

[9] D. Duggan and F. Bent. Explaining Type Inference. Science of

Computer Programming, 27(1):37–83, 1996.

[10] C. Flanagan and M. Felleisen. A New Way of Debugging Lisp

Programs. In 40th Anniversary of Lisp (Lisp in the Mainstream), 1998.

[11] M. P.J. Fromherz. Towards Declarative Debugging of Concurrent

Constraint Programs. In Proc. First Int. Workshop on Automated and

Algorithmic Debugging (AADEBUG’93), number 749 in LNCS, pages

88–100. Springer, 1993.

[12] N. Heintze and J. Jaffar. Set Constraints and Set-Based Analysis. In

Proc. Principles and Practice of Constraint Programming, Second Int.

Workshop (PPCP’94), number 874 in LNCS, pages 281–298. Springer,

1994.

[13] J. Koza. Genetic Programming. The MIT Press, Cambridge, MA, 1992.

[14] B. J. McAdam. Generalising Techniques for Type Debugging. In

First Scottish Functional Programming Workshop, 1999. Also in P.

Trinder, G. Michaelson, and H.-W. Loidl, editors, Trends in Functional

Programming, pages 49–57, Intellect, 2000.

[15] R. Milner. A Theory of Type Polymorphism in Programming. J. of

Computer and System Sciences, 17(3):348–375, 1978.

[16] D. J. Montana. Strongly Typed Genetic Programming. Technical

Report 7866, Bolt Beranek and Newman, Inc., 1993.

[17] S. Muggleton. Inductive Logic Programming. New Generation

Computing, 8(4):295–318, 1991.

[18] S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory

and Methods. J. of Logic Programming, 19–20:629–679, 1994.

[19] L. Naish. A Declarative Debugging Scheme. J. of Functional and Logic

Programming, 1997(3):1–27, 1997.

77

[20] G. D. Plotkin. A Structual Approach to Operational Semantics. DAIMI

FN-19, Computer Science Dept., Aarhus Univ., Denmark, 1981.

[21] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static

and Dynamic Assertion-based Debugging of Constraint Logic

Programs. In Proc. Logic-based Program Synthesis and Transformation

(LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer, 1999.

[22] R. Reiter. A Theory of Diagnosis from First Principles. Artificial

Intelligence, 32:57–95, 1987.

[23] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning Concepts

by Asking Questions. In R. Michalski, J. Carbonnel, and T. Mitchell,

editors, Machine Learning: An Artificial Intelligence Approach, Vol. 2,

pages 167–192. Morgan Kaufmann, 1986.

[24] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundations

of Concurrent Constraint Programming. In Conference Record of

the Eighteenth Annual ACM Symp. on Principles of Programming

Languages, pages 333–352. ACM, 1991.

[25] E. Y. Shapiro. An algorithm that infers theories from facts. In Proc.

Seventh Int. Joint Conf. on Artificial Intelligence (IJCAI-81), pages

446–451. Morgan Kaufmann, 1981.

[26] E. Y. Shapiro. Inductive inference of theories from facts. Research

Report 192, Yale University, 1981.

[27] E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished

Dissertation Series. The MIT Press, Cambridge, MA, 1982.

[28] T. Tenma et al. A Modification Support System – Automated

Correction of Side-Effects Caused by Type Modifications. In Proc.

ACM 18th Annual Computer Science Conference (CSC’90), pages 154–

160. ACM, 1990.

[29] K. Ueda. Designing a Concurrent Programming Language. In Proc.

Int. Conf. organized by the IPSJ to Commemorate the 30th Anniversary

(InfoJapan’90), pages 87–94. Information Processing Society of Japan,

1990.

78 REFERENCES

[30] K. Ueda. I/O Mode Analysis in Concurrent Logic Programming. In

Proc. Int. Workshop on Theory and Practice of Parallel Programming,

number 907 in LNCS, pages 356–368. Springer, 1995.

[31] K. Ueda. Experiences with Strong Moding in Concurrent Logic/

Constraint Programming. In Proc. Int. Workshop on Parallel Symbolic

Languages and Systems, number 1068 in LNCS, pages 134–153.

Springer, 1996.

[32] K. Ueda. Concurrent Logic/Constraint Programming: The Next 10

Years. In K. R. Apt, V. W. Marek, M. Truszczynski, and D. S. Warren,

editors, The Logic Programming Paradigm: A 25-Year Perspective,

pages 53–71. Springer, 1999.

[33] K. Ueda. Resource-Passing Concurrent Programming. In Proc. Fourth

Int. Symp. on Theoretical Aspects of Computer Software, number 2215

in LNCS, pages 95–126. Springer, 2001.

[34] K. Ueda and T. Chikayama. Design of the Kernel Language for the

Parallel Inference Machine. The Computer Journal, 33(6):494–500,

1990.

