
Kima – an Automated Error Correction System
for Concurrent Logic Programs

Yasuhiro Ajiro and Kazunori Ueda

Department of Information and Computer Science
Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169-8555, Japan
{ajiro,ueda}@ueda.info.waseda.ac.jp

In Proc. Fourth International Workshop on
Automated Debugging (AADEBUG 2000)

Munich, Germany, August 28–30, 2000

Abstract. We have implemented Kima, an automated error correction
system for concurrent logic programs. Kima corrects near-misses such
as wrong variable occurrences in the absence of explicit declarations of
program properties.
Strong moding/typing and constraint-based analysis are turning to play
fundamental roles in debugging concurrent logic programs as well as in
establishing the consistency of communication protocols and data type-
s. Mode/type analysis of Moded Flat GHC is a constraint satisfaction
problem with many simple mode/type constraints, and can be solved
efficiently. We proposed a simple and efficient technique which, given
a non-well-moded/typed program, diagnoses the “reasons” of inconsis-
tency by finding minimal inconsistent subsets of mode/type constraints.
Since each constraint keeps track of the symbol occurrence in the pro-
gram, a minimal subset also tells possible sources of program errors.
Kima realizes automated correction by replacing symbol occurrences
around the possible sources and recalculating modes and types of the
rewritten programs systematically. As long as bugs are near-misses, Kima
proposes a rather small number of alternatives that include an intended
program. Search space is kept small because the minimal subset confines
possible sources of errors in advance. This paper presents the basic al-
gorithm and various optimization techniques implemented in Kima, and
then discusses its effectiveness based on quantitative experiments.

1 Introduction

In our previous work [1], we proposed a framework of automated debugging of
program errors based on static, constraint-based program analysis in the absence
of programmers’ declarations. The framework was then implemented in Kima, an
automated error correction system for concurrent logic programs, which featured
several improvements to make the system more practical and efficient.

The mechanism of error correction in Kima is based on the mode and type
system of Moded Flat GHC [8][9]. Moded Flat GHC is a concurrent logic (and
consequently, a concurrent constraint) language with a constraint-based mode
system designed by one of the authors. Languages equipped with strong typ-
ing or strong moding1 enable the detection of type/mode errors by checking or
1 Modes can be thought of as “types in a broad sense,” but in this paper we reserve

the term “types” to mean sets of possible values.

2

reconstructing types or modes. The best-known framework for type reconstruc-
tion is the Hindley-Milner type system [4], which allows us to solve a set of type
constraints obtained from program text efficiently as a unification problem.

Similarly, the mode system of Moded Flat GHC allows us to solve a set
of mode constraints obtained from program text as a constraint satisfaction
problem. Mode reconstruction statically determines the read/write capabilities of
variable occurrences and establishes the consistency of communication protocols
between concurrent processes [9]. As we will see later, types in Moded Flat GHC
also can be reconstructed using a similar (and simpler) technique.

When a concurrent logic program contains bugs, it is very likely that mode
constraints obtained from the erroneous symbol occurrences are incompatible
with the other constraints. We have proposed an efficient algorithm that finds a
minimal inconsistent subset of mode constraints from an inconsistent (multi)set
of constraints [2]. Since each constraint keeps track of the symbol occurrence(s)
in the program that imposed the constraint, a minimal subset tells possible
sources (i.e., symbol occurrences) of mode errors.

Using the information of possible locations of bugs, automated correction
is attempted basically by generate-and-test search, namely the generation of
possible rewritings and the computation of their principal mode and type. Search
space is kept small because the locations of bugs have been limited to small
regions of program text.

A significant feature of our framework is that it is applicable to a fragment of
a program such as a set of predicate definitions in a particular module. That is,
our framework is quite effective, for example, in the situation where a program
is not completely constructed. This is due to the fact that the multiset of mode
constraints imposed by a program usually has redundancy. Redundancy comes
from two reasons:

1. A non-trivial program contains conditional branches or nondeterministic
choices. In (concurrent) logic languages, they are expressed as a set of rewrite
rules (i.e., program clauses) that may impose the same mode constraints on
the same predicate.

2. A non-trivial program contains predicates that are called from more than
one place, some of which may be recursive calls. The same mode constraint
may be imposed by different calls.

Although the framework is quite general, whether it is practical or not may
depend on the choice of a language. Kima corrects wrong occurrences of variable
symbols in a KL1 [7] program assuming strong moding and typing of Moded
Flat GHC. KL1 is designed based on Flat GHC that is not equipped with strong
moding/typing, but the debugging of KL1 programs turns out to benefit from
moding and typing. Furthermore, its compiler KLIC provides a nice platform for
our experiments [3]. We have obtained promising results from our experiments
with the assistance of other syntactical constraints (Sect. 5).

3

2 Strong Moding and Typing in Concurrent Logic
Programming

We outline the mode system of Moded Flat GHC. The readers are referred to
[9] and [10] for details.

