
1

2007年度 計算知能論A
制約充足 (constraint satisfaction)

上田 和紀

早稲田大学理工学部CS学科

2

有限領域上の制約充足問題

有限領域（finite domain）ー 各未知数のとりうる

値が有限種類であること

有限領域上の制約充足問題の例は数多い：

覆面算，n-queens
時間割作成，スケジューリング

回路診断

情景理解 (scene analysis)
実用上もきわめて重要

制約充足のための処理系は高価でも売れている

3

有限領域上の制約充足問題の特徴

探索木の深さ ＝ 未知数の個数 ＝ 有限

制約の能動的な利用が重要

代表テクニック : forward checking

cf. 制約の受動的な利用（２変数間の場合）：
制約 c(x1, x2) に x1 と x2 の両方の値を与えて
yes か no かを答えてもらう

未知数の値を決定する順序も重要

4

Five-Queens Problem

未知数：x1, ..., x5

領域： 1 ≤ xi ≤ 5
制約： i ≠ j ならば

xj ≠ xi

xj ≠ xi + | j − i |
xj ≠ xi − | j − i |

Q

x1 x2 x3 x4 x5

5

Five-Queens Problem, forward checking

Q

6

Five-Queens Problem, forward checking

Q

Q

7

Five-Queens Problem, forward checking

Q

Q

Q

8

Five-Queens Problem, forward checking

Q

Q

Q

Q

9

Five-Queens Problem, forward checking

Q

Q

Q

Q

Q

10

Five-Queens (2)

11

Five-Queens (2), forward checking

Q

12

Five-Queens (2), forward checking

Q

Q

13

Five-Queens (2), forward checking

Q

Q

Q

14

Eight-Queens, forward checking

15

Eight-Queens, forward checking

Q

16

Eight-Queens, forward checking

Q

Q

17

Eight-Queens, forward checking

Q

Q

Q

18

Eight-Queens, forward checking

Q

Q
Q

Q

19

Eight-Queens, forward checking

Q

Q
Q

Q

Q

20

Eight-Queens, forward checking

Q

Q

21

Eight-Queens, forward checking

Q

Q

Q

Q

22

Eight-Queens, forward checking

Q
Q

Q

Q

23

覆面算 (Cryptarithmetic)

SEND
+ MORE
MONEY

未知数と領域

0 ≤ s, e, n, d,m,o, r, y ≤ 9
0 ≤ c1, c2, c3, c4 ≤ 1

制約：

s, e, n, d,m, o, r, y は相異なる

s ≠ 0, m ≠ 0
d + e = 10 × c1 + y
c1 + n + r = 10 × c2 + e
. . .

24

覆面算の探索木

SEND
+ 1ORE
1ONEY

SEND
+ MORE
MONEY

8END
+ 1ORE
1ONEY
9END

+ 1ORE
1ONEY

25

制約の能動的な利用

1. 未知数のうちの一つを選び，その値を仮に決める
（guess）

2. 仮に決めた値を用いて制約の伝播（constraint
propagation）を行い，他の未知数のとりうる値を

限定する

ある未知数の取りうる値が一つもなくなったら
1. に後戻り（バックトラック）

さもなければ残った未知数について 1. から作業
を行う

26

線画の解釈

２次元情報から３次元情報を復元する (!)
求めるもの：線画の各辺の役割（ラベル）

凸辺

凹辺

輪郭辺（２種類）

制約条件：複数の線が会する箇所での，可能なラ
ベルの組合せ（プリントの図）

辺が n 本あると，場合の数は 4n ?
cf. 人間は非常に効率良く線画を認識できる

27

線画の解釈

失った情報を推定するためには仮定が必要

正則多面体，かつ三面頂点多面体

多面体の全体が描かれている

影やひびは描かれていない

一般の視点

vs.