[35] K. Ueda and M. Morita. A New Implementation Technique for Flat

GHC. In Proc. Seventh Int. Conf. on Logic Programming (ICLP’90),

pages 3–17. The MIT Press, 1990.

[36] K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented

Implementation Technique. New Generation Computing, 13(1):3–43,

1994.

[37] M. Wand. Finding the Source of Type Errors. In Proc. 13th ACM

Symp. on Principles of Programming Languages, pages 38–43. ACM,

1986.

[38] J. Yang and G. Michaelson. A visualisation of polymorphic type check-

ing. J. Functional Programming, 10(1):57–75, 2000.

[39] J. Yang, G. Michaelson, P. Trinder, and J. B. Wells. Improved Type

Error Reporting. In Proc. 12th Int. Workshop on Implementation

of Functional Languages, pages 71–86. Aachner Informatik-Berichte,

2000.

Appendix A

Usage of Kima

80 APPENDIX A.

A.1 Examples

Example 1 – A single error

Consider a list concatenation (append) program with one error:

¨ ¥

§ ¦

:- module test.

append([], Y,Z):- true | Y=Z.

append([A|Y],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).

(The head should have been append([A|X],Y,Z0))

Suppose you want to obtain alternatives with up to priority 100 (i.e.,

very low priority). Then, command line options should be given as:

¨ ¥

§ ¦
% kima +p 100 append.kl1

Then, Kima presents six alternatives, all up to priority 3:

¨ ¥

§ ¦

================= Suspected Group 1 =================

------------- Priority 1 -------------

append([A|X],Y,Z0):-true|Z0=[A|Z],append(X,Y,Z).

in test:append/3, clause No.2

append([A|Y],X,Z0):-true|Z0=[A|Z],append(X,Y,Z).

in test:append/3, clause No.2

------------- Priority 2 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z0,Y,Z).

in test:append/3, clause No.2

------------- Priority 3 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(A,Y,Z).

in test:append/3, clause No.2

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z,Y,Z).

in test:append/3, clause No.2

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Y,Y,Z).

in test:append/3, clause No.2

81

Each alternative is separated by “-----”. The two alternatives of priority

1 have the highest priority. The first alternative is the intended one, while

the second alternative turns out to be a program that merges two input lists

by taking their elements alternately. That is, when invoked as

append([1,2,3],[4,5,6],Out), the first alternative returns [1,2,3,4,5,6]

and the second returns [1,4,2,5,3,6].

Next, let us compute minimal inconsistent subsets (MIS s for short) and

variable symbol occurrences infringing Detection Rules.

¨ ¥

§ ¦

% kima +mis append.kl1

< Minimal Inconsistent Subsets of *Mode* constraints >

m/<(test:append)/3,1><cons,2> = IN

imposed by the rule HV applied to the variable Y

in test:append/3, clause No.2

m/<(test:append)/3,1> = OUT

imposed by the rule BV applied to the variable X

in test:append/3, clause No.2

< Minimal Inconsistent Subsets of *Type* constraints >

--Constraints are consistent, and there is no MIS--

< Violations of syntactic rules of Detection Level 2 >

singleton(X)

in test:append/3, clause No.2

Minimal inconsistent subsets of mode constraints are obtained first;

those of types second. Multiple independent subsets can be computed at

once, and each subset is displayed with a separator “-----”. In this ex-

ample, only one minimal inconsistent subset on modes is found, while type

constraints are consistent.

The subset says that variables X and Y in the second clause of append are

suspicious. Using this information, Kima searches alternatives by changing

the number of occurrences of X and/or Y in the clause. In addition to

the minimal inconsistent subset, the variable X is detected as an error by

Detection Rule 2. Violations of Detection Rules are reported as follows:

82 APPENDIX A.

Detection Rule 1.

1. A variable checked for its value or instantiation in a clause guard

must occur also in the head of the clause:

var-not-in-the-head(the variable)

2. The same variable must not occur on both sides of a unification

body goal: not-pass-occur-check(the variable)

Detection Rule 2. The name of a singleton variable must begin with an

underscore “-”: singleton(the variable)

Kima always assume Detection Level 1, at which Detection Rule 1 is used

without respect to command line options. The additional use of Detection

Rule 2 (Detection Level 2) hinges on the options (see Section A.2).

Example 2 – Multiple, independent errors

The second example is a program comb(n,r,Out) that generates the list

of all length-n 0-1 lists in which the 1’s occur exactly r times. (Hence the

outer list contains nCr elements.) For example, comb(3,2,Out) returns the

list [[1,1,0],[1,0,1],[0,1,1]]. Below is the definition of comb with two

errors:

¨ ¥

§ ¦

:- module probability.

comb(N,0,C):- true | init-list(0,N,0,[],C0),C=[C0].

comb(N,N,C):- true | init-list(0,N,1,[],C0),C=[C0].

comb(N,R,C):- N>R |

N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons-list(1,C0,CC0),

comb(N1,R,C1),cons-list(0,C1,CC1),append(CC0,CC1,CC).

