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知識のいろいろ (6.1節)

記号的でない知識（暗黙知）

例：自転車の乗り方，友達の顔

記号的な知識（形式知）

構成的な知識

手続き型 (procedural) ＝ “how” の表現

例：逆行列を求めるプログラム

構成的でない知識

宣言型 (declarative) ＝ “what” の表現

例：逆行列の数学的定義
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コンピュータに知的能力をもたせる

どちらが難しい？

Q1. 数式の展開 vs. 因数分解

Q2. 式の微分 vs. 積分

しかしこれらはできるようになってきた

積分をするプログラムは AI 草創期の主要成果

将棋もプロ一歩手前（奨励会３段）

作るのがはるかに難しいのは

子供の知的能力（例：コトバの学習）

動物の知的能力（相手の認識，運動神経）

形式知

暗黙知
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知的コンピュータの第一歩は記号処理

コンピュータは数値計算の需要から生まれた

しかしコンピュータが登場すると，その能力の人
間との類似性に注目して新たな使い方を考える
人々がすぐに現れた

「記号」（シンボル）を扱う能力，具体的には

記号や記号の連鎖をコンピュータの中に記
憶したり，読み出したり，変形したりする
能力

二つの記号が等しいかどうかの判断能力
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概念と記号 (6.2節)

宣言的な知識は，記号化することによって計算機
に載せることができる．

記号 ＝ 概念につけた名前（cf. 単語）

名前のつけ方には任意性がある

例：12  vs.  XII  vs.  twelve  ...
記号には３つのレベルがある

1. 記号が表わす概念

2. 記号自身

動詞は名詞でないが「動詞」は名詞！

3. 記号のつづり
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記号 ≒ 単語

記号とは，概念につけた名前のこと（cf. 単語）

特徴 1: 名前のつけ方には任意性がある

例：12  vs.  XII  vs.  twelve  ...
特徴 2: 名前を分解すると意味をなさなくなる

「りんご」 vs.“り”“ん”“ご”

記号を組み合わせることによって，より複雑な概
念を表すことができる

熟語 < 句 < 節 < 文 < 段落 < ...
単語どうしは相互に関係している

辞書は単語のネットワーク
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モデル化と解釈

問題

結論

プログラム
・データ

計算結果

現実世界
（計算機の外）

モデルの世界
（計算機の中）

計算

モデル化

解釈
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モデル化と解釈の例：３次元ＣＧ

物体の配置
光線状態

情景

モデル化された
物理状態と
物理法則

二次元画像

現実世界
（計算機の外）

モデルの世界
（計算機の中）

計算

モデル化

解釈
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モデル化と解釈の例：三段論法

ソクラテスは人間
人間は皆死ぬ

ソクラテスは死ぬ

human(Socrates)
∀X(human(X)    

mortal(X))

mortal(Socrates)

現実世界
（計算機の外）

モデルの世界
（計算機の中）

計算

モデル化

解釈
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記号処理 (6.2 ～6.3節)

計算機で記号を扱うための基本機能は

同一性の判定

記号構造の形成と操作

注：記号のつづりは入出力用，内部の処理では使
わない

計算機内部に記号を格納するには？

同一性の判定が高速にできればよい

外部から読み込んだ同一記号は常に同じ識別
番号に変換されるようにする
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記号による知識表現 (6.4節)

概念どうしを関係づけることが知識表現の基本 (cf. 
辞書)

現実世界での概念間の関係

計算機内での記号間の関係
（リンク構造）
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物理記号系 (Newell and Simon) (6.5節)

A physical symbol system consists of a set of 
entities, called symbols, which are physical 
patterns that can occur as components of another 
type of entity called an expression (or symbol 
structure).

Thus, a symbol structure is composed of a number 
of instances (or tokens) of symbols related in some 
physical way (such as one token being next to 
another).
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物理記号系（つづき）

At any instant of time the system will contain a 
collection of these symbol structures.

