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有限領域上の制約充足問題

有限領域（finite domain）ー 各未知数のとりうる

値が有限種類であること

有限領域上の制約充足問題の例は数多い：

覆面算，n-queens
時間割作成，スケジューリング

回路診断

情景理解 (scene analysis)
実用上もきわめて重要

制約充足のための処理系は高価でも売れている

3

有限領域上の制約充足問題の特徴

探索木の深さ ＝ 未知数の個数 ＝ 有限

制約の能動的な利用が重要

代表テクニック : forward checking

cf. 制約の受動的な利用（２変数間の場合）：
制約 c(x1, x2) に x1 と x2 の両方の値を与えて
yes か no かを答えてもらう

未知数の値を決定する順序も重要
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Five-Queens Problem

未知数：x1, ..., x5

領域： 1 ≤ xi ≤ 5
制約： i ≠ j ならば

xj  ≠ xi 

xj  ≠ xi + | j − i |
xj  ≠ xi − | j − i |

Q

x1 x2 x3 x4 x5
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Five-Queens Problem, forward checking
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Five-Queens Problem, forward checking
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Five-Queens Problem, forward checking
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Five-Queens Problem, forward checking

Q

Q

Q

Q



9

Five-Queens Problem, forward checking
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Five-Queens (2)
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Five-Queens (2), forward checking
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Five-Queens (2), forward checking
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Five-Queens (2), forward checking
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Eight-Queens, forward checking
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Eight-Queens, forward checking

Q

16

Eight-Queens, forward checking
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Eight-Queens, forward checking
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Eight-Queens, forward checking
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Eight-Queens, forward checking
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Eight-Queens, forward checking
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Eight-Queens, forward checking

Q

Q

Q

Q

22

Eight-Queens, forward checking
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覆面算 (Cryptarithmetic)

SEND
+ MORE
MONEY

未知数と領域

0 ≤ s, e, n, d,m,o, r, y ≤ 9
0 ≤ c1, c2, c3, c4 ≤ 1 

制約：

s, e, n, d,m, o, r, y は相異なる

s  ≠ 0,  m  ≠ 0
d + e = 10 × c1 + y
c1 + n + r = 10 × c2 + e
. . .

24

覆面算の探索木

SEND
+ 1ORE
1ONEY

SEND
+ MORE
MONEY

8END
+ 1ORE
1ONEY
9END

+ 1ORE
1ONEY
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制約の能動的な利用

1. 未知数のうちの一つを選び，その値を仮に決める
（guess）

2. 仮に決めた値を用いて制約の伝播（constraint 
propagation）を行い，他の未知数のとりうる値を

限定する

ある未知数の取りうる値が一つもなくなったら
1. に後戻り（バックトラック）

さもなければ残った未知数について 1. から作業
を行う
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線画の解釈

２次元情報から３次元情報を復元する ( ! )
求めるもの：線画の各辺の役割（ラベル）

凸辺

凹辺

輪郭辺（２種類）

制約条件：複数の線が会する箇所での，可能なラ
ベルの組合せ（プリントの図）

辺が n 本あると，場合の数は 4n ?
cf. 人間は非常に効率良く線画を認識できる

27

線画の解釈

失った情報を推定するためには仮定が必要

正則多面体，かつ三面頂点多面体

多面体の全体が描かれている

影やひびは描かれていない

一般の視点

vs.

（一般でない視点）
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正則多面体
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正則でない多面体 (1)
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正則でない多面体 (2)
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正則でない多面体 (3)
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三面頂点多面体でない正則多面体
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“不可能物体”タイプ１
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“不可能物体”タイプ２
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“不可能物体”タイプ２
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“不可能物体”タイプ２
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“不可能物体”タイプ２
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“不可能物体”タイプ２

Lesson:
各辺にラベルがつけら
れることは，実現可能
な三次元物体であるこ
との必要条件であるが
十分条件ではない。
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制約プログラミング用ライブラリ

SWI Prolog, SICStus Prolog, GNU Prolog などに付

属

下記の形で問題を記述

各未知数のとりうる値の領域を宣言 (次頁の in)
各未知数が満たすべき制約をポスト (cf. 実行)
(次頁の # つき制約と all_different)