(The last invocation should have been append(CC0,CC1,C))
init-list(N,Len,-,L0,L):- N=:=Len | L0=L.

init-list(N,Len,E,L0,L):- N < Len |

L1=[E|L0],N1:=N+1,init-list(N1,Len,E,L1,L).

cons-list(-,[], L):- true | L=[].

cons-list(A,[X|Xs],L):- true |

L=[[A|X]|L1],cons-list(A,XS,L1).

(The recursive call should have been cons-list(A,Xs,L1))
append([], Y,Z):- true | Y=Z.

append([A|X],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).

83

The default action of Kima is to perform depth-1 search of alternatives

with the highest priority using modes, types, and Detection Rules (Section

A.2).

¨ ¥

§ ¦

% kima comb.kl1

================= Suspected Group 1 =================

------------- Priority 1 -------------

comb(N,R,C):-N>R|

N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons_list(1,C0,CC0),

comb(N1,R,C1),cons_list(0,C1,CC1),append(CC0,CC1,C).

in probability:comb/3, clause No.3

================= Suspected Group 2 =================

------------- Priority 1 -------------

cons_list(A,[X|Xs],L):-true|

L=[[A|X]|L1],cons_list(A,Xs,L1).

in probability:cons_list/3, clause No.2

There are two Suspected Groups. In this example, Kima first found

multiple minimal inconsistent subsets. By analyzing the clauses indicated

by the subsets, Kima concluded there were two independent groups. Kima

performed depth-1 search of alternatives for each group, and succeeded in

finding alternatives that restored the intended program.

Example 3 – Multiple, interdependent errors

Last, we consider a quicksort program with two errors in the same clause.

¨ ¥

§ ¦

:- module main.

quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).

qsort([], Ys0,Ys):- true | Ys=Ys0.

qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L),qsort(S,Ys0,Ys1),

Ys2=[X|Ys1],qsort(L,Ys2,Ys3).

(The body unification goal should have been Ys1=[X|Ys2])
part(-,[], S, L):- true | S=[],L=[].

part(A,[X|Xs],S0,L):- A>=X | S0=[X|S],part(A,Xs,S,L).

part(A,[X|Xs],S, L0):- A< X | L0=[X|L],part(A,Xs,S,L).

Depth-1 search is tried first, but no solution can be found.

84 APPENDIX A.

¨ ¥

§ ¦

% kima qsort.kl1

================= Suspected Group 1 =================

Sorry, no alternative is found

Now depth-2 search is tried.

¨ ¥

§ ¦

% kima +d 2 qsort.kl1

================= Suspected Group 1 =================

------------- Priority 1 -------------

qsort([X|Xs],Ys0,Ys3):-true|

part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys1=[X|Ys2],

qsort(L,Ys2,Ys3).

in main:qsort/3, clause No.2

Only one alternative is found, and this is the intended one. In depth-2

search, depth-1 search is also performed, and all the alternatives found by

depth-1 and depth-2 searches are prioritized together. In general, depth-N

search includes depth-k search for all k ≤ N .

A.2 Details of Options

Below are the command line options available:

Option Effect
+mode use mode information only
+type use type information only
+dr use Detection Rule (singleton rule) only
+mis present suspicious sources (Minimal Inconsistent Subsets)
+d N search alternatives in up to depth N (0 < N ≤ 10)
+p N search alternatives with up to priority N (> 0)
+pp N not search alternatives with penalty points more than N (≥ 0)

Any option other than the above is considered as a file name. If nonexistent

file is given, the execution of Kima is interrupted. The option ‘+dr’ involves

the use of Detection Rule 2.

When no option is given, Kima assumes that options are as:

¨ ¥

§ ¦
% kima +mode +type +dr +d 1 +p 1 +pp 20 FILE1 FILE2 ...

85

That is, depth-1 search of alternatives with the highest priority is performed

by the information of modes, types and Detection Rules. If an alternative

with penalty points 20 or less is not found, Kima terminates after reporting

the failure of the search of alternatives.

The behavior of Kima including the default one is prescribed by the

interpretation rules of command line options. All the rules are as follows:

• If neither the option ‘+mode’, ‘+type’ nor ‘+dr’ is given explicitly, the

three options are all considered to be given.

• If neither the option ‘+mis’ nor ‘+d’ is given, then the option ‘+d

1’ is considered to be given. If you wants to obtain both minimal

inconsistent subsets and alternatives at a time, the options should be

given as ‘+mis +d N ’.

• The default argument values of the options, ‘+d’, ‘+p’ and ‘+pp’ are 1,

1 and 20, respectively.

• If the option, ‘+d’, ‘+p’ or ‘+pp’ that requires its argument N is given

without N , then the option itself is ignored.