Besides these structures, the system also contains 
a collections of processes that operate on 
expressions to produce other expressions: 
proesses of creation, modification, reproduction 
and destruction.
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物理記号系（つづき）

A physical symbol system is a machine that 
produces through time an evolving collection of 
symbol structures.

Such a system exists in a world of objects wider 
than just these symbolic expressions themselves.

－ Allen Newell and Hubert Simon: 
Computer Science as Empirical Inquiry: 

Symbols and Search (1976)  
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記号的知識は平叙文で書ける

個別知識（辞書にはあまり出ない）

Tom is the father of Liz.
Pam is female.

一般知識（辞書に出る）

A mother is a parent who is female.
A grandmother is a mother of a parent.
An ancestor is either (i) a parent or (ii) a parent 
of an ancestor.

これらはすべて論理学のコトバでも表現できる

17

記号的知識をコンピュータに格納する

個別知識

Tom is the father of Liz.
is_father_of(tom, liz)

Pam is female.
is_female(pam).

特徴

固有名詞が出現

単文

述語 主語 目的語

（目的格）
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記号的知識をコンピュータに格納する

一般知識

A mother is a parent who is female.
X is the mother of Y  if X is a parent of Y 
and X is female.
is_mother_of(X,Y) 

is_parent_of(X,Y)      is_female(X)                

A grandmother is a mother of a parent.
is_grandmother_of(X,Y)

is_mother_of(X,Z)      is_parent_of(Z,Y) 

∧
⇐

∧
⇐
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Prolog 入門 (7節)

Prolog = PROgramming in LOGic

条件文の形をした論理式（h b1 ∧ ... ∧ bn）
（≒ 平叙文）を手続き（プログラム） として解釈

cf. C 言語や Java などは命令文を使う

30余年の歴史，多くのすぐれた処理系

無料の処理系（Unix, Windows）は SWI-Prolog,  
B-Prolog, XSB, GNU Prolog など多数

理工UNIXシステムでは SICStus Prolog
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家族関係 (1) ― 系図の登録 (family.pl)

pam tom

bob liz

ann pat

jim

is_parent_of(pam, bob).
is_parent_of(tom, bob).
is_parent_of(tom, liz).
is_parent_of(bob, ann).
is_parent_of(bob, pat).
is_parent_of(pat, jim).

female(pam).
female(liz).
female(pat).
female(ann).
male(tom).
male(bob).
male(jim).

21

家族関係 (2) ― 用語の意味の定義

is_mother_of(X,Y) :-
is_parent_of(X,Y), female(X).

is_sister_of(X,Y) :-
is_parent_of(Z,X),
is_parent_of(Z,Y),
female(X), X ≠ Y.

has_a_child(X) :- is_parent_of(X,_).

is_ancestor_of(X,Y) :- is_parent_of(X,Y).
is_ancestor_of(X,Y) :-

is_parent_of(X,Z),
is_ancestor_of(Z,Y).
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【補足】トレース機能 (8節)

?- trace.          トレース実行開始

?- notrace.      トレース実行終了

Call, Exit, Redo, Fail
Call: 最初に呼ばれた

Exit: 答が求まった

Redo: 答の見直しを求められた

Fail: もう答がない
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半加算器と全加算器 (adder.pl) (9節)

half
adder

In1In2

OutCout

full
adder

In1In2

OutCout

Cin
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３ビット加算器 (adder.pl) (9節)

half
adder

full
adder

full
adder

B2 B1 B0A2 A1 A0

X2X3 X1 X0

C2 C1
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３ビット加算器 (adder.pl) (9節)

half
adder

full
adder

full
adder

B2 B1 B0A2 A1 A0

X2X3 X1 X0

C2 C1

ADD
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Prologと一階述語論理で扱う記号 (10節)