In concurrent logic programming, modes play a fundamental role in estab-
lishing the safety of a program in terms of the consistency of communication
protocols. The mode system of Moded Flat GHC gives a polarity structure (that
determines the information flow of each part of data structures created during
execution) to the arguments of predicates that determine the behavior of goals.
A mode expresses this polarity structure, which is represented as a mapping from
the set of paths to the two-valued codomain {in, out}. Paths here are strings of
pairs, of the form 〈symbol, arg〉, of predicate/function symbols and argument po-
sitions, and are used to specify possible positions in data structures. Formally,
the set PTerm of paths for terms and the set PAtom of paths for atomic formulae
are defined using disjoint union as:

PTerm = (
∑

f∈Fun

Nf)∗ , PAtom = (
∑

p∈Pred

Np)× PTerm ,

where Fun/Pred are the sets of function/predicate symbols, and Nf/Np are the
sets of possible argument positions (numbered from 1) for the symbols f/p. The
disjoint union operator

∑
means:

∑

f∈Fun

Nf = {〈f, i〉 | f ∈ Fun, i ∈ Nf} .

The purpose of mode analysis is to find the set of all modes (each of type
PAtom → {in, out}) under which every piece of communication is cooperative.
Such a mode is called a well-moding. Intuitively, in means the inlet of information
and out means the outlet of information. A program does not usually define a
unique well-moding but has many of them. So the purpose of mode analysis is to
compute the set of all well-modings in the form of a principal (i.e., most general)
mode. Principal modes can be expressed naturally by mode graphs, as described
later in this section.

Given a mode m, we define a submode m/p, namely m viewed at the path
p, as a function satisfying (m/p)(q) = m(pq). We also define IN and OUT
as submodes returning in and out , respectively, for any path. An overline ‘ ’
inverts the polarity of a mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h:- G | B, where h is
an atomic formula and G and B are multisets of atomic formulae. Mode con-
straints imposed by a clause h:- G | B are summarized in Fig. 1. All rules here
embody the assumption that every piece of communication is cooperative. Rule
(BU) numbers unification body goals because the mode system allows different
body unification goals to have different modes. This is a special case of mode
polymorphism that can be introduced into other predicates as well [2], but in
this paper we will not consider general mode polymorphism because whether to
have polymorphism is independent of the essence of this work.

4

² ¯
(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m/p = IN , for a variable symbol occurring more than once in h at
p and somewhere else.

(GV) If some variable occurs both in h at p and in G at p′,
∀q ∈ PTerm

(
m(p′q) = in ⇒ m(pq) = in

)
.

(BU) m/〈=k, 1〉 = m/〈=k, 2〉, for a unification body goal =k.

(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (≥ 1) times in h and B at
p1, . . . , pn, of which the occurrences in h are at p1, . . . , pk (k ≥ 0).
Then {R({m/p1, . . . ,m/pn}

)
, if k = 0;

R({m/p1,m/pk+1, . . . ,m/pn}
)
, if k > 0;

where the unary predicate R over finite multisets of submodes rep-
resents “cooperative communication” between paths and is defined
as

R(S) def= ∀q ∈ PTerm ∃s∈ S
(
s(q) = out ∧ ∀s′ ∈ S\{s} (

s′(q) = in
))

.
± °
Fig. 1. Mode constraints imposed by a program clause h :- G | B or a goal
clause :- B.

The cost of mode analysis is almost proportional to the program size for the
following reason. Mode analysis proceeds by merging many simple mode graphs
representing individual mode constraints. For example, the resulting mode graph
of the append program (cf. Appendix) is shown in Fig. 2. The mode graphs of
very large programs are, in general, much wider than that of the append program
but are not much deeper, which is to say most nodes can be reachable within
several steps from the root. The cost of merging one mode constraint with a
mode graph is almost proportional to the depth of the mode graph, but does
not depend on the width of the graph [10]. So the total cost is proportional to
the number of constraints that in turn is proportional to the program size.

A type system for concurrent logic programming can be introduced by clas-
sifying the set Fun of function symbols into mutually disjoint sets F1, . . . , Fn. A
type here is a function from PAtom to the set {F1, . . . , Fn}. Like principal modes,
principal types can be computed by unification over feature graphs. Constraints
on a well-typing τ are summarized in Fig. 3. The choice of a family of sets
F1, . . . , Fn is somewhat arbitrary. This is why moding is more fundamental than
typing in concurrent logic programming.

The type system employed by Kima classifies function symbols into six dis-
joint sets — integers, floating-point numbers, strings, vectors, lists and functor
structures, and prohibits any two of them from sharing the same path. Although

5

Fig. 2. The mode graph of an append program. “a” stands for append; “.” stands
for list constructor; and the downward arrow means the mode value in. The mode
information of the toplevel predicate and unification goals is omitted.

² ¯
(HBFτ) τ(p) = Fi, for a function symbol occurring at p in h or B.

(HBVτ) τ/p = τ/p′, for a variable occurring both at p and p′ in h or B.

(GVτ) ∀q ∈ PTerm

(
m(p′q) = in ⇒ τ(pq) = τ(p′q)

)
, for a variable occur-

ring both at p in h and at p′ in G.

(BUτ) τ/〈=k, 1〉 = τ/〈=k, 2〉, for a unification body goal =k.
± °
Fig. 3. Type constraints imposed by a program clause h :- G | B or a goal
clause :- B.

this is a heuristic classification based on the fact that these different types do
not simultaneously appear in the same path in most programs, an experiment
proves that it is beneficial both to the power of error detection and to the quality
of error correction, as we will see in Sect. 6.

