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Abstract. We have implemented Kima, an automated error correction system
for concurrent logic programs. Kima corrects near-misses such as wrong variable
occurrences in the absence of explicit declarations of program properties.

Strong moding/typing and constraint-based analysis are turning out to play
fundamental roles in debugging concurrent logic programs as well as in establishing
the consistency of communication protocols and data types. Mode/type analysis of
Moded Flat GHC is a constraint satisfaction problem with many simple mode/type
constraints, and can be solved efficiently. We proposed a simple and efficient tech-
nique which, given a non-well-moded/typed program, diagnoses the “reasons” of
inconsistency by finding minimal inconsistent subsets of mode/type constraints.
Since each constraint keeps track of the symbol occurrence in the program, a minimal
subset also tells possible sources of program errors.

Kima realizes automated correction by replacing symbol occurrences around the
possible sources and recalculating modes and types of the rewritten programs sys-
tematically. As long as bugs are near-misses, Kima proposes a rather small number
of alternatives that include an intended program. Search space is kept small because
the minimal subset confines possible sources of errors in advance. This paper presents
the basic algorithm and various optimization techniques implemented in Kima, and
then discusses its effectiveness based on quantitative experiments.

Keywords: Concurrent Logic Programming, Types, Static Analysis, Debugging,
Constraint Satisfaction

1. Introduction

In our previous work (Ajiro et al., 1998), we proposed a framework
of automated debugging of program errors based on static, constraint-
based program analysis in the absence of programmers’ declarations.
The framework was then implemented in Kima, an automated error
correction system for concurrent logic programs, which featured several
improvements to make the system more practical and efficient.

The mechanism of error correction in Kima is based on the mode
and type systems of Moded Flat GHC (Ueda and Morita, 1990; Ueda
† An earlier version of this article (written in Japanese) appeared in Computer

Software published by Japan Society for Software Science and Technology (Ajiro
and Ueda, 2001). In the current version, major revision has been made on Sections
4, 5, and 6.
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2 Y. Ajiro and K. Ueda

and Morita, 1994). Moded Flat GHC is a concurrent logic (and con-
sequently, a concurrent constraint) language with a constraint-based
mode system designed by one of the authors. Concurrent logic lan-
guages (Ueda, 1999) provide a simple and powerful model of concur-
rency as well as a full-fledged programming language with

− first-class message channels,

− evolving process structures and channel mobility

− data structures such as lists and arrays, and

− messages with reply boxes.

All these features are due to the power of logical, single-assignment
variables. Concurrent processes communicate with each other using
shared logical variables. Because a logical variable can be written (or
instantiated) only once, repeated message passing is realized by instan-
tiating a shared variable to a stream (implemented as a list) of messages
incrementally from the first element downwards. When a message has
as its argument a reply box, which is another logical variable, that
variable is instantiated by the receiver of the stream. In this case, the
whole data structure of a stream is determined cooperatively by both
the sender and the receiver of the stream.

Languages equipped with strong typing enable the detection of type
errors by checking or reconstructing types. The best-known framework
for type reconstruction is the Hindley-Milner type system (Milner,
1978), which allows us to solve a set of type constraints obtained from
program text efficiently as a unification problem.

Similarly, the mode system1 of Moded Flat GHC allows us to solve
a set of mode constraints obtained from program text as a constraint
satisfaction problem. Mode reconstruction statically determines the
read/write capabilities of variable occurrences and establishes the con-
sistency of communication protocols between concurrent processes (Ueda
and Morita, 1994). In other words, mode reconstruction guarantees the
cooperative use of shared variables between concurrent processes. By
cooperative we mean exactly one process can determine each part of a
data structure (such as a stream of messages) communicated between
processes.

As we will see later, types in Moded Flat GHC also can be recon-
structed using a similar (and simpler) technique. Further details of our
mode and type systems are found in Sect. 2.

1 Modes can be thought of as “types in a broad sense”, but in this paper we
reserve the term “types” to mean sets of possible values.
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Compared with abstract interpretation usually employed for the
precise analysis of program properties, constraint-based formulation of
the analysis of basic program properties has a lot of advantages. Firstly,
it allows simple and general formulations of various interesting appli-
cations including error diagnosis. Secondly, thanks to its incremental
nature, it is naturally amenable to separate analysis of large programs.

When a concurrent logic program contains bugs, it is very likely that
mode constraints obtained from the erroneous symbol occurrences are
incompatible with the other constraints. We have proposed an efficient
algorithm that finds a minimal inconsistent subset of mode constraints
from an inconsistent (multi)set of constraints (Cho and Ueda, 1996).
Since each constraint keeps track of the symbol occurrence(s) in the
program that imposed the constraint, a minimal subset tells possible
sources (i.e., symbol occurrences) of mode errors.

Using the information of possible locations of bugs, automated cor-
rection is attempted basically by generate-and-test search, namely the
generation of possible rewritings and the computation of their principal
modes and types. Search space is kept small because the locations of
bugs have been limited to small regions of program text.

A significant feature of our framework is that it works on a fragment
of a program such as a set of predicate definitions in a particular mod-
ule. Our framework is quite effective, for example, when a program
has not been completely constructed. This is due to the fact that
the multiset of mode constraints imposed by a program usually has
redundancy for two reasons:

1. A non-trivial program contains conditional branches or nondeter-
ministic choices. In (concurrent) logic languages, they are expressed
as a set of rewrite rules (i.e., program clauses) that may impose the
same mode constraints on the same predicate.

2. A non-trivial program contains predicates that are called from more
than one place, some of which may be recursive calls. The same
mode constraint may be imposed by different calls.

Although the framework is quite general, whether it is practical or
not may depend on the choice of a language. Kima corrects wrong
occurrences of variable symbols in a KL1 (Ueda and Chikayama, 1990)
program assuming strong moding and typing of Moded Flat GHC. KL1
is designed based on Flat GHC that is not equipped with strong mod-
ing/typing, but the debugging of KL1 programs turns out to benefit
from moding and typing. Furthermore, its compiler KLIC provides a
nice platform for our experiments (Chikayama et al., 1994). We have
obtained promising results from our experiments with the assistance of
other syntactical constraints (Sect. 5).
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2. Strong Moding and Typing in Concurrent Logic
Programming

We outline the mode system of Moded Flat GHC. The readers are
referred to (Ueda and Morita, 1994) and (Ueda, 1996) for details.

In concurrent logic programming, modes play a fundamental role
in establishing the safety of a program in terms of the consistency
of communication protocols. The mode system of Moded Flat GHC
gives a polarity structure (that determines the information flow of each
part of data structures created during execution) to the arguments
of predicates that determine the behavior of goals. A mode expresses
this polarity structure, which is represented as a mapping from the set
of paths to the two-valued codomain {in, out}. Paths here are strings
of pairs, of the form 〈symbol, arg〉, of predicate/function symbols and
argument positions, and are used to specify possible positions in data
structures. Formally, the set PTerm of paths for terms and the set PAtom

of paths for atomic formulae are defined using disjoint union as:

PTerm = (
∑

f∈Fun

Nf )∗ , PAtom = (
∑

p∈Pred

Np)× PTerm ,

where Fun and Pred are the sets of function and predicate symbols, and
Nf and Np are the sets of possible argument positions (numbered from
1) for the symbols f and p, respectively. The disjoint union operator∑

means: ∑

f∈Fun

Nf = {〈f, i〉 | f ∈ Fun, i ∈ Nf} .