(1) 述語（述語記号）

「もの」のカテゴリへの所属 student(bob)
「もの」の性質 tall(bob)
「もの」の動作 runs(bob)
「もの」と「もの」との関係 loves(bob,liz)

「もの」を引数として与えると原子論理式 (atomic 
formula) となる．

原子論理式は自然言語の単文に相当し，真偽を論
ずる対象となる

述語は他の言語の「手続き」に対応する
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Prologと一階述語論理で扱う記号 (10節)

(2) 定数（定数記号） bob, 0, june, nil
きまった「もの」を表わす

(3) 変数（変数記号） X, Y, Who
いろいろな「もの」を表わす

(4) 関数（関数記号） s(X), date(dec,31)
「もの」から「もの」を作る

(2)～(4) を用いて「もの」や「データ」を表わす項
(term)を構成する

“一階”とは，変数には「もの」を表す変数（一階
の変数）しかないことを表す．
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記号 vs. 記号の意味 (10節)

記号は何らかの意味を担っている

記号の意味とは

（計算機の中の）記号と

（計算機の外の）「もの」「概念」

との対応関係のこと

知識を計算機に格納するときは，記号の意味はプ
ログラマが決める（cf. 自然言語による表現）

論理式が言及している（外の世界の）「もの」の集
合のことを，対象領域 (domain, universe) と呼ぶ．
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記号による知識表現の例 (10節)

生死を扱うとき（対象領域：人間の集合）

定数： Socrates
述語： human, mortal

自然数を扱うとき（対象領域：N）

定数： 0, 1, 2, . . .
関数： +, !, . . .
述語： =, >, . . .
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関数記号の役割 (10節)

単純な記号を組み合わせてより複雑な「もの」を表現

date(27,may,1994)
c(1,2)
s(s(s(s(s(0)))))
1+2*3   または +(1,*(2,3))
rectangle(point(X0,Y0),point(X1,Y1))

“関数”と考えるよりも“データ構造”と考えた方が
自然な場合もある

関数も述語も，引数の個数 (arity) は固定

定数は，0 引数の関数と考えても良い
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手続き的解釈と宣言的解釈 (11節)

Prolog のプログラムは，宣言型の知識としても手

続き型の知識としても解釈できる

手続き的解釈 ～ プログラムを “how” の表現として

解釈すること

では Prolog 処理系はどのように質問に答えて

いるのか？

宣言的解釈 ～ プログラムを “what” の表現として解

釈すること

では Prolog 処理系が求めた答はどのような意

味で正しいのか？
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Prologプログラムの宣言的解釈 (11.1節)

プログラムは規則の（ANDでつながった）並び

規則 (rule) － 専門用語では「節」(clause)
条件文に対応

条件部のないものは事実 (fact)（肯定平叙文）

質問 (query) も「節」

否定疑問文に対応

Prologにないもの：

否定平叙文 (cf. ‘dif ’ )
OR でつながった複文
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Prologプログラムの宣言的解釈 (11.1節)

“P implies Q” は “(not  P) or Q” と同じ

“(P and Q and R) implies S” は
“(not  P) or (not Q) or (not R) or S” と同じ

つまり，節とは，原子論理式やその否定を or でつ

なげたもの．ここで

条件部の原子論理式には not をつける

結論には not をつけない

規則は not がつかない原子論理式を１個もつ

質問はすべての原子論理式に not がつく
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?- is_ancestor_of(X, jim) の解釈 (11.1節)

解釈１：否定（疑問）文

false :- is_ancestor_of(X, jim)

= For all X, X is not an ancestor of jim.
= Is there no ancestor of jim?

Yes!  Pat is an ancestor!
Yes!  Ann is an ancestor!

否定されると，背理法による証明手続きが起動
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?- is_ancestor_of(X, jim) の解釈 (11.1節)

解釈２：条件文の略記

yes(X) :- is_ancestor_of(X, jim)

= If X is an ancestor of jim, say “yes” and 
answer X.

