
1

2007年度 計算知能論A
しらみつぶし探索

2007年5月21日
上田 和紀

早稲田大学理工学部CS学科

2

探索木 (search tree)

level 0
level 1

level g

level d

branching factor
(b)

goal state
(solutions)

initial state

3

深さ優先探索（縦型探索, depth-first search）

open list に登録

: d (b – 1)
(open list の大きさ)

4

W
W–1

W–2

深さ優先探索（縦型探索, depth-first search）

B
B+1

B+2

B = d +1 W = 
bd+1–1 

b –1 

B+4
B+5

W–4
W–5



5

幅優先探索（横型探索, breadth-first search）

: exponential w.r.t. g
(open list の大きさ)

6

幅優先探索（横型探索, breadth-first search）

W = 
bg+1–1 

b –1 B = 
bg–1 
b –1 + 1 

B W

7

深さ優先探索 — 問題点１

最初の解

最良解

8

深さ優先探索 — 問題点２



9

反復深化 (iterative deepening)

c = 0

10

反復深化 (iterative deepening)

c = 1

11

反復深化 (iterative deepening)

c = 2

12

反復深化 (iterative deepening)

c = 3



13

反復深化 (iterative deepening)

c = 4

14

反復深化 (iterative deepening)

空間計算量は O(g)
幅優先に比べて時間がかからないのか？

15

反復深化 (iterative deepening)

探索木はこんな形だと
考えるほうが正しい．

16

反復深化 (iterative deepening)

幅優先探索との手間（訪れる節点数）の比

アルゴリズムの空間局所性次第でコストは逆転

2 2     
3 1.5  
5 1.25

10 1.11
25 1.04

b 反復深化／幅優先



17

反復深化 (iterative deepening)

反復深化探索は「最適」なしらみつぶし探索

いかなるしらみつぶし探索アルゴリズムも，反
復深化探索の空間計算量と時間計算量を改善す
ることはできない。

理由

空間計算量：

時間計算量：

18

メタインタプリタ

言語 Lで書いた言語 Lのインタプリタもしくは

Virtual Machine (VM)
L = Lisp, Prolog, . . .（記号処理言語）

プログラムとデータがほぼ同じ形式なので作り
やすい

でも，Prologプログラムは論理式，Prologプロ

グラムが扱うデータは項

Prologプログラムをデータとして表現する方法

をまず決める

19

メタインタプリタにかけるプログラム

論理演算子 , 関数記号 &  (infix)

論理演算子 :- 述語記号 <=  (infix)

節（事実）
h

原子論理式
h <= true

節（規則）
h :- b1, ..., bn

原子論理式
h <= b1 & ... & bn

もとの表現 メタインタプリタ用表現

20

SLD木（復習）

?- add(X,Y,s(s(0)))

?- add(X’,Y,s(0))

?- add(X’’,Y,0)

{X←0, Y← s(s(0))}

{X← s(0), Y← s(0)}

{X← s(s(0)), Y←0}

{X← 0, Y← s(s(0))}

{X’←0, Y← s(0)}

{X’’←0, Y←0)}

{X← s(X’)}

{X’← s(X’’)}



21

Prologの実行はSLD木を縦型探索

問題空間

状態 ＝ ゴール（質問），すなわち述語呼出しの

並び

操作 ＝ ゴール中の最左の述語呼出しを，規則

（プログラム節）を用いて展開すること

初期状態 ＝ 初期ゴール

目標状態 ＝ 空ゴール (true)

22

Prolog のバニラメタインタプリタ

solve(A) :– solve(A,true).

solve(A,  A).
solve(A0,A) :– reduce(A0,A1), solve(A1,A).

reduce((true&B), C) :– reduce(B,C).
reduce((A0&B), (A&B)) :– reduce(A0,A).
reduce(A,true) :– builtin(A), call(A).
reduce(A,B) :– (A <= B).

builtin(_ is _).   builtin(dif(_, _)).  . . .

“small-step” version

23

反復深化メタインタプリタ

solve(A) :– solve(A,true).

solve(A,  A).
solve(A0,A) :– solve(A0,A1), reduce(A1,A).

reduce((true&B), C) :– reduce(B,C).
reduce((A0&B), (A&B)) :– reduce(A0,A).
reduce(A,true) :– builtin(A), call(A).
reduce(A,B) :– (A <= B).

builtin(_ is _).   builtin(dif(_, _)).  . . .

24

打切り機構の導入

solve(A,N) :- solve(A,true,N,C).
solve(A, A,N, N).
solve(A0,A,N0,N) :–

N0>0, N1 is N0–1,
solve(A0,A1,N1,N),
reduce(A1,A).

カウンタ 使い残し



25

打切り機構の導入

solve_id(A,N) :- solve_id(A,true,N,C).
solve_id(A, A,N, N).
solve_id(A0,A,N0,N) :–

N0>0, N1 is N0–1,
solve_id(A0,A1,N1,N),
reduce(A1,A).

カウンタ 使い残し

26

メタインタプリタの得失

バニラメタインタプリタ自体には付加価値はない．

しかし，少し手を加えることで機能が容易に変
更・増強できる

例１: 実行戦略の変更（例：反復深化）

例２: 証明過程の表示（＝ 理由の説明）

cf. エキスパートシステム

例３: 述語呼出しの遅延

cf. 仮説推論

１桁程度の性能低下

27

Prologのバニラメタインタプリタ (2)

solve(true).

solve(A & B) :– solve(A), solve(B).

solve(A) :– builtin(A), call(A).

solve(A) :– (A <= B), solve(B).

builtin(_ is _).   builtin(dif(_, _)).  . . .

“big-step” version

28

メタインタプリタの他の応用

ゴールが成功した理由（＝証明過程）を表示する
メタインタプリタ

cf. エキスパートシステム

solve(true, true).
solve((A & B), and(PA,PB)) :–

solve(A, PA), solve(B, PB).
solve(A, known(A)) :– builtin(A), call(A).
solve(A, because(A,PB)) :–

(A <= B), solve(B, PB).



29

家族関係，系図の登録 (family.pl)

pam tom

bob liz

ann pat

jim

is_parent_of(pam, bob).
is_parent_of(tom, bob).
is_parent_of(tom, liz).
is_parent_of(bob, ann).
is_parent_of(bob, pat).
is_parent_of(pat, jim).

female(pam).
female(liz).
female(pat).
female(ann).
male(tom).
male(bob).
male(jim).

30

メタインタプリタの他の応用

述語呼出しの遅延機能をもつメタインタプリタ

delay 宣言のある呼出しには手をつけず，残り

の部分を実行

最初のゴールが成功するための十分条件（仮
説）を計算

仮説推論，アブダクション (abduction)

31

メタインタプリタの他の応用

述語呼出しの遅延機能をもつメタインタプリタ

dsolve(true, D,D).
dsolve(A & B, D0,D) :–

dsolve(A, D0,D1), dsolve(B, D1,D).
dsolve(A, [A|D],D) :- delay(A).
dsolve(A, D,D) :– builtin(A), call(A).
dsolve(A, D0,D) :–

(A <= B), dsolve(B, D0,D).