The purpose of mode analysis is to find the set of all modes (each of
type PAtom → {in, out}) under which every piece of communication is
cooperative. Such a mode is called a well-moding. Intuitively, in means
the inlet of information and out means the outlet of information. A
program does not usually define a unique well-moding but has many of
them. So the purpose of mode analysis is to compute the set of all well-
modings in the form of a principal (i.e., most general) mode. Principal
modes can be expressed naturally by mode graphs, as described later
in this section.

Given a mode m, we define a submode m/p, namely m viewed at
the path p, as a function satisfying (m/p)(q) = m(pq). We also define
IN and OUT as submodes returning in and out , respectively, for any
path. An overline ‘ ’ inverts the polarity of a mode, a submode, or a
mode value.

A Flat GHC program is a set of clauses of the form h:- G | B, where
head h is an atomic formula and guard G and body B are multisets
of atomic formulae. Intuitively, each clause is a rewriting rule, where
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h is a template matched with a goal to be rewritten; G is a multiset
of conditions; and B is a multiset of subgoals that the goal would be
rewritten to. The execution of a program starts with a goal clause of
the form :- B, where B is a multiset of atomic formulae representing
goals to be reduced concurrently.

Mode constraints imposed by a clause h :- G | B are summarized
in Fig. 1. All rules here embody the assumption that every piece of
communication is cooperative. In concurrent logic programming, vari-
ables can be considered as communication channels between the head
and the body of a clause or between different body goals of a clause.
Rule (BV) means exactly one of the occurrences of a variable works as
the outlet of information flow and the other occurrences of the variable
work as inlets. Variable occurrences in a clause head with the mode
value in/out work conversely as the outlet/inlet of information when
viewed from inside the clause. When a variable occurs at most twice,
the relation R in (BV) is reduced to a unary or a binary relation as:

R({s}) ⇔ s = OUT
R({s1, s2}) ⇔ s1 = s2

Rule (HV) comes from the semantics of Flat GHC that multiple
occurrences of a variable in a clause head must receive completely
identical terms. Rule (GV) means the occurrence of a variable in a
clause head is regarded as an inlet if the variable is tested in the guard.
Rule (BF) says that a function symbol in a body goal is a source of
information to the callee side, while Rule (HF) says that a function
symbol in a clause head is a receptor of information from the caller side.
Rule (BU) numbers unification body goals because the mode system
allows different body unification goals to have different modes. This
is a special case of mode polymorphism that can be introduced into
other predicates as well (Cho and Ueda, 1996), but in this paper we
will not consider general mode polymorphism because whether to have
polymorphism is independent of the essence of this work.

As an example, consider a list concatenation (append) program
defined as follows:

¨ ¥

§ ¦

R1 : append([], Y,Z ):- true | Y=1Z.
R2 : append([A|X],Y,Z0):- true | Z0=2[A|Z],append(X,Y,Z).

From the clause R1, we obtain four constraints:
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¨ ¥

§ ¦

(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m/p = IN , for a variable symbol occurring more than once
in h at p and somewhere else.

(GV) If some variable occurs both in h at p and in G at p′,
∀q ∈ PTerm(m(p′q) = in ⇒ m(pq) = in).

(BU) m/〈=k, 1〉 = m/〈=k, 2〉, for a unification body goal =k.

(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (≥ 1) times in h
and B at p1, . . . , pn, of which the occurrences in h are at
p1, . . . , pk (k ≥ 0). Then

{R({m/p1, . . . ,m/pn}), if k = 0;
R({m/p1, m/pk+1, . . . ,m/pn}), if k > 0;

where the unary predicate R over finite multisets of sub-
modes represents “cooperative communication” between
paths and is defined as

R(S) def= ∀q∈PTerm ∃s∈S(s(q) = out ∧∀s′∈S\{s} (s′(q) = in)).

Figure 1. Mode constraints imposed by a program clause h:- G | B or a goal clause
:- B.

Mode constraint Rule Source symbol

m(〈a, 1〉) = in (HF) “[]”
m/〈=1, 1〉 = m/〈=1, 2〉 (BU) =1

m/〈a, 2〉 = m/〈=1, 1〉 (BV) Y

m/〈a, 3〉 = m/〈=1, 2〉 (BV) Z

From the clause R2, we obtain eight constraints:
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Mode constraint Rule Source symbol

m(〈a, 1〉) = in (HF) “.”
m/〈=2, 1〉 = m/〈=2, 2〉 (BU) =2

m(〈=2, 2〉) = in (BF) “.”
m/〈a, 1〉〈., 1〉 = m/〈=2, 2〉〈., 1〉 (BV) A

m/〈a, 1〉〈., 2〉 = m/〈a, 1〉 (BV) X

m/〈a, 2〉 = m/〈a, 2〉 (BV) Y

m/〈a, 3〉 = m/〈=2, 1〉 (BV) Z0

m/〈=2, 2〉〈., 2〉 = m/〈a, 3〉 (BV) Z

Here, “a” stands for append; “.” stands for the list constructor. In total,
twelve constraints are obtained from append, and they are consistent
as a whole. By simplifying the constraints on “=k”, all the constraints
can be reduced to six constraints below:

m(〈a, 1〉) = in
m/〈a, 1〉〈., 2〉 = m/〈a, 1〉

m(〈a, 2〉) = in
m/〈a, 2〉〈., 2〉 = m/〈a, 2〉

m/〈a, 3〉 = m/〈a, 2〉
m/〈a, 3〉〈., 1〉 = m/〈a, 1〉〈., 1〉

We could regard these constraints themselves as representing the
principal mode of the program, but the principal mode can be repre-
sented more explicitly in terms of a mode graph (Fig. 2). Mode graphs
are a kind of feature graphs (Aı̈t-Kaci and Nasr, 1986) in which

1. a path (in the graph-theoretic sense) represents a member of PAtom ,

2. the node corresponding to a path p represents the value of m(p)
(↓ = in, ↑ = out),

3. each arc is labeled with the pair 〈symbol, arg〉 of a predicate/function
symbol and an argument position, and may have an inversion bub-
ble (denoted “•” in Fig. 2) that inverts the interpretation of the
mode values of the paths beyond that arc, and

4. a binary constraint of the form m/p1 = m/p2 or m/p1 = m/p2 is
represented by letting p1 and p2 lead to the same node.
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¨ ¥

§ ¦

<a,1> <a,2> <a,3>

< . ,1>

< . ,2>
< . ,1>

< . ,2>

Figure 2. The mode graph of an append program. The mode information of the
toplevel predicate and unification goals is omitted.

The cost of mode analysis is almost proportional to the program size
for the following reason. Mode analysis proceeds by merging many sim-
ple mode graphs representing individual mode constraints. The mode
graphs of very large programs are, in general, much wider than that
of the append program but are not much deeper, which is to say most
nodes can be reachable within several steps from the root. The cost of
merging one mode constraint with a mode graph is almost proportional
to the depth of the mode graph, but does not depend on the width of
the graph (Ueda, 1996). So the total cost is proportional to the number
of constraints that in turn is proportional to the program size.