3 Identifying Program Errors

When a concurrent logic program contains an error, it is very likely (though not
always the case) that its communication protocols become inconsistent and the
set of its mode constraints becomes unsatisfiable. A wrong symbol occurring at
some path is likely to impose a mode constraint inconsistent with constraints
representing the intended specification.

Then, suspicious symbols can be located by computing a minimal inconsistent
subset of mode constraints, because the minimal inconsistent subset must include
at least one wrong constraint, and each constraint is imposed on certain symbol
occurrences in a clause (see the moding rules in Fig. 1). Type constraints can be
used in the same way to locate type errors.

6

A minimal inconsistent subset can be computed efficiently using a simple
algorithm. Let C = {c1, . . . , cn} be a multiset of constraints. The algorithm
below finds a single minimal inconsistent subset S from C when C is inconsistent.
When C is consistent, the algorithm terminates with S = {}. false is a self-
inconsistent constraint used as a sentinel.² ¯

Algorithm for computing a minimal inconsistent subset:
cn+1 ← false;
S ← {};
while S is consistent do

D ← S; i ← 0;
while D is consistent do

i ← i + 1; D ← D ∪ {ci}
end while;
S ← S ∪ {ci}

end while;
if i = n + 1 then S ← {} fi

± °
The readers are referred to [2] for a proof of the minimality of S, as well

as various extensions of the algorithm. Note that the algorithm can be readily
extended to finding multiple bugs at once. That is, once we have found a minimal
subset covering a bug, we can reapply the algorithm to the rest of the constraints.

Our experiment shows that the average size of minimal inconsistent subsets
is rather small, and the subsets containing more than 10 elements are scarcely
found. The size of minimal subsets turns out to be independent of the total
number of constraints, and most inconsistencies can be explained by constraints
imposed by a small range of program text. This is due to the redundancy of
mode and type constraints.

4 Automated Debugging

Constraints that are considered wrong may be corrected by

– replacing the symbol occurrences that imposed those constraints by other
symbols, or

– when the suspected symbols are variables, by making them have more oc-
currences elsewhere (cf. Rule (BV) of Fig. 1).

When some symbol occurrence has been rewritten to another symbol by mistake,
there exists a symbol with less occurrences than intended and a symbol with more
occurrences. A minimal inconsistent subset includes either (or both) of them.

Kima focuses on programs with a small number of errors in variables. This
may sound restrictive, but concurrent logic programs have quite flat syntactic
structures (compared with other languages) and instead make heavy use of vari-
ables. Our experience tells that a majority of simple program errors arises from
the erroneous use of variables, for which the support of a static mode and type
system and debugging tools are invaluable.

7

This technique is applicable also to mutations between a constant and a
variable symbol, because mode and type constraints are imposed also on con-
stant symbols. Even mutations between constant symbols could be corrected by
type constraints. However, when considering replacement by a constant symbol,
Kima must determine its value. It is difficult for the current version of Kima
to determine the value based on modes and types only. Mutations of function
symbols (other than constant symbols) can also be located but their correction
is difficult because search space will expand too much. Mutations of predicate
symbols cannot be corrected by the current framework.

4.1 Basic Algorithm

An algorithm for automated correction is basically a search procedure whose
initial state is the erroneous program, whose operations are the rewriting of the
occurrences of variables, and whose final states are well-moded/typed programs.

The algorithm below finds a set S of alternative solutions. The main proce-
dure of the algorithm is iterative-deepening search up to the maximum depth
MAX which is to be given by a user. δ represents the current depth.¶ ³

Basic algorithm for automated error correction:
Compute a minimal inconsistent subset of mode/type constraints;
Extract suspicious variable symbols from the subset;
δ ← 1; S ← {};
while MAX ≥ δ do
for each way of rewriting δ symbol occurrences do
if the rewritten program becomes well-moded/typed then

Add the way of rewriting to S fi
end for;
δ ← δ + 1

end while
µ ´

Since checking modes and types of a rewritten program requires the cost pro-
portional to the program size (Sect. 2), this algorithm takes time in proportion
to the program size. However, inconsistency usually occurs within a small region
of program text (Sect. 3). A large performance improvement will therefore be
achieved by analyzing those constraints imposed by the suspected predicates and
its closely related predicates before the whole constraints.

4.2 Grouping Errors

As we mentioned in Sect. 3, multiple minimal inconsistent subsets may indepen-
dently be found, and some of them may indicate the same clause as the source of
errors. The clause may be indicated by subsets of modes, types, or both. Modes
and types express different properties of a program and detect different kinds of
errors. To use them together makes two improvements; one is that more errors
can be detected; the other is that errors can be located more precisely. Kima

8

collects minimal inconsistent subsets indicating the same clause (as in Fig. 4),
and makes them belong to the same group which plays the role of a unit of
searching alternatives against errors.

Fig. 4. Grouping minimal inconsistent subsets

Depth-δ search of alternatives is carried out independently for each group. It
is possible to reduce computation time by checking whether a certain rewriting
can possibly dissolve inconsistencies of all minimal inconsistent subsets in a
group before actually computing modes and types, which is called Quick-check.
This is effective because when some symbol occurrence is rewritten, even if the
change is small, mode and type analyses may reanalyse the whole program. To
put it more precisely, Quick-check of a rewriting is to check if, for all minimal
inconsistent subsets in a group, there exists a variable indicated as a possible
source of mode/type errors such that the given rewriting will result in:

– replacing an occurrence of the indicated variable by a different variable, or
– making more occurrences of the indicated variable elsewhere.