（一般でない視点）

28

正則多面体

29

正則でない多面体 (1)
30

正則でない多面体 (2)

31

正則でない多面体 (3)
32

三面頂点多面体でない正則多面体

33

“不可能物体”タイプ１

34

“不可能物体”タイプ２

35

“不可能物体”タイプ２

36

“不可能物体”タイプ２

37

“不可能物体”タイプ２

38

“不可能物体”タイプ２

Lesson:
各辺にラベルがつけら
れることは，実現可能
な三次元物体であるこ
との必要条件であるが
十分条件ではない。

39

制約プログラミング用ライブラリ

SWI Prolog, SICStus Prolog, GNU Prolog などに付

属

下記の形で問題を記述

各未知数のとりうる値の領域を宣言 (次頁の in)
各未知数が満たすべき制約をポスト (cf. 実行)
(次頁の # つき制約と all_different)

制約の検査と伝播のためのネットワークが
張られる

可能な値の組合せを，guess と制約伝播とバッ
クトラックで探索 (次頁の label)

40

覆面算 (SWI Prolog with ‘clp/bounds’ library)

:- use_module(library('clp/bounds')).
send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-

Digits = [S,E,N,D,M,O,R,Y],
Carries = [C1,C2,C3,C4],
Digits in 0..9,
Carries in 0..1,
M #= C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,
M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

領域宣言

制約のポスト

探索開始

41

回路故障診断 (SWI Prolog with ‘clp/bounds’ library)

:- use_module(library('clp/bounds')).
add(1,A,B,C) :- C #= A+B.
add(0,A,B,C) :- C #¥= A+B.
mul(1,A,B,C) :- C #= A*B.
mul(0,A,B,C) :- C #¥= A*B.
circuit([M1,M2,M3,A1,A2],F,G):-

A=3, B=2, C=2, D=3, E=3,
mul(M1,A,C,X), mul(M2,B,D,Y),
mul(M3,C,E,Z),
add(A1,X,Y,F), add(A2,Y,Z,G).

sum([],Sum) :- Sum#=0.
sum([S|Ss],Sum) :- sum(Ss,Sum0), Sum#=S+Sum0.

素子

回路

M1 M2 M3

A1 A2

3 2 2 3 3
A B C D E

F G

X Y Z

42

診断 (diagnosis) 問題

例：回路の故障診断

与えるもの：

各素子の正常時の動作

回路の構成

回路への入力

観測された出力

以上を与えると，診断システムは故障箇所につい
ての仮説を計算する（仮説推論）

43

直列型自然言語処理

音
声
認
識

構
文
論
的
解
析

意
味
論
的
解
析

語
用
論
的
解
析

生
成
計
画
立
案

表
層
生
成

音
声
合
成

44

並列型自然言語処理

音声論的制約

構文論的制約

意味論的制約

語用論的制約

言語外的制約

45

制約の下での談話理解

会話１

“What are they?”
“They are flying airplanes.”

会話２

“What are they doing?”
“They are flying airplanes.”

46

制約の下での文字認識

47

制約の下での文字認識

48

制約伝播アルゴリズム

すべての制約が２変数間の制約である場合，制約
充足問題は制約ネットワークで表現できる

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

x1 x2

x3x4

1
2
3
4

1
2
3
4

x y

<

xi ≠ xj , xj ≠ xi ± (j− i)

49

アーク整合性 (arc consistency)

制約充足問題

変数（未知数） x1,..., xn

各変数の領域 D1,..., Dn

制約の集合 {Cij}
アーク Cij がアーク整合している：

∀ai∈Di ∃aj∈Dj (Cij (ai, aj)) かつ

∀aj∈Dj ∃ai∈Di (Cij (ai, aj))
制約ネットワークがアーク整合：

すべてのアークがアーク整合している

50

アーク整合性

x1 < x2 (xi ∈{1,2,3,4}) の場合

1
2
3
4

1
2
3
4

x1 x2

1
2
3

1
2
3
4

x1 x2

revise(1,2)

1
2
3

2
3
4

x1 x2

revise(2,1)

51

アーク整合性

xi ≠ xj , xj ≠ xi ± (j− i) (x1 ∈{1}, x2...5 ∈{1,2,3,4,5})

Q

x1 x2 x3 x4 x5

1

2

3

4

5

52

アーク整合性

xi ≠ xj , xj ≠ xi ± (j− i) (x1 ∈{1}, x2...5 ∈{1,2,3,4,5})

Q

x1 x2 x3 x4 x5

1

2

3

4

5

x2からのサ

ポートを失う

x5からのサ

ポートを失う

forward checking
よりも強力な枝刈り

53

アーク整合性

アーク整合性を保証できても解があるとは限らな
い

白 黒

白 黒 白 黒

x1

x3x2

≠ ≠

≠

54

アーク整合性

アーク整合性を保証できても解があるとは限らな
い

より高度な整合性（パス整合性）を検査するか，
最後はしらみつぶし探索を行って具体的な組合せ
を求める

白 黒

白 黒 白 黒

x1

x3x2

≠ ≠

≠