A type system for concurrent logic programming can be introduced
by classifying the set Fun of function symbols into mutually disjoint sets
F1, . . . , Fn. A type here is a function from PAtom to the set {F1, . . . , Fn}.
Like principal modes, principal types can be computed by unification
over feature graphs. Constraints on a well-typing τ are summarized in
Fig. 3. The choice of a family of sets F1, . . . , Fn is arbitrary from the
theoretical point of view. This is why moding is more fundamental than
typing in concurrent logic programming.

The type system employed by Kima classifies function symbols into
six disjoint sets — integers, floating-point numbers, strings, vectors,
lists and functor structures, and prohibits any two of them from sharing
the same path. Although this is a heuristic classification based on the
fact that these different types do not simultaneously appear in the same
path in most programs, our experiments prove that it is beneficial both
to the power of error detection and to the quality of error correction,
as we will see in Sect. 6.
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¨ ¥

§ ¦

(HBFτ ) τ(p) = Fi, for a function symbol occurring at p in h or
B.

(HBVτ ) τ/p = τ/p′, for a variable occurring both at p and p′ in
h or B.

(GVτ ) ∀q∈PTerm(m(p′q) = in ⇒ τ(pq) = τ(p′q)), for a variable
occurring both at p in h and at p′ in G.

(BUτ ) τ/〈=k, 1〉 = τ/〈=k, 2〉, for a unification body goal =k.

Figure 3. Type constraints imposed by a program clause h:- G | B or a goal clause
:- B.

From our experiences and observations, programmers often make
four kinds of simple errors that cannot be trapped as syntactic errors:

1. Typos of variable names — Evident typos are easy to detect even
without the declaration of the modes and types of variables. The
mode system is sensitive not only to variable occurrences at unex-
pected positions but also to the loss of variable occurrences. This
should be clear by considering how the constraints imposed by rule
(BV) (and R) will change when one of two variable occurrences is
removed.

2. Confusion of two variables — This is less easy to detect if they are
of the same type. Sometimes the error can be corrected using mode
info (cf. Example 3 in Appendix); sometimes it results in another
meaningful program (cf. Examples 1 in Appendix).

3. Missing body goals — Failure to write necessary body goals (such
as those for closing data streams) may cause the loss of variable
occurrences, which is likely to be detected by the mode system.
However, supplying the missing goal automatically is of course a
more difficult task.

4. Missing clauses in predicate definitions — This cannot be detected
by using modes and types only, because missing clauses impose no
constraints. To detect them would require the analysis of whether
the clause guards of a predicate cover all possible cases.

Thus, strong moding can be a useful (if not almighty) tool for the
automated debugging of concurrent logic programs to which explicit
declarations are usually not provided.
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¨ ¥

§ ¦

cn+1 ← false;
S ← {};
while S is consistent do

D ← S; i ← 0;
while D is consistent do

i ← i + 1; D ← D ∪ {ci}
end while;
S ← S ∪ {ci}

end while;
if i = n + 1 then S ← {} fi

Figure 4. Algorithm for computing a minimal inconsistent subset

3. Identifying Program Errors

When a concurrent logic program contains an error, it is very likely
(though not always the case) that its communication protocols become
inconsistent and the set of its mode constraints becomes unsatisfi-
able. A wrong symbol occurring at some path is likely to impose a
mode constraint inconsistent with constraints representing the intended
specification.

Then, suspicious symbols can be located by computing a minimal
inconsistent subset of mode constraints, because the minimal incon-
sistent subset must include at least one wrong constraint, and each
constraint is imposed by certain symbol occurrences in a clause (see
the moding rules in Fig. 1). Type constraints can be used in the same
way to locate type errors.

A minimal inconsistent subset can be computed efficiently using a
simple algorithm shown in Fig. 4 2. Let C = {c1, . . . , cn} be a multiset
of constraints. The algorithm finds a single minimal inconsistent subset
S from C when C is inconsistent. When C is consistent, the algorithm
terminates with S = {}. false is a self-inconsistent constraint used as a
sentinel.

The readers are referred to (Cho and Ueda, 1996) for a proof of the
minimality of S, as well as various extensions of the algorithm. Note
that the algorithm can be readily extended to finding multiple bugs at
once. That is, once we have found a minimal subset covering a bug, we
can reapply the algorithm to the rest of the constraints.

2 The algorithm described here is a revised version of the one proposed in (Cho
and Ueda, 1996) and takes into account the case when C is consistent.
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Our experiment shows that the average size of minimal inconsistent
subsets is rather small, and subsets containing more than 10 elements
are scarcely found. The size of minimal subsets turns out to be inde-
pendent of the total number of constraints, and most inconsistencies
can be explained by constraints imposed by a small region of program
text. This is due to the redundancy of mode and type constraints. The
average size of minimal inconsistent subsets is equal to the number of
times of mode analysis that may occur by using the algorithm. So the
cost of computing a minimal inconsistent subset is almost proportional
to the program size. In reality, the cost is usually much less than the
product of the size of a minimal subset and the cost of mode analysis of
the whole program owing to an improved algorithm in (Cho and Ueda,
1996).

4. Automated Debugging

Constraints that are considered wrong may be corrected by

− replacing the symbol occurrences that imposed those constraints
by other symbols, or

− when the suspected symbols are variables, by making them have
more occurrences elsewhere, that is, by increasing the number of
elements of the argument of R (cf. Rule (BV) of Fig. 1).

When some symbol occurrence has been rewritten to another symbol
by mistake, there exists a symbol with less occurrences than intended
and a symbol with more occurrences. A minimal inconsistent subset
includes either (or both) of them.

Kima focuses on programs with a small number of errors in vari-
ables. This focus may sound restrictive, but concurrent logic programs
have quite flat syntactic structures (compared with other languages)
and instead make heavy use of variables. Our experiences show that
a majority of simple program errors arise from the erroneous use of
variables, for which the support of static mode and type systems and
debugging tools are invaluable.

Other kinds of error correction are not considered by the current
version of Kima, but the above technique could be applied also to the
correction of the other kinds of symbol occurrences. This is because
mode and type constraints are imposed also on constant symbols and
function symbols. Mutation from a variable symbol to a constant sym-
bol could be corrected by the same technique. Mutation of constant
symbols may be located by type constraints, but its automated cor-
rection is difficult. This is because Kima would then have to choose a
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particular symbol, which is difficult to do based solely on type infor-
mation. Mutations of function symbols (other than constant symbols)
and predicate symbols can also be located but their correction is again
difficult, because search space will expand too much in trying to find
both appropriate function and predicate symbols and their arguments.

4.1. Basic Algorithm

An algorithm for automated error correction is basically a search pro-
cedure whose initial state is the erroneous program, whose operations
are the rewriting of the occurrences of variables, and whose final states
are well-moded/typed programs.

Given a program L, which is a set {l1, . . . , ln} of clauses, let WL be
defined as

WL = {(i, v) | 1 ≤ i ≤ n , v ∈ Vli}
where Vli is the set of variable symbols occurring in the clause li.