When multiple groups are found, mode and type analyses are performed with
the constraints imposed by one of the groups and consistent part. The consistent
part is the set of all constraints which do not belong to any minimal inconsistent
subset. Therefore, not all constraints imposed by the whole program text are
considered in error correction. Kima employs such an algorithm so that the
search of alternatives for one group may not be influenced by that for another
group. Alternatives found for a group do not always include an intended one.

5 Constraints Other Than Modes and Types

5.1 Prioritizing Alternatives

Kima searches alternative solutions using mode and type information, but unfor-
tunately, multiple alternatives are found in many cases. Kima refines the quality

9

of its output by prioritizing alternatives using two Heuristic Rules:

Heuristic Rule 1. It is less likely that a variable occurs
1. only once in a clause (singleton occurrence),
2. two or more times in a clause head,
3. three or more times in the head and/or the body of a clause, or
4. two or more times as arguments of the same body goal.

Heuristic Rule 2. It is less likely that a list and its elements are of the same
type, that is, it is less likely that a variable occurs both in some path p and
in the path of its elements p〈., 1〉.
Since such variable occurrences as in Heuristic Rules 1.1, 1.2 and 1.3 impose

mode constraints IN or OUT (Sect. 2) that are stroger than in and out , we
could replace Heuristic Rules 1.1-1.3 by a unified rule on constraint strength; A
solution with weaker mode constraints is more likely to be an intended one. In
general, stronger mode/type constraints make a program less generic, and the
execution of the program more likely to end in failure. Therefore it is reasonable
to insist that the constraint imposed on a program should be as weak as possible.

Heuristic Rules 1.1 and 1.3 are justified also in the sense that logical variables
are used for one-to-one communication more frequently than for one-to-many or
one-to-zero communication. A logical variable used for one-to-one communica-
tion occurs either exactly twice in the clause body or exactly once in the clause
head and once in the clause body. Such a body goal as in Heuristic Rule 1.4
either receives duplicate data from another goal or communicates with itself,
which are both unlikely.

For Heuristic Rule 2, let α be a type variable and list(α) be the list type
whose elements are of type α. Then the rule is equivalent to saying that constraint
α = list(α) imposes a strong type constraint on α and is therefore unlikely.

Kima prioritizes multiple alternatives by imposing certain penalty points on
unlikely symbol occurrences. An alternative with a lower penalty point has a
higher priority.

5.2 Reinforcing Detection Power

The objective of Kima is to debug a program in the absence of explicit decla-
rations. To enhance the power of the error detection with implicit modes and
types, Kima employed the following Detection Rules:

Detection Rule 1.
1. A variable which occurs in a clause guard must occur also in the head

of the clause.
2. The same variable must not occur on both sides of a unification body

goal (partial occur-check).
Detection Rule 2. The name of a singleton variable must begin with an un-

derscore “-”.

The both Detection Rules are optional and can be used selectively in Kima.

10

Violation of Detection Rule 1.1 means disappearance of a guard goal after
normalization [9], while violation of Detection Rule 1.2 means failure of normal-
ization. Detection Rule 2 is identical to requesting the declaration of variables
that impose strong mode constraints. Detection Rule 2 is effective because a
logical variable in a correct program is likely to occur twice in a clause (i.e., for
one-to-one communication), in which case a variable will turn into a singleton if
either occurrence is missing.

The source of an error detected by Detection Rules is a variable symbol in
a certain clause, and is found independently of minimal inconsistent subsets
of mode and type constraints. Kima uniformly deals with a variable symbol
detected by Detection Rules by considering it as a minimal inconsistent subset
with one element, and groups it with other subsets.

5.3 Optimizing Search of Alternatives

Kima employs two optimization techniques other than Quick-check. The two
techniques are based on prioritizing and Detection Rules stated in Sect. 5.1 and
5.2, and reduce the number of mode and type analyses in generate-and-test
search. The algorithm shown below finds a set S of alternatives that have higher
priorities than the given priority P . Steps related to grouping process (Sect. 4.2)
are omitted.¶ ³

Optimized algorithm for automated error correction:
Compute a minimal inconsistent subset of mode/type constraints;
Extract suspicious variable symbols from the subset;
Detect clauses and variable symbols infringing Detection Rules;
δ ← 1; S ← {};
while MAX ≥ δ do
for each way of rewriting δ symbol occurrences which has

a higher priority than P w.r.t. Heuristic Rule 1 do
if the rewritten program follows Detection Rules then
if the rewritten program becomes well-moded/typed then
if the rewriting is unlikely w.r.t. Heuristic Rule 2 then

lower the priority of the rewriting
fi;
Add the way of rewriting to S with its priority

fi
fi

end for;
δ ← δ + 1

end while
µ ´

In generate-and-test search, the test by Detection Rules is cheaper than mode
and type analyses, because, when particular (suspected) clauses are rewritten,
the clauses that are not rewritten do not have to be checked with Detection
Rules again. In contrast, mode and type analyses may need recalculation of the
whole program (Sect. 4.2).