Yes, Pat is an answer.
Yes, Ann is an answer.

yes と答えようとして証明手続きが起動

「P ならば yes」と「not P」は非常に近い
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変数の役割 (11.1節)

規則 C の中の変数は「すべての ～ について C が
成立」と解釈

しかし，

質問の中の変数は，直感的には「～ が存在する

か？」

規則の条件部だけに出てくる変数は，直感的に
は「～ が存在すれば」

g_father(X,Y) :- father(X,Z), father(Z,Y).

解釈の反転は，ド・モルガンの法則のしわざ
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手続き的解釈 ＝ 三段論法による演繹 (11.2節)

前向き (bottom-up)

⇒ P    P ⇒ Q
⇒ Q

後向き (top-down)

Q ⇒ P ⇒ Q
P ⇒

(Prologの基本メカ)

どちらも下記のルールの特殊な場合にすぎない

A ⇒ B    B ⇒ C
A ⇒ C
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Prologの実行メカニズムの基本 (11.2節)

知識

P :- Q,R. (= P if Q and R)
P :- S, T. (= P if S and T)

は

P if ((Q and R) or (S and T))
と等価．つまり P が成り立つことを示すには

Q と R が両方成り立つ

S と T が両方成り立つ

のいずれかを示せばよい
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Prologの実行メカニズムの基本 (11.2節)

したがって，知識

P :- Q,R.
P :- S, T.

の下で P が成り立つことを示すには

目標 P を （副）目標 Q, R に展開し，これらが
成り立つか （左から） 調べる

途中で行き詰まったら目標 S, T に展開しなお
し，それらが成り立つか （左から） 調べる

とすればよい（バックトラック： 次頁）．
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バックトラック (11.2節)

通常の（決定的）アルゴリズムは，次にすべきこ
とが一通りにきまっている

非決定的 (nondeterministic) アルゴリズムは，次に

すべきことが複数通りある

可能性が枝分かれしてゆく

現実の（決定的な）計算機で非決定的アルゴリ
ズムをシミュレートするために，バックトラッ
ク (backtracking) を使う（試行錯誤）

cf. 非決定性オートマトン
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バックトラック (11.2節)

宣言的解釈では，規則の順序や，一つの規則の中
の条件の順序は問題にならない．

しかし手続き的解釈ではこれらが問題になる．

上に書いた規則から順に試す

左に書いた条件から順に確かめる

一般には，

単純な規則を先に書く

一つの規則の中では，解の少ない（または単純
な）条件を先に書く

のがよい．
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展開と単一化 (12節)

これまでの説明は述語の引数には言及していな
かった

変数を含む節を展開するときは、キャンセルする
ものどうしをまず「同じ形」にそろえる

例：

human(socrates)  ∀X(human(X)⇒mortal(X))
mortal(socrates)

では、一般的な知識

∀X(human(X)⇒mortal(X)) をまず具体化する
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単一化 (12節)

形を揃える操作 ＝ 単一化 (unification)
例：human(socrates) と

human(X) ⇒ mortal(X) の左辺は、

X socrates と化ければ同じ形になる

Prolog は、プログラミング言語に必要な

代入機構

同一性の比較機構

引数の受渡し機構

をすべて単一化によって実現している
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展開の詳細 (12節)

後向き三段論法 (top-down) の１ステップ

他の言語における手続き呼出しに相当

呼出し add(X,Y,s(s(0))) を

規則 add(s(X),Y,s(Z)) :- add(X,Y,Z) で展開する：

1. 規則の中の変数をつけかえる．結果を

add(s(X’),Y’,s(Z’)) :- add(X’,Y’,Z’) とする

2. 規則の頭部と呼出しとを単一化する．結果は

{X ← s(X’), Y’ ← Y, Z’ ← s(0)} と書ける

3. 呼出しを，代入を施した後の規則の本体で置き換

える．結果は add(X’,Y,s(0)) となる

46

SLD木 ＝ 実行の木 (12節)