An element of WL is called a located variable; it is the pair of a clause
number and a variable occurring in the clause. Since Kima considers
errors in variables, for each minimal inconsistent subset of constraints,
we can think of a corresponding set of all located variables that are
responsible for the inconsistency. By abuse of language, henceforth we
call the latter set a minimal inconsistent subset (of located variables) as
well. Let misv(L) represent the minimal inconsistent subset of located
variables corresponding to the subset computed by the algorithm in
Fig. 4.

The algorithm in Fig. 5 finds a set S of alternative solutions of the
program L, where cls(w) (w ⊆ WL) stands for a set of clause numbers
included in w, namely

cls(w) = {i | ∃v (i, v) ∈ w} .

Given a set L′ = {lk1 , . . . , lkm} ⊆ L of clauses, we can think of an d-
mutated set, {l′k1

, . . . , l′km
}, in which d variable occurrences have been

mutated from L′. Let Qd
L′ represent the set of all d-mutated sets of

clauses. The function mut(q) (q ∈ Qd
L′) returns the set of mutated

located variables, an element of which is the pair of a clause number
(≤ n) and a mutated variable symbol (either with more occurrences
or with less occurrences). That is, mut(q) represents a subset of Wq.
The function mcs(L) stands for mode constraints obtained from the
program L; tcs(L) stands for type constraints. The main procedure of
the algorithm is iterative-deepening search up to the maximum depth
dMAX which is to be given by a user. Note that, instead of iterative-
deepening search, depth-first search may also be used because Kima
does not discriminate alternatives by the depth where they are found.

ase9.tex; 30/10/2002; 23:12; p.12



Kima: an Automated Error Correction System for Concurrent Logic Programs 13

¨ ¥

§ ¦

w ← misv(L); L1 ← cls(w);
L0 ← L \ L1;
S ← {};
for d ← 1 to dMAX do
for each q ∈ Qd

L1
do

if w ∩mut(q) 6= {} then
if mcs(L0 ∪ q) is consistent ∧ tcs(L0 ∪ q) is consistent then

S ← S ∪ {q}
fi

fi
end for

end for

Figure 5. Basic algorithm for automated error correction

Since checking modes and types of a rewritten program requires
the cost proportional to the program size (Sect. 2), this algorithm
takes time proportional to the program size. However, inconsistency
usually occurs within a small region of program text (Sect. 3). A large
performance improvement will therefore be achieved by analyzing those
constraints imposed by the suspected predicates and predicates closely
related to them in the call graph of the program before the whole
constraints.

4.2. Grouping Errors

As we mentioned in Sect. 3, multiple minimal inconsistent subsets may
independently be found, and some of them may indicate the same clause
as the source of errors. The clause may be indicated by subsets of
modes, types, or both. Modes and types express different properties of
a program and detect different kinds of errors. To use them together
makes two improvements; one is that more errors can be detected; the
other is that errors can be located more precisely. Kima groups minimal
inconsistent subsets indicating the same clause (as in Fig. 6). A group
thus formed plays the role of a unit of searching alternatives against
errors.

Formally, the grouping of minimal inconsistent subsets means to
classify them using the reflexive transitive closure of the following
relation, , as the equivalence relation:

x  y ⇔ cls(x) ∩ cls(y) 6= {}
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Group A Group B

Group C

Group D

A minimal inconsistent subset
    of mode or type constraints

Space of clauses in a program

Figure 6. Grouping minimal inconsistent subsets

The grouping can be implemented in the following way. For each clause
li mentioned in a minimal inconsistent subset S, we form a pair (i, S).
Using all the pairs generated, we can readily make two-way links be-
tween subsets indicating the same clause. Next, we classify subsets by
tracing the links. The cost of tracing is not a problem because it is
unlikely that many subsets intricately overlap with each other.

Depth-δ search of alternatives is carried out independently for each
group. Computation time can be reduced by checking whether a certain
rewriting can possibly dissolve inconsistencies of all minimal inconsis-
tent subsets in a group before actually computing modes and types,
which is called Quick-check. This is effective because when some symbol
occurrence is rewritten, even if the change is small, mode and type
analyses may reanalyze the whole program.

Suppose that n groups of minimal inconsistent subsets have been
formed from the program L and that a group Gi contains the subsets
wi1, wi2, . . . , wigi . Then, a set Si of alternatives for each group Gi is
computed by the algorithm in Fig. 7.

When multiple groups are found, mode and type analyses are per-
formed with the clauses indicated by one of the groups and the consis-
tent part L0, which is the set of all clauses that are not indicated by
any minimal inconsistent subset. Therefore, not all constraints imposed
by the whole program text are considered in error correction. Kima
employs this strategy so that the search of alternatives for one group
may not be influenced by that for another group.

4.3. Complexity

We consider the cost of the basic algorithm in Fig. 5, namely depth-δ
search of alternatives from one minimal inconsistent subset. Let u be
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for i ← 1 to n do
Li ←

⋃gi
j=1 cls(wij);

end for;
L0 ← L \ ⋃n

j=1 Lj ;
for i ← 1 to n do

Si ← {};
for d ← 1 to dMAX do
for each q ∈ Qd

Li
do

if quick-check(q, i) then
if mcs(L0 ∪ q) is consistent ∧ tcs(L0 ∪ q) is consistent then

Si ← Si ∪ {q}
fi

fi
end for

end for
end for

function quick-check(q, i)
return

∧gi
j=1(wij ∩mut(q) 6= {})

end.

Figure 7. Algorithm for automated error correction with grouping

the number of clauses mentioned in the minimal inconsistent subset of
located variables, r the number of variable occurrences in one clause,
and t the number of different variables in that clause. For simplicity,
we assume all clauses have the same r and the same t.

Then, how many rewritten programs will be generated and checked
for well-typedness and well-modedness can be described as urCδ · t+δPδ,
which is the number of possible ways of rewriting δ variable occurrences
in clauses indicated by a minimal inconsistent subset. urCδ is concerned
with the choice of variable occurrences to be rewritten, whereas t+δPδ

is the maximum number of ways of rewriting δ variable occurrences.
The latter is derived from the following observation: because we need
to consider rewriting to a fresh variable, there are t+1 ways to rewrite
the first variable occurrence and the number of different variables may
increase by one after the first rewriting.

Suppose the cost of mode and type analyses is k · n, where k is a
constant, and n is the program size. Then, the cost of the basic algo-
rithm is expressed by the product of the number of programs generated
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16 Y. Ajiro and K. Ueda

in the search and the cost of mode and type analyses:

T ≤ urCδ · t+δPδ · kn

≤ (ur) · (ur − 1) · . . . · (ur − δ + 1)
δ !

· (t + δ)δ · kn

≤ k · (ur(t + δ))δ

δ !
· n

In most cases, u is smaller than 4 from our experiences. The average
sizes of r and t are 13 and 6.4, respectively, for the case of Kima system,
which is a KL1 program of 4,500 lines long. The branching factor of this
search problem is not small, but the number of “plausible” programs
is extremely small compared to the number of all programs generated
in the search (Sect. 6). We can take advantage of this fact, as well as
Quick-check, to save the number of mode and type analyses (Sect. 5.3).