11

Prioritizing with Heuristic Rule 1 involves only suspected clauses, and is
cheaper than mode and type analyses. Prioritizing with Heuristic Rule 2 need-
s type analysis, and is performed after the check of well-typedness (i.e., type
reconstruction).

For a quicksort program containing two wrong variable occurrences in the
same clause (Example 3 in Appendix), the above optimization improved the
response time of computing highest-priority alternatives from 25.9 seconds to
10.2 seconds on the KLIC system running on Sun Ultra 30 (248 MHz) + 128
MB of memory.

6 Experiments

We discuss the effectiveness of our technique based on experiments. We inves-
tigated how many of programs with a few errors are detected as erroneous by
Kima, how many alternatives it proposes for erroneous programs, and how many
“plausible” programs there are in the neighborhood of a correct (original) pro-
gram.

First, we systematically generated near-misses (each with one wrong occur-
rence of a variable) of three programs and examined how many of them could be
detected, whether automated correction reported an intended program, and how
many alternatives were reported. Table 1 shows the results 2. Here, we did not
consider the mutation of a variable occurrence to the variable whose name began
with “-”. We used only the definitions of predicates, that is, we did not use the
constraints that might be imposed by the caller of these programs. Of course,
the caller information, if available, would enhance the quality of correction as
well as the redundancy of constraints.

The programs we used are list concatenation (append), the generator of a
Fibonacci sequence, and quicksort. They are admittedly simple but the aim of
the experiment is to investigate the fundamental power of our technique based
on exhaustive experiments. Further, for the reason discussed in Sect. 4.1, we
strongly expect that the total program size does not make much difference in
the quality of automated debugging.

The column “Level” indicates detection levels. Under detection level 0, only
mode and/or type information was used; under detection level 1, Detection Rule
1 was used in addition; and under detection level 2, Detection Rules 1 and 2
were used together. The two Detection Rules raised the average detection rate
from 69.1% (329/476) to 93.1% (443/476).

A row with “yes” in the column “Prioritizing” shows the number of proposed
alternatives with the highest priority, which includes an intended alternative in
most cases. The number of proposed alternatives under prioritizing was usually
1 or quite small.

2 In a similar experiment shown in our previous paper [1], the numbers are different
because errors in the clause guard and those concerning Detection Rule 1 were not
counted and errors detected by types but not detected by modes were not considered
by automated debugging.

12

Table 1. Single-error detection and correction

Program Analysis Level Priori- Total Dete- Proposed Alternatives
tizing cases cted 1 2 3 4 5 6 ≥7

append mode only 0 no 58 36 1 3 8 3 6 5 10
type only 0 no 58 0 0 0 0 0 0 0 0

mode & type 0 no 58 36 1 3 8 3 6 5 10
mode & type 0 yes 58 36 27 9 0 0 0 0 0
mode & type 1 yes 58 40 29 11 0 0 0 0 0
mode & type 2 yes 58 58 39 19 0 0 0 0 0

fibonacci mode only 0 no 118 57 10 7 9 6 4 1 20
type only 0 no 118 47 0 0 4 20 0 18 5

mode & type 0 no 118 72 18 13 2 15 9 0 15
mode & type 0 yes 118 72 54 11 1 6 0 0 0
mode & type 1 yes 118 88 68 12 7 0 1 0 0
mode & type 2 yes 118 99 71 18 8 0 2 0 0

quicksort mode only 0 no 300 177 34 70 1 12 19 0 41
type only 0 no 300 106 0 2 12 40 0 32 20

mode & type 0 no 300 221 49 76 8 59 0 9 20
mode & type 0 yes 300 221 164 41 16 0 0 0 0
mode & type 1 yes 300 236 175 61 0 0 0 0 0
mode & type 2 yes 300 286 199 84 2 1 0 0 0

Second, we investigated the error detection rate for programs with two and
three mutated variable occurrences in the same clause. Errors of this kind are
looked on as depth-2 and depth-3 errors in the same group, respectively, and
their correct alternatives can be obtained by depth-2 and depth-3 search. Table
2 shows the results. Note that the mutation of variable occurrences does not
always cause errors. For example, certain mutations make a program equivalent
to the original as we will see later.

When multiple errors existed in some clause of a program, the program was
detected as long as at least one of the errors caused inconsistency. So the detec-
tion rate for multiple errors was higher than that for a single error. The detection
rate with Detection Rules 1 and 2 was above 95% in every case.

Third, we explored the number of “plausible” programs. Plausible programs
are programs that have the same or higher priority than the original among
the programs with N mutations on variable occurrences in the same clause for
a certain N. The result is shown in Table 3. We considered the mutations to
the variable whose name began with “-”. In the column “Plausible programs”,
programs that were

1. equivalent up to renaming of variables and
2. equivalent up to switching of arguments of calls to commutative built-in

predicates such as unification

were counted as one program.