制約の検査と伝播のためのネットワークが
張られる

可能な値の組合せを，guess と制約伝播とバッ
クトラックで探索 (次頁の label)
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覆面算 (SWI Prolog with ‘clp/bounds’ library)

:- use_module(library('clp/bounds')).
send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-

Digits   =  [S,E,N,D,M,O,R,Y],
Carries  =  [C1,C2,C3,C4],
Digits  in  0..9,
Carries in  0..1,
M           #=         C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,
M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

領域宣言

制約のポスト

探索開始
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回路故障診断 (SWI Prolog with ‘clp/bounds’ library)

:- use_module(library('clp/bounds')).
add(1,A,B,C) :- C #= A+B.
add(0,A,B,C) :- C #¥= A+B.
mul(1,A,B,C) :- C #= A*B.
mul(0,A,B,C) :- C #¥= A*B.
circuit([M1,M2,M3,A1,A2],F,G):-

A=3, B=2, C=2, D=3, E=3,
mul(M1,A,C,X), mul(M2,B,D,Y),
mul(M3,C,E,Z),
add(A1,X,Y,F), add(A2,Y,Z,G).

sum([],Sum) :- Sum#=0.
sum([S|Ss],Sum) :- sum(Ss,Sum0), Sum#=S+Sum0.

素子

回路

M1 M2 M3

A1 A2

3 2 2 3 3
A B C D E

F G

X Y Z
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診断 (diagnosis) 問題

例：回路の故障診断

与えるもの：

各素子の正常時の動作

回路の構成

回路への入力

観測された出力

以上を与えると，診断システムは故障箇所につい
ての仮説を計算する（仮説推論）
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直列型自然言語処理

音
声
認
識
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語
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的
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析

生
成
計
画
立
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表
層
生
成

音
声
合
成
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並列型自然言語処理

音声論的制約

構文論的制約

意味論的制約

語用論的制約

言語外的制約
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制約の下での談話理解

会話１

“What are they?”
“They are flying airplanes.”

会話２

“What are they doing?”
“They are flying airplanes.”
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制約の下での文字認識

47

制約の下での文字認識
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制約伝播アルゴリズム

すべての制約が２変数間の制約である場合，制約
充足問題は制約ネットワークで表現できる

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

x1 x2

x3x4

1
2
3
4

1
2
3
4

x y

<

xi ≠ xj , xj ≠ xi ± (j− i)



49

アーク整合性 (arc consistency)

制約充足問題

変数（未知数） x1,..., xn

各変数の領域 D1,..., Dn

制約の集合 {Cij}
アーク Cij がアーク整合している：

∀ai∈Di ∃aj∈Dj (Cij (ai, aj)) かつ

∀aj∈Dj ∃ai∈Di (Cij (ai, aj))
制約ネットワークがアーク整合：

すべてのアークがアーク整合している
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アーク整合性

x1 < x2 (xi ∈{1,2,3,4}) の場合

1
2
3
4

1
2
3
4

x1 x2

1
2
3

1
2
3
4

x1 x2

revise(1,2)

1
2
3

2
3
4

x1 x2

revise(2,1)
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アーク整合性

xi ≠ xj , xj ≠ xi ± (j− i) (x1 ∈{1}, x2...5 ∈{1,2,3,4,5})

Q

x1 x2 x3 x4 x5

1

2

3

4

5
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アーク整合性

xi ≠ xj , xj ≠ xi ± (j− i) (x1 ∈{1}, x2...5 ∈{1,2,3,4,5})

Q

x1 x2 x3 x4 x5

1
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5

x2からのサ

ポートを失う

x5からのサ

ポートを失う

forward checking
よりも強力な枝刈り
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アーク整合性

アーク整合性を保証できても解があるとは限らな
い

白 黒

白 黒 白 黒

x1

x3x2

≠ ≠

≠

54

アーク整合性

アーク整合性を保証できても解があるとは限らな
い

より高度な整合性（パス整合性）を検査するか，
最後はしらみつぶし探索を行って具体的な組合せ
を求める

白 黒

白 黒 白 黒

x1

x3x2

≠ ≠

≠