5. Constraints Other Than Modes and Types

5.1. Prioritizing Alternatives

Kima searches alternative solutions using mode and type information,
but multiple alternatives are found in many cases. Kima refines the
quality of its output by prioritizing alternatives using two Heuristic
Rules:

Heuristic Rule 1. It is less likely that a variable occurs

1. only once in a clause (singleton occurrence),

2. two or more times in a clause head,

3. three or more times in the head and/or the body of a clause,
or

4. two or more times as arguments of the same body goal.

Heuristic Rule 2. It is less likely that a list and its elements are of
the same type, that is, it is less likely that a variable occurs both
in some path p and in the path of its elements p〈., 1〉.

Since variable occurrences falling under Heuristic Rules 1.1, 1.2 and
1.3 impose mode constraints IN or OUT (Sect. 2) that are stronger
than in and out , we could replace Heuristic Rules 1.1–1.3 by a unified
rule on constraint strength: A solution with weaker mode constraints is
more likely to be an intended one. In general, stronger mode/type con-
straints make a program less generic, and the execution of the program
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more likely to end in failure. Therefore it is reasonable to insist that
the constraint imposed on a program should be as weak as possible.

Heuristic Rules 1.1 and 1.3 are justified also on the ground that
logical variables are used for one-to-one communication more frequently
than for one-to-many or one-to-zero communication. A logical variable
used for one-to-one communication occurs either exactly twice in a
clause body or exactly once in a clause head and once in a clause body.
A body goal with arguments as mentioned in Heuristic Rule 1.4 either
receives duplicated data from another goal or communicates with itself,
which are both unlikely.

The idea behind Heuristic Rule 2 is as follows. Let α be a type
variable and list(α) be the list type whose elements are of type α. Then
the rule is equivalent to saying that constraint α = list(α) imposes a
strong type constraint on α and is therefore unlikely.

Kima prioritizes multiple alternatives by imposing certain penalty
points on unlikely symbol occurrences. An alternative with a lower total
penalty point has a higher priority.

5.2. Reinforcing Detection Power

The objective of Kima is to debug a program in the absence of explicit
declarations of program properties such as modes and types. To en-
hance the power of the error detection with implicit modes and types,
Kima employed the following auxiliary Detection Rules:

Detection Rule 1.

1. A variable which occurs in a clause guard must occur also in
the head of the clause.

2. The same variable must not occur on both sides of a unification
body goal.

Detection Rule 2. The name of a singleton variable must begin with
an underscore “-”.

Both Detection Rules are optional and can be used selectively in Kima.
Violation of Detection Rule 1.1 means the existence of a variable

which is never instantiated, while violation of Detection Rule 1.2 means
that the unification body goal either fails (e.g. X=f(X)) or does nothing
meaningful (e.g. X=X). Detection Rule 2 is identical to requesting the
declaration of variables that impose strong mode constraints. Detection
Rule 2 is effective because a logical variable in a correct program is
likely to occur twice in a clause (i.e., for one-to-one communication),
in which case a variable will turn into a singleton if either occurrence
is missing.
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18 Y. Ajiro and K. Ueda

The source of an error detected by Detection Rules is a variable
symbol in a certain clause, and is found independently of minimal in-
consistent subsets of mode and type constraints. Kima uniformly deals
with a variable symbol detected by Detection Rules by considering it
as a minimal inconsistent subset with one element, and groups it with
other subsets.

5.3. Optimizing Search of Alternatives

Kima employs two optimization techniques other than Quick-check.
The two techniques are based on prioritizing and Detection Rules stated
in Sect. 5.1 and 5.2, respectively, and reduce the number of mode
and type analyses in generate-and-test search. The algorithm shown in
Fig. 8 computes a set Si,k of alternatives for each group Gi (1 ≤ i ≤ n)
and priority k (1 ≤ k ≤ kMAX + 1), where k = 1 means the highest
priority and kMAX is to be given by a user.

Prioritizing with Heuristic Rule 1 is cheaper than mode and type
analyses because it involves only suspected clauses. For each i and d,
Kima first divides the set Qd

Li
of programs into setsQ1, . . . ,Qhi by their

priorities, where programs in Q1 have the highest priority. The value of
hi is not known until we actually divide Qd

Li
. When we are interested

only in high-priority alternatives, this classification saves the number
of mode and type analyses. However, Prioritizing with Heuristic Rule 2
needs type analysis, and is performed after the check of well-typedness
(i.e., type reconstruction). The function heuristic-rule2-ok(L) returns
true iff the program L contains no variables that are less likely with
respect to Heuristic Rule 2.

The function detection-rules-ok(L) returns true iff the program L
observes Detection Rules, and is called before mode and type analyses.
The test of Detection Rules is cheaper than mode and type analyses,
because the clauses that are not rewritten do not have to be checked
again. In contrast, mode and type analyses may need recalculation of
the whole program.

For a quicksort program containing two wrong variable occurrences
in the same clause (Example 3 in Appendix), the above optimization
improved the response time of computing highest-priority alternatives
from 25.9 seconds to 10.2 seconds on the KLIC system running on Sun
Ultra 30 (248 MHz) + 128 MB of memory.
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¨ ¥
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for i ← 1 to n do
Li ←

⋃gi
j=1 cls(wij);

end for;
L0 ← L \ ⋃n

j=1 Lj ;
for i ← 1 to n do
for k ← 1 to kMAX + 1 do

Si,k ← {}
end for;
for d ← 1 to dMAX do

prioritize Qd
Li

into Q1, . . . ,Qhi with Heuristic Rule 1;
j ← 1; k ← 1;
while j ≤ hi ∧ k ≤ kMAX do
for each q ∈ Qk do
if quick-check(q, i) then
if detection-rules-ok(q) then
if mcs(L0 ∪ q) is consistent
∧ tcs(L0 ∪ q) is consistent then
if heuristic-rule2-ok(q) then

Si,k ← Si,k ∪ {q}
else

Si,k+1 ← Si,k+1 ∪ {q}
fi

fi
fi

fi
end for;
if Si,k 6= {} then

k ← k + 1
fi;
j ← j + 1

end while
end for

end for

Figure 8. Optimized algorithm for automated error correction
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6. Experiments

We discuss the effectiveness of our technique based on experiments. We
investigated how many of programs with a couple of errors are detected
as erroneous by Kima, how many alternatives it proposes given an
erroneous program, and how many “plausible” programs there are in
the neighborhood of a correct (original) program.

Sample programs we used are list concatenation (append), the gener-
ator of a Fibonacci sequence, and quicksort. They are admittedly simple
but the aim of the experiment is to investigate the fundamental power
of our technique based on exhaustive experiments. Further, we strongly
expect that the total program size does not make much difference in the
quality and the performance of automated debugging except, of course,
that the cost of analysis is necessarily proportional to the program size
and the number of bugs. The main differences between toy programs
and non-trivial programs are the number of clauses and the number
of (variable) symbol occurrences in a clause. However, the number of
clauses does not matter, because the locations of bugs are limited to
small regions of program text in advance by finding minimal inconsis-
tent subsets whose size is independent of the program size (Sect. 3).
Also, Kima can successfully cope with a program with an error in a
large clause; see Example 2 in Appendix.