13

Table 2. The error detection rate for the programs with N mutations

Program N Level Total Detected Detection
cases cases rate (%)

append 2 0 1200 937 78.1
2 1 1200 1004 83.7
2 2 1200 1141 95.1
3 0 16980 14597 86.0
3 1 16980 15411 90.8
3 2 16980 16674 98.2

fibonacci 2 0 4668 3982 85.3
2 1 4668 4330 92.8
2 2 4668 4489 96.2
3 0 133045 125300 94.2
3 1 133045 130325 97.9
3 2 133045 131810 99.1

quicksort 2 0 12102 11263 93.1
2 1 12102 11460 94.7
2 2 12102 12005 99.2
3 0 337455 330769 98.0
3 1 337455 332416 98.5
3 2 337455 336943 99.8

From Table 3 we see that the number of plausible programs did not increase
explosively. This can be explained by the fact that the ways of placing vari-
able symbols which make a program well-moded/typed are extremely limited
compared to arbitrary ways of placing.

Now we focus on the number of proposed alternatives under prioritizing. Sup-
pose, for example, a program contains two errors on variable occurrences and
depth-2 search is performed. In this case, up to four occurrences may be rewrit-
ten from the original, in which the rewritings with N=4 will be the majority.
However, since two of the four rewritings have already been done by the given
erroneous program, only part of the rewritings where N is up to 4 is generated.
The total number of rewritings generated actually is very close to the number
of rewritings with N=2.

Among the plausible programs, the percentage of programs that neither di-
verge or fail depends on the original program and its expected input. In the
case of quicksort, about fifty percent of plausible programs were programs that
neither diverge or fail. We note that, of these programs, few were considered
meaningful, that is, few programs were such that all operations contribute to
the result of computation.

7 An Example — Fibonacci sequence

As an example, we consider the generator of a Fibonacci sequence with one error:

14

Table 3. The number of plausible programs among the programs with N mutations

Program N Total Plausible
cases programs

append 1 58 0
2 1200 7
3 16980 14
4 167842 29

fibonacci 1 118 11
2 4668 66
3 133045 309

quicksort 1 300 9
2 12102 33
3 337455 76

1: R1 : fib(Max,-, N2,Ns0):- N2 >Max | Ns0=1[].
2: R2 : fib(Max,N1,N2,Ns0):- N2=<Max |
3: N1=2[N2|Ns1], N3:=N1+N2, fib(Max,N2,N3,Ns1).
(the unification in the line 3 should be Ns0=2[N2|Ns1])

The algorithm shown in Sect. 3 computes three independenet minimal in-
consistent subsets; two on modes and one on types. Here, we do not consider
Detection Rule 2 (though it can detect the variable Ns0 in the clause head of R2

as an error).

Minimal inconsistent subset 1 (on modes):

Mode constraint Rule Source symbol
m(〈=1, 2〉) = in (BF) “[]” in R1

m/〈=1, 1〉 = m/〈fib, 4〉 (BV) Ns0 in R1

m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R1

m(〈fib, 4〉) = IN (BV) Ns0 in R2

Minimal inconsistent subset 2 (on modes):

Mode constraint Rule Source symbol
m(〈=2, 2〉) = in (BF) “.” in R2

m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R2

m(〈=2, 1〉) = IN (BV) N1 in R2

Minimal inconsistent subset 3 (on types):

Type constraint Rule Source symbol
τ/〈fib, 2〉 = τ/〈:=, 2〉〈+, 1〉 (HBVτ) N1 in R2

τ(〈=2, 2〉) = list type (HBFτ) “.” in R2

τ/〈fib, 2〉 = τ/〈=2, 1〉 (HBVτ) N1 in R2

τ/〈=2, 2〉 = τ/〈=2, 1〉 (BUτ) =2 in R2

τ(〈:=, 2〉〈+, 1〉) = integer type builtin := in R2

15

These three subsets are classified into the same group because all of the
subsets indicate the clause R2. Suspected variable symbols are extracted as in
the table below:

Clause Variable symbol Subset number
R1 Ns0 1
R2 Ns0 1
R2 N1 2, 3

When depth-1 search is attempted, Quick-check detects that rewritings which
increase or decrease the number of occurrences of Ns0 in R1 need not be con-
sidered, because such changes may dissolve the subset 1 but neither the subset
2 nor 3. After all, the system finds that the only possible ways to dissolve all
inconsistencies are either replacing Ns0 by N1 or vice versa in R2. As the number
of occurrences of Ns0 and N1 is four in total, only four ways of rewriting each
variable occurrence need mode and type analyses. Without Quick-check, a great
number of mode and type analyses would have to be done. In this example,
Kima finally finds only one alternative, which is the program we have intended.

8 Related Work

Analysis of malfunctioning systems based on their intended logical specification
has been studied in the field of artificial intelligence [5] and known as model-
based diagnosis, which has some similarities with our work. However, the purpose
of model-based diagnosis is to analyze the differences between intended and
observed behaviors, while our system does not require that the intended behavior
of a program be given as declarations.

Wand proposed an algorithm for diagnosing non-well-typed functional pro-
grams [11]. His approach was to extend the unification algorithm for type re-
construction to record which symbol occurrence imposed which constraint. In
contrast, our framework is built outside any underlying framework of constrain-
t solving. It does not incur any overhead for well-moded/typed programs or
modify the constraint-solving algorithm.