?- add(X,Y,s(s(0)))

?- add(X’,Y,s(0))

?- add(X’’,Y,0)

{X ← 0, Y ← s(s(0))}

{X ← s(0), Y ← s(0)}

{X ← s(s(0)), Y ← 0}

{X ← 0, Y ← s(s(0))}

{X’ ← 0, Y ← s(0)}

{X’’ ← 0, Y ← 0)}

{X ← s(X’)}

{X’ ← s(X’’)}

“代入”＝ 変数の化け方
左辺の変数は互いに異なる
左辺の変数は右辺に現れない
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リスト (13節)

0 個以上の要素を “,” で区切って並べたもの

[spring, summer, fall, winter]
[name([r,a,kowalski]),age(65)]
[singleton]
[]

実は二分木の特別な
記法にすぎない

.(spring, 
.(summer,

.(fall, .(winter,[]))))

.

.

.

.

spring

summer

fall

winter []
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リスト (13節)

ドット対 .(X,Y) を [X | Y] とも書く．

以下の三者は同一のもの

.(spring, .(summer, .(fall, .(winter,[]))))
[spring | [summer | [fall | [winter | []]]]]
[spring, summer, fall, winter]

略記のルール： “|[” と対応する “]” を省略して，
“|[” のかわりに “,” を書く．ただし “,” の右に要素
がなければ何も書かない．

“|” と “,” の混在も可．

例： [2,3,5,7,11|X]

49

リスト (13節)

ここで典型的なリスト処理プログラムのデモ

プログラムの間の「形の類似性」に注目！

自然数の加算プログラム vs. リストの連結
プログラム

リストの長さを求めるプログラム vs. リス
ト反転プログラム（naive 版）

50

差分リスト (difference lists) (13.2節)

論理変数を利用した強力なプログラミング技法

リスト L1 から要素 x1, . . . , xn (n ≥ 0) を除去すると
リスト L2 が得られるとき，L1 と L2 の対を差分リス

トという

cf. time vs. duration, position vs. displacement

x1, . . . , xn xn+1, . . . ? (未定)

L1 L2 L1 L2

x1, . . . , xn
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差分リスト (13.2節)

差分リスト L1 – L2 と L3 – L4 は，L2 が不定ならば定

数時間で連結できる

例：

L1 = [the,course | L2] ，
L3 = [on,computational,intelligence | L4] のとき，

L2 と L3 の単一化 （L2 = L3 の実行） によって

L1 = [the,course,on,computational,intelligence | L4]
となる

cf. append によるリスト連結

52

Quicksort (13.2節)

qsort(Xs,Ys) :- qsort(Xs,Ys,[]).
qsort([],      Ys,Ys).
qsort([X|Xs],Ys0,Ys3) :-

part(X,Xs,S,L), qsort(S,Ys0,Ys1), 
Ys1=[X|Ys2], qsort(L,Ys2,Ys3).

part(_,[],       [],  []).
part(A,[X|Xs],[X|S],L) :- A>=X, part(A,Xs,S,L).
part(A,[X|Xs],S,[X|L]) :- A < X, part(A,Xs,S,L).

53

Quicksort (13.2節)

（再帰呼出しで作る） （再帰呼出しで作る）X

Ys0

Ys1=[X|Ys2]

Ys2 Ys3

qsort(Xs,Ys) :- qsort(Xs,Ys,[]).
qsort([],      Ys,Ys).
qsort([X|Xs],Ys0,Ys3) :-

part(X,Xs,S,L), qsort(S,Ys0,Ys1), 
Ys1=[X|Ys2], qsort(L,Ys2,Ys3).
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Palindrome (13.2節)

（再帰呼出しで作る）X

L0=[X|L1]
L1

element(a).  element(b).  element(c). 
palindrome(L) :- palin(L,[]).
palin(L,      L).
palin([X|L],L) :- element(X).
palin(L0,L3) :-

L0=[X|L1], palin(L1,L2), L2=[X|L3], 
element(X).