Experiment 1

First, we systematically generated near-misses (each with one wrong
occurrence of a variable) of three programs and examined how many
of them could be detected, whether automated correction reported an
intended program, and how many alternatives were reported. Table I
shows the results3. Here, we considered all possible ways of the mutation
of a variable occurrence, that is, mutation to a fresh (i.e., singleton)
variable as well as mutation to another variable in the same clause,
but did not consider mutation to the variable whose name began with
“-”, which would be very unlikely as human errors. We used only the
definitions of predicates in error correction, that is, we did not use the
constraints that might be imposed by the caller of these programs. Of
course, the caller information, if available, would enhance the quality
of correction as well as the redundancy of constraints.

3 In a similar experiment shown in our previous paper (Ajiro et al., 1998), the
numbers are different because (i) errors in the clause guard and those concerning
Detection Rule 1 were not counted and (ii) errors detected by types but not detected
by modes were not considered by automated debugging.
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Table I. Single-error detection and correction

Program Analysis Level Priori- Total Dete- Proposed Alternatives

tizing cases cted 1 2 3 4 5 6 ≥7

append mode only 0 no 58 36 1 3 8 3 6 5 10

type only 0 no 58 0 0 0 0 0 0 0 0

mode & type 0 no 58 36 1 3 8 3 6 5 10

mode & type 0 yes 58 36 27 9 0 0 0 0 0

mode & type 1 yes 58 40 29 11 0 0 0 0 0

mode & type 2 yes 58 58 39 19 0 0 0 0 0

fibonacci mode only 0 no 118 57 10 7 9 6 4 1 20

type only 0 no 118 47 0 0 4 20 0 18 5

mode & type 0 no 118 72 18 13 2 15 9 0 15

mode & type 0 yes 118 72 54 11 1 6 0 0 0

mode & type 1 yes 118 88 68 12 7 0 1 0 0

mode & type 2 yes 118 99 71 18 8 0 2 0 0

quicksort mode only 0 no 300 177 34 70 1 12 19 0 41

type only 0 no 300 106 0 2 12 40 0 32 20

mode & type 0 no 300 221 49 76 8 59 0 9 20

mode & type 0 yes 300 221 164 41 16 0 0 0 0

mode & type 1 yes 300 236 175 61 0 0 0 0 0

mode & type 2 yes 300 286 199 84 2 1 0 0 0

The column “Level” indicates detection levels. At detection level 0,
only mode and/or type information was used; at detection level 1, De-
tection Rule 1 was used in addition; and at detection level 2, Detection
Rules 1 and 2 were used together. The two Detection Rules raised the
average detection rate from 69.1% (329/476) to 93.1% (443/476).

A row with “yes” in the column “Prioritizing” shows the number of
proposed alternatives with the highest priority. The number of proposed
alternatives under prioritizing was usually 1 or quite small. The excep-
tions were in erroneous fibonacci programs. A certain variable occurs
four times in the correct fibonacci (N2 in the program in Sect. 7), and
there were a few cases where one of its body occurrences was mutated
to some fresh variable and their highest-priority corrections were to
replace another occurrence of N2 to that fresh variable.
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Table II. Error detection rate for the programs with N
mutations

Program N Level Total Detected Detection

cases cases rate (%)

append 2 0 1200 937 78.1

2 1 1200 1004 83.7

2 2 1200 1141 95.1

3 0 16980 14597 86.0

3 1 16980 15411 90.8

3 2 16980 16674 98.2

fibonacci 2 0 4668 3982 85.3

2 1 4668 4330 92.8

2 2 4668 4489 96.2

3 0 133045 125300 94.2

3 1 133045 130325 97.9

3 2 133045 131810 99.1

quicksort 2 0 12102 11263 93.1

2 1 12102 11460 94.7

2 2 12102 12005 99.2

3 0 337455 330769 98.0

3 1 337455 332416 98.5

3 2 337455 336943 99.8

Experiment 2

Second, we investigated the error detection rate for programs with two
or three mutated variable occurrences in the same clause. Errors of this
kind are looked on as depth-2 and depth-3 errors in the same group,
respectively, and their correct alternatives can be obtained by depth-2
and depth-3 search. Table II shows the results. Note that the mutation
of variable occurrences does not always cause errors. For example, cer-
tain mutations make a program equivalent to the original as we will
see later.

When multiple errors existed in some clause of a program, the error
was detected as long as at least one of the errors caused inconsistency.
So the detection rate of multiple errors was higher than that of a single
error. The detection rate with Detection Rules 1 and 2 was above 95%
in every case.
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Table III. The number of plausible programs in the programs
with N mutations

Program N Total Plausible With Related

cases programs caller info to guard

append 1 58 0 0 0

2 1200 7 1 0

3 16980 14 3 0

4 167842 29 5 0

fibonacci 1 118 11 9 4

2 4668 66 3 3

3 133045 309 5 5

quicksort 1 300 9 4 4

2 12102 33 17 4

3 337455 76 48 16

Experiment 3

Third, we explored the number of “plausible” programs in the set of
programs with N mutations on variable occurrences in the same clause.
By “plausible” we mean programs that have the same or higher priority
than the original program. The result is shown in Table III. In this
experiment, we investigated not only the possibility for Kima to find
an intended program by search, but also what the programs that passed
the criteria in our framework looked like.

In order to precisely count the number of all programs with the
same (or higher) priority as the original program, here we included
the mutation to the variables whose name began with “-”, because
programs with a singleton variable whose name does not begin with
“-” are eliminated immediately by Detection Rules. In the column
“Plausible programs”, programs that were

1. equivalent up to the renaming of variables and

2. equivalent up to the exchanging of arguments of calls to commuta-
tive built-in predicates such as unification

were counted as one program.
From Table III we see that the number of plausible programs did not

increase as rapidly as the number of total cases. This can be explained
by the fact that the ways of placing variable symbols which make a

ase9.tex; 30/10/2002; 23:12; p.23



24 Y. Ajiro and K. Ueda

program well-moded and well-typed are extremely limited compared
to arbitrary ways of placing.

Now we focus on the number of proposed alternatives under priori-
tizing. Suppose, for example, a program contains two errors on variable
occurrences and depth-2 search is performed. In this case, programs in
the search space have up to four occurrences rewritten from the original,
correct program. Of these programs, those with four mutations will be
the majority. However, since two of the four mutations have already
been done by the given erroneous program, only part of the programs
with up to four mutations are generated. The total number of programs
generated for inspection is very close to the number of cases with N = 2
in Table III.

Caller information (i.e., examples of clauses containing calls to the
predicates to be debugged) can reduce the number of plausible pro-
grams, because they play the role of mode and type specifications. The
column “With caller info” indicates the number of plausible programs
in the existence of caller information, where the original, intended
programs were not counted. Out of those programs, the number of
programs whose guard goals were essentially rewritten is indicated in
the column “Related to guard”. That is, the rightmost column shows
the number of mutated but plausible programs in which either (i) a
variable tested in a clause guard was mutated, or (ii) a variable tested
in a clause guard was made to occur at a different argument position
in the clause head.

More than half of programs that are in the column “With caller info”
but not in the column “Related to guard” diverge or cause deadlock.
The other programs return unintended output. For example, we have
found:

1. a program that merges two input lists by taking their elements
alternately in the neighborhood of append (cf. Appendix),

2. a program that returns the list of all natural numbers ([0,1,2,
...]) in the neighborhood of the generator of a Fibonacci sequence,
and

3. a program that sorts list items in descending order in the neigh-
borhood of quicksort that sorts list items in ascending order.