Tenma’s system automatically corrects procedural programs under strong
typing [6]. When a change is made on a certain software component, the system
automatically replaces the components that do not adapt to the change by alter-
native components. Thus the purpose of the system is very different from Kima.
Kima works in the situation where the locations of errors are entirely unknown,
and it works at the program symbol level rather than the software component
level.

9 Conclusions and Future Work

We have implemented Kima, a system which automatically corrects near-misses
in a concurrent logic program. Kima does not have to be given explicit specifi-
cations of program properties.

16

Experiments showed that, in most cases, one or a few alternatives could be
obtained from KL1 programs with a few wrong variable occurrences. This is
indebted to theoretically or statistically endorsed heuristics as well as mode and
type information. In the set of programs with a few mutated variable occurrences,
programs that are both well-moded/typed and with higher priority turn out to
be quite rare. Heuristic Rules and Detection Rules do not only improve detection
power and the quality of alternatives but also optimizes the search of alternatives.

Specifications or declarations of program properties, if available, will achieve
more advanced error correction. Our future plan is to let Kima accept instances
of a pair of input and output constraints. Such instances play the role of mode
and type specifications also.

Kima is itself written in KL1 language, and is now 4,500 lines long. The
computation of minimal inconsistent subsets and the following depth-1 search
for a program of 100 lines long is completed within several seconds. The example
shown in Sect. 7 took not more than 0.1 seconds on the KLIC system running
on Sun Ultra 30 (248 MHz) + 128 MB of memory.

References

1. Ajiro, Y., Ueda, K. and Cho, K., Error-Correcting Source Code. In Proc. Fourth
Int. Conf. on Principles and Practice of Constraint Programming (CP’98), LNCS
1520, Springer, 1998, pp. 40–54.

2. Cho, K. and Ueda, K., Diagnosing Non-Well-Moded Concurrent Logic Programs.
In Proc. 1996 Joint Int. Conf. and Symp. on Logic Programming (JICSLP’96),
The MIT Press, 1996, pp. 215–229.

3. Chikayama, T., Fujise, T. and Sekita, D., A Portable and Efficient Implementation
of KL1. In Proc. Sixth Int. Symp. on Programming Language Implementation and
Logic Programming (PLILP’94), LNCS 844, Springer, 1994, pp. 25–39.

4. Milner, R., A Theory of Type Polymorphism in Programming. J. of Computer and
System Sciences, Vol. 17, No. 3 (1978), pp. 348–375.

5. Reiter, R., A Theory of Diagnosis from First Principles. Artificial Intelligence,
Vol. 32 (1987), pp. 57–95.

6. Tenma, T., et al, A Modification Support System – Automated Correction of Side-
Effects Caused by Type Modifications. In Proc. ACM 18th Annual Computer Sci-
ence Conference (CSC’90), ACM, 1990, pp. 154–160.

7. Ueda, K. and Chikayama, T., Design of the Kernel Language for the Parallel In-
ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494–500.

8. Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In
Proc. Seventh Int. Conf. on Logic Programming (ICLP’90), The MIT Press, 1990,
pp. 3–17.

9. Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3–43.

10. Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems,
LNCS 1068, Springer, 1996, pp. 134–153.

11. Wand, M., Finding the Source of Type Errors. In Proc. 13th ACM Symp. on
Principles of Programming Languages, ACM, 1986, pp. 38–43.

17

Appendix: Usage of Kima

Example 1 – A single error

First, consider a list concatenation (append) program with one error:
² ¯

:- module test.
R1 : append([], Y,Z):- true | Y=Z.
R2 : append([A|Y],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).
(The head of R2 should have been append([A|X],Y,Z0))

± °
Suppose you want to obtain alternatives with up to priority 100 (i.e., very

low priority), command line options should be given as:
² ¯

% kima +p 100 append.kl1
± °

Then, Kima presents six alternatives, all up to priority 3:
² ¯

================= Suspected Group 1 =================

------------- Priority 1 -------------

append([A|X],Y,Z0):-true|Z0=[A|Z],append(X,Y,Z)

in test:append/3, clause No.2

append([A|Y],X,Z0):-true|Z0=[A|Z],append(X,Y,Z)

in test:append/3, clause No.2

------------- Priority 2 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z0,Y,Z)

in test:append/3, clause No.2

------------- Priority 3 -------------

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Y,Y,Z)

in test:append/3, clause No.2

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(A,Y,Z)

in test:append/3, clause No.2

append([A|Y],Y,Z0):-true|Z0=[A|Z],append(Z,Y,Z)

in test:append/3, clause No.2

-----± °
The two alternatives of priority 1 have the highest priority. Each alterna-

tive is separeted by “-----”. The first of the two alternatives with priority 1
is the intended one, while the second alternative turns out to be a program
that merges two input lists by taking their elements alternately. That is, when
append is invoked as append([1,2,3],[4,5,6],Out), the first alternative re-
turns [1,2,3,4,5,6] and the second returns [1,4,2,5,3,6].

18

Next, let us compute minimal inconsistent subsets (MIS for short) and vari-
able symbol occurrences infringing Detection Rules.