X

L2 L3

後に決めた部分（両端）
が先に見直しの対象に
なる
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差分リスト (13.2節)

差分リスト技法を使うと，リストの各部分を任意
の順序で作成できる

あとで他のリストと連結する予定のあるリスト
は，差分リストとして作っておくのがよい

応用例：自然言語処理

差分リストをリストに変換する手間は O(1)．その
逆は append と同じ手間がかかる
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経路探索 (14.1節)

path(D,Visited,D,[D|Visited]).
path(S0,Visited,D,PathR) :-

reach(S0,S), not_in(S,Visited),
path(S,[S0|Visited],D,PathR).

path(D,D,[D]).
path(S,D,[D|PathR]) :-

path(S,D0,PathR), reach(D0,D).

末尾再帰 ＝ 深さ優先探索（縦型探索）

左再帰 ＝ 反復深化探索
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経路探索 (14.1節)

path(D,D,[D]).
path(S,D,[S|PathR]) :-

path(S,D0,Path), reach(D0,D).

左再帰 ＝ 反復深化探索

S

D

D0
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計画を立てる

Y

R

G G

Y

R

初期状態 目標状態
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計画を立てる

M M

M

C

C

C

river

boat
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英文の構造を解析する

文法：

文 ::= 名詞句，動詞句.
名詞句 ::= 限定詞，修飾語，名詞，前置詞句.
動詞句 ::= 動詞，［名詞句］，前置詞句.
前置詞句 ::= ［前置詞，名詞句］.
修飾語 ::= ［形容詞，修飾語］.
限定詞 ::= ［ a  |  the ］
. . .

“The student passed the practical course
with a computer.”
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レポート課題2

0 と s を使った自然数の処理に関連する探索問題

（バックトラックによってさまざまな解を探し求
める問題）を自分で設定して，プログラムを作る．
問題設定，考え方，作成したプログラム，実行結
果，考察・感想を記す．

期限：6月2日（土） 24:00
report@ueda.info.waseda.ac.jp 宛てにメールで提

出（受領確認メールが返ります）

Prolog 関係の自由課題は随時送ってください．問
21～問32 を解くなど．
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課題2：ウォーミングアップ

1. 自然数 0, s(0), s(s(0)), ... を順に列挙するプログラ
ム nat を書いてみる

2. プログラム add による自然数の分割を手続き的に
理解する

3. add の変種として，与えられた正整数を二つの正
整数に分割するプログラムを書いてみる

4. 問16（与えられた自然数を三つの数の和に分割）

をやってみる

5. 問20（二数の足し算のすべての場合を順に列挙）

をやってみる
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課題2：問題例

1. 三つの自然数の足し算のすべての場合を列挙する

つまり x + y + z = u を満たすような x, y, z, u の
組を u = 0, 1, 2, . . . について列挙する

cf. 問16

2. 与えられた正整数を1個以上の正整数の和に分解す

るすべての方法を列挙する

3. 二つの正整数の掛け算のすべての場合を列挙する
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課題2：提出時の注意

plain text で送ってください．

メール本文の最初に学籍番号と氏名を記入してく
ださい．

レポートを添付するのでなく，メール本文そのも
のをレポートとしてください．

質問は ueda@ueda.info.waseda.ac.jp に送って下

さい．
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課題2：補足

Prolog 処理系は，大きなデータ構造の一部を “. . .”
で省略して表示することがある．

SWI-Prolog の結果出力で省略が起きないようにす
るには，結果が出力されたところ（Enter やセミコ
ロンを入力するところ）で w (write) を入力すると

完全表示モードに移る．

画面上では [write] と表示される

省略表示モードに戻すには p (print) を入力する．