Also, there were programs to which we could not find any concise
meaning.
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7. An Example — Fibonacci sequence

As an example, we consider the generator of a Fibonacci sequence with
one error:
¨ ¥

§ ¦

R1 : fib(Max,-, N2,Ns0):- N2 >Max | Ns0=1[].
R2 : fib(Max,N1,N2,Ns0):- N2=<Max |

N1=2[N2|Ns1], N3:=N1+N2, fib(Max,N2,N3,Ns1).
(The body unification in R2 should be Ns0=2[N2|Ns1])

The algorithm shown in Sect. 3 computes three independenet mini-
mal inconsistent subsets; two on modes and one on types. Here, we do
not consider Detection Rule 2 (though it can detect the variable Ns0
in the clause head of R2 as an error).

Minimal inconsistent subset 1 (on modes):

Mode constraint Rule Source symbol

m(〈=1, 2〉) = in (BF) “[]” in R1

m/〈=1, 1〉 = m/〈fib, 4〉 (BV) Ns0 in R1

m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R1

m(〈fib, 4〉) = IN (BV) Ns0 in R2

Minimal inconsistent subset 2 (on modes):

Mode constraint Rule Source symbol

m(〈=2, 2〉) = in (BF) “.” in R2

m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R2

m(〈=2, 1〉) = IN (BV) N1 in R2

Minimal inconsistent subset 3 (on types):

Type constraint Rule Source symbol

τ/〈fib, 2〉 = τ/〈:=, 2〉〈+, 1〉 (HBVτ ) N1 in R2

τ(〈=2, 2〉) = list type (HBFτ ) “.” in R2

τ/〈fib, 2〉 = τ/〈=2, 1〉 (HBVτ ) N1 in R2

τ/〈=2, 2〉 = τ/〈=2, 1〉 (BUτ ) =2 in R2

τ(〈:=, 2〉〈+, 1〉) = integer type builtin := in R2
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These three subsets are classified into the same group because all
of the subsets indicate the clause R2. Suspected variable symbols are
extracted as in the table below:

Clause Variable symbol Subset number

R1 Ns0 1
R2 Ns0 1
R2 N1 2, 3

When depth-1 search is attempted, Quick-check detects that rewrit-
ings which increase or decrease the number of occurrences of Ns0 in R1

need not be considered, because such changes may dissolve the subset
1 but neither the subset 2 nor 3. After all, the system finds that the
only possible ways to dissolve all inconsistencies are either to replace
Ns0 by N1 or vice versa in R2. As the number of occurrences of Ns0 and
N1 is four in total, only four ways of rewriting each variable occurrence
need mode and type analyses. Without Quick-check, a great number
of mode and type analyses would have to be done. In this example,
Kima finally finds only one alternative, which is the program we have
intended.

8. Related Work

Analysis of malfunctioning systems based on their intended logical spec-
ification has been studied in the field of artificial intelligence (Reiter,
1987) and known as model-based diagnosis, which has some similarities
with our work in the ability of searching minimal explanations and
multiple faults. However, the purpose of model-based diagnosis is to
analyze the differences between intended and observed behaviors based
on the specification given by the user.

In the field of programming, debugging with partial or abstract
specification such as assertions has been studied for many programming
languages. For instance, debugging of (concurrent or constraint) logic
programs is studied in (Shapiro, 1982; Fromherz, 1993; Puebla et al.,
1999).

Type declaration can be thought of as a kind of partial specification.
In languages with static typing and automatic type reconstruction,
types need not be declared explicitly. This is the approach Kima has
employed, but there has been a lot of work on explaining the source of
type errors for strongly typed functional languages such as ML (Wand,
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1986; Beaven and Stansifer, 1993; Duggan and Bent, 1996; McAdam,
1999; Jung and Michaelson, 2000). When a type error has been found,
these systems explain why and how a particular type has been deduced.
As far as we can see, they were implemented by extending the unifi-
cation algorithm for type reconstruction. They recorded which symbol
occurrence imposed which constraint in the type deduction process. In
contrast, our framework is built outside any underlying framework of
constraint solving. It does not incur any overhead for well-moded/typed
programs or modify the constraint-solving algorithm. Furthermore, the
diagnosis guarantees the minimality of the explanation and often refines
it further.

A soft typing approach introduces static type systems to dynami-
cally typed languages such as Lisp and Scheme (Cartwright and Fa-
gan, 1991; Aiken et al., 1994). The MrSpidey system (Flanagan and
Felleisen, 1998) has a programming environment that visually presents
the explanation of type errors of Lisp programs based on soft typing
and set-based analysis (Heintze and Jaffar, 1994). In this approach,
debugging is performed interactively because the judgement of whether
suspected fragments of a program are really wrong necessarily depends
on the programmer. Additional information given by the programmer
in the interaction could be thought of as declarations. The choice be-
tween static and dynamic approaches is a question of tradeoff between
safety and fexibility of program description, but we think static typ-
ing approach is suited for large-scale and/or complicated programs in
parallel and distributed computing.

Tenma’s system automatically corrects Lisp programs under typing
(Tenma et al., 1990). When a change is made on a certain software
component, the system automatically replaces the components that do
not adapt to the change by alternative components. Thus the purpose
of the system is very different from Kima. Kima works in the situation
where the locations of errors are entirely unknown, and it works at the
program symbol (primitive) level rather than the software component
level.

Incidentally, we heard from a referee that the old Fortran compilers
of the 1970’s had been equipped with automated error correction. The
input was on punched cards, and since resubmitting a job took a long
time, the compilers did go rather far in correcting syntactical errors; in
many cases, the correction was correct, and this saved a lot of time.
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9. Conclusions and Future Work

We have implemented Kima, a system which automatically corrects
near-misses in concurrent logic programs. Kima does not have to be
given explicit specifications of program properties.

Experiments showed that, in most cases, one or a few alternatives
could be obtained from KL1 programs with a few wrong variable oc-
currences. This is indebted to theoretically or statistically endorsed
heuristics as well as mode and type information. In the set of pro-
grams with a few mutated variable occurrences, programs that are both
well-moded/typed and with higher priority turn out to be quite rare.
Heuristic Rules and Detection Rules do not only improve the power of
error detection and the quality of alternatives but also optimizes the
search of alternatives.

Specifications or declarations of program properties, if available, will
achieve more advanced error correction. Our future plan is to let Kima
accept instances of a pair of input and output constraints. We plan to
investigate the possibility of automated programming with a relatively
small number of examples and strong support of static analysis.

The computation of minimal inconsistent subsets and the following
depth-1 search for a program of 100 lines long is completed within
several seconds. The example shown in Sect. 7 took about 0.07 seconds
on the KLIC system running on Sun Ultra 30 (248 MHz) + 128 MB
of memory. The three examples in Appendix took about 0.05 seconds
(append), 0.23 seconds (combination), and and 10.2 seconds (quicksort,
see Sect. 5.3), respectively.