² ¯
% kima +mis append.kl1

< Minimal Inconsistent Subsets of *Mode* constraints >

m/<(test:append)/3,1><cons,2> = IN

imposed by the rule HV applied to the variable Y

in test:append/3, clause No.2

m/<(test:append)/3,1> = OUT

imposed by the rule BV applied to the variable X

in test:append/3, clause No.2

< Minimal Inconsistent Subsets of *Type* constraints >

--Constraints are consistent, and there is no MIS--

< Violations of syntactic rules of the detection level 2 >

singleton(X)

in test:append/3, clause No.2

-----± °

MISs of mode constraints are obtained first; those of types second. Multiple
independent MISs can be computed at once, and each MIS is displayed with a
separator “-----”. In this example, only one MIS on modes is found, while type
constraints are consistent.

The MIS says that variables X and Y in the second clause of append are sus-
picious. Using this information, Kima searches alternatives either by increasing
or by decreasing the occurrences of X and/or Y in the clause. In addition to
MISs, the variable X is detected as an error by Detection Rule 2. Violations of
Detection Rules are reported as follows:

Detection Rule 1.
1. A variable which occurs in a clause guard must occur also in the head

of the clause: var-not-in-the-head(the variable)
2. The same variable must not occur on both sides of a unification body

goal: not-pass-occur-check(the variable)
Detection Rule 2. The name of a singleton variable must begin with an un-

derscore “-”: singleton(the variable)

Example 2 – Independent errors

The second example is a program comb(n,r,Out) that generates the list of all
length-n 0-1 lists that contain exactly r 1’s. (Hence the outer list contains nCr el-
ements.) For example, comb(3,2,Out) returns the list [[1,1,0],[1,0,1],[0,1,1]].
Below is the definition of comb with two errors:

19

² ¯
:- module probability.

R1: comb(N,0,C):- true | init-list(0,N,0,[],C0),C=[C0].
R2: comb(N,N,C):- true | init-list(0,N,1,[],C0),C=[C0].
R3: comb(N,R,C):- N>R |

N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons-list(1,C0,CC0),
comb(N1,R,C1),cons-list(0,C1,CC1),append(CC0,CC1,CC).

(The last invocation should have been append(CC0,CC1,C))
R4: init-list(N,Len,-,L0,L):- N=:=Len | L0=L.
R5: init-list(N,Len,E,L0,L):- N < Len |

L1=[E|L0],N1:=N+1,init-list(N1,Len,E,L1,L).
R6: cons-list(-,[], L):- true | L=[].
R7: cons-list(A,[X|Xs],L):- true |

L=[[A|X]|L1],cons-list(A,XS,L1).
(The recursive call should have been cons-list(A,Xs,L1))
R8: append([], Y,Z):- true | Y=Z.
R9: append([A|X],Y,Z0):- true | Z0=[A|Z],append(X,Y,Z).

± °

The default action of Kima is to perform depth-1 search of alternatives of
the highest priority using modes, types, and Detection Rules.

² ¯
% kima comb.kl1

================= Suspected Group 1 =================

------------- Priority 1 -------------

comb(N,R,C):-N>R|N1:=N-1,R1:=R-1,comb(N1,R1,C0),cons_list(1,C0,CC0),

comb(N1,R,C1),cons_list(0,C1,CC1),append(CC0,CC1,C)

in probability:comb/3, clause No.3

================= Suspected Group 2 =================

------------- Priority 1 -------------

cons_list(A,[X|Xs],L):-true|L=[[A|X]|L1],cons_list(A,Xs,L1)

in probability:cons_list/3, clause No.2

-----± °

There are two Suspected Groups. In this example, Kima first found multiple
MISs. By analyzing the clauses indicated by the MISs, Kima concluded there
were two independent groups. Kima performed depth-1 search of alternatives
for each group, and finally succeeded in finding alternatives that really corrected
the errors.

Example 3 – Multiple errors in the same group

Last, we consider a quicksort program with two errors in the same clause.

20

² ¯
:- module main.

R1 : quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).
R2 : qsort([], Ys0,Ys):- true | Ys=Ys0.
R3 : qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L),qsort(S,Ys0,Ys1),
Ys2=[X|Ys1],qsort(L,Ys2,Ys3).

(The body unification goal should have been Ys1=[X|Ys2])
R4 : part(-,[], S, L):- true | S=[],L=[].
R5 : part(A,[X|Xs],S0,L):- A>=X | S0=[X|S],part(A,Xs,S,L).
R6 : part(A,[X|Xs],S, L0):- A < X | L0=[X|L],part(A,Xs,S,L).

± °
Depth-1 search is tried first, but no solution can be found.

² ¯
% kima qsort.kl1

================= Suspected Group 1 =================

Sorry, no alternative is found
± °

Now depth-2 search is tried.
² ¯

% kima +d 2 qsort.kl1

================= Suspected Group 1 =================

------------- Priority 1 -------------

qsort([X|Xs],Ys0,Ys3):-true|part(X,Xs,S,L),qsort(S,Ys0,Ys1),

Ys1=[X|Ys2],qsort(L,Ys2,Ys3)

in main:qsort/3, clause No.2

-----± °
Only one alternative is found, and this is the intended one. In depth-2 search,

depth-1 search is also executed, and all the alternatives found by depth-1 and
depth-2 searches are prioritized together. In general, depth-N search includes
depth-k search for all k ≤ N .

This article was processed using the LaTEX macro package with LLNCS style