The function of the error correction of Kima is rather experimental
but the function of error detection by computing minimal inconsistent
subsets was very useful in developing Kima (KL1 program of 4,500 lines
long) itself. Kima is available from
http://www.ueda.info.waseda.ac.jp/~ajiro/study-e.html .
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Appendix

Example 1 – A single error

Consider a list concatenation (append) program with one error:

¨ ¥

§ ¦

:- module test.
append([], Y,Z ):- true | Y=Z.
append([A|Y],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).
(The head should have been append([A|X],Y,Z0))

Suppose you want to obtain alternatives with up to priority 100 (i.e.,
very low priority). Then, command line options should be given as:

¨ ¥

§ ¦
% kima +p 100 append.kl1

Then, Kima presents six alternatives, all up to priority 3:

¨ ¥

§ ¦

================= Suspected Group 1 =================
------------- Priority 1 -------------

append([A|X],Y,Z0):-true|Z0=[A|Z],append(X,Y,Z)
in test:append/3, clause No.2

-----
append([A|Y],X,Z0):-true|Z0=[A|Z],append(X,Y,Z)

in test:append/3, clause No.2
-----
------------- Priority 2 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z0,Y,Z)
in test:append/3, clause No.2

-----
------------- Priority 3 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Y,Y,Z)
in test:append/3, clause No.2

-----
append([A|Y],Y,Z0):-true|Z0=[A|Z],append(A,Y,Z)

in test:append/3, clause No.2
-----

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z,Y,Z)
in test:append/3, clause No.2

-----
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Each alternative is separeted by “-----”. Redundant alternatives with
respect to the equivalence mentioned in Sect. 6 are eliminated in re-
porting alternatives. The two alternatives of priority 1 have the high-
est priority. The first alternative is the intended one, while the sec-
ond alternative turns out to be a program that merges two input
lists by taking their elements alternately. That is, when invoked as
append([1,2,3],[4,5,6],Out), the first alternative returns [1,2,3,4,5,6]
and the second returns [1,4,2,5,3,6].

Next, let us compute minimal inconsistent subsets (MIS s for short)
and variable symbol occurrences infringing Detection Rules.
¨ ¥

§ ¦

% kima +mis append.kl1
< Minimal Inconsistent Subsets of *Mode* constraints >
m/<(test:append)/3,1><cons,2> = IN

imposed by the rule HV applied to the variable Y
in test:append/3, clause No.2

m/<(test:append)/3,1> = OUT
imposed by the rule BV applied to the variable X
in test:append/3, clause No.2

-----
< Minimal Inconsistent Subsets of *Type* constraints >
--Constraints are consistent, and there is no MIS--
< Violations of syntactic rules of Detection Level 2 >
singleton(X)

in test:append/3, clause No.2
-----

Minimal inconsistent subsets of mode constraints are obtained first;
those of types second. Multiple independent subsets can be computed
at once, and each subset is displayed with a separator “-----”. In this
example, only one minimal inconsistent subset on modes is found, while
type constraints are consistent.

The subset says that variables X and Y in the second clause of append
are suspicious. Using this information, Kima searches alternatives by
changing the number of occurrences of X and/or Y in the clause. In
addition to the minimal inconsistent subset, the variable X is detected
as an error by Detection Rule 2. Violations of Detection Rules are
reported as follows:

Detection Rule 1.

1. A variable which occurs in a clause guard must occur also in
the head of the clause: var-not-in-the-head(the variable)
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2. The same variable must not occur on both sides of a unification
body goal: not-pass-occur-check(the variable)

Detection Rule 2. The name of a singleton variable must begin with
an underscore “-”: singleton(the variable)

Example 2 – Multiple, independent errors

The second example is a program comb(n,r,Out) that generates the list
of all length-n 0-1 lists in which the 1’s occur exactly r times. (Hence
the outer list contains nCr elements.) For example, comb(3,2,Out)
returns the list [[1,1,0],[1,0,1],[0,1,1]]. Below is the definition
of comb with two errors:

¨ ¥

§ ¦

:- module probability.
comb(N,0,C):- true | init-list(0,N,0,[],C0),C=[C0].
comb(N,N,C):- true | init-list(0,N,1,[],C0),C=[C0].
comb(N,R,C):- N>R |

N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons-list(1,C0,CC0),
comb(N1,R,C1),cons-list(0,C1,CC1),append(CC0,CC1,CC).

(The last invocation should have been append(CC0,CC1,C))
init-list(N,Len,-,L0,L):- N=:=Len | L0=L.
init-list(N,Len,E,L0,L):- N < Len |

L1=[E|L0],N1:=N+1,init-list(N1,Len,E,L1,L).
cons-list(-,[], L):- true | L=[].
cons-list(A,[X|Xs],L):- true |

L=[[A|X]|L1],cons-list(A,XS,L1).
(The recursive call should have been cons-list(A,Xs,L1))
append([], Y,Z ):- true | Y=Z.
append([A|X],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).

The default action of Kima is to perform depth-1 search of alter-
natives with the highest priority using modes, types, and Detection
Rules.
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§ ¦

% kima comb.kl1
================= Suspected Group 1 =================

------------- Priority 1 -------------
comb(N,R,C):-N>R|
N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons_list(1,C0,CC0),
comb(N1,R,C1),cons_list(0,C1,CC1),append(CC0,CC1,C)

in probability:comb/3, clause No.3
-----

================= Suspected Group 2 =================
------------- Priority 1 -------------

cons_list(A,[X|Xs],L):-true|
L=[[A|X]|L1],cons_list(A,Xs,L1)

in probability:cons_list/3, clause No.2
-----

There are two Suspected Groups. In this example, Kima first found
multiple minimal inconsistent subsets. By analyzing the clauses in-
dicated by the subsets, Kima concluded there were two independent
groups. Kima performed depth-1 search of alternatives for each group,
and succeeded in finding alternatives that restored the intended pro-
gram.

Example 3 – Multiple errors in the same group

Last, we consider a quicksort program with two errors in the same
clause.

¨ ¥

§ ¦

:- module main.
quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).
qsort([], Ys0,Ys ):- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L),qsort(S,Ys0,Ys1),
Ys2=[X|Ys1],qsort(L,Ys2,Ys3).

(The body unification goal should have been Ys1=[X|Ys2])
part(-,[], S, L ):- true | S=[],L=[].
part(A,[X|Xs],S0,L ):- A>=X | S0=[X|S],part(A,Xs,S,L).
part(A,[X|Xs],S, L0):- A< X | L0=[X|L],part(A,Xs,S,L).

Depth-1 search is tried first, but no solution can be found.
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§ ¦

% kima qsort.kl1
================= Suspected Group 1 =================

Sorry, no alternative is found

Now depth-2 search is tried.

¨ ¥

§ ¦

% kima +d 2 qsort.kl1
================= Suspected Group 1 =================

------------- Priority 1 -------------
qsort([X|Xs],Ys0,Ys3):-true|
part(X,Xs,S,L),qsort(S,Ys0,Ys1),
Ys1=[X|Ys2],qsort(L,Ys2,Ys3)

in main:qsort/3, clause No.2
-----

Only one alternative is found, and this is the intended one. In depth-
2 search, depth-1 search is also executed, and all the alternatives found
by depth-1 and depth-2 searches are prioritized together. In general,
depth-N search includes depth-k search for all k ≤ N .
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