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Abstract

We have developed two types of svstems; CP and CMGTP, for finite domain
comsiraint satisfaction problems. C1' is based on the consiraint logic pro-
gramming schemne, and 15 writlen in SICStus Prolog. CF has achieved high
performance on quasigroup ()3} existence problems in terms of the nuriber
ol branches and execulion time. CP suecesded in solving a new open guasi-
group problem. On the other hand, CMGTP is a slightly modified version of
our theorem prover MOTP (Model Generation Theorem Prover), enabling
negative constraint propagation. OMGTP has exhibited the same pruning
ability as CP for QG problems. CMGTY can be used as a general constraint
solver for finite-domains on which we can write down constraint propagation
rules with CMGTP input clansss direcily.

1 Introduction

Quasigroup (QG) existence problems 2] in fnite algebra are typical fnite
domain constraint salislaction problems, which have a reputation for being
combinatorially intensive.

Several attempts have been made to solve open gquasigroup problems.
Through this research it was shown that the theorem proving approach was
raally uselul for linite algebra,

In 1992, M. Fujita and J. Slaney[7] lirst sncceeded in solving several open
QG problems such as QG5.9, QGA10. G572, and other open problems in
QGG QGT by using FINDER [3] on o Spare workstation and MOTPI] on
a parallel inference warchine PIM/m consisting of 256 processors.

In 1993, M. Stickel succeeded in solving some problems of higher order
by using his DOPP prover, which is an efficient Davis Putnam procedure
augmenled with discrimination trees for guick vetrieval of clauses. DDFP
slved (G312, QG4 12, and QG5.13-15,

Later in 1993, M. Wallace el.al. showed that a comstraint logic program-
ming sysiem CHIP[] can also solve QG problems efliciently. Remarkably,
the problem description for solving QG problems was very simple and easy
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Ifignre 1: Latin square (order 5)

too wrile, and the nomber of failed branches were moch smaller than with
MGTP or FINDER.

Such vesearch has revealed that the original MGTP lacks the ahility 1o
propagate uegalive consitaints. This motivated us 1o develop an experi-
mental systemn we called CP (Constraint Propagation) based on the CLP
(constraint logic programming} scheme, O sueeended in solving an open
problem QG516 in 21 days using a Sparc-10[8].

Through experiments with CP, we found what kinds of constraint prop-
agation mechanisms are required in solving QG problems (or other finite-
domain constraint satisfaction problems), and that these constraint Propa-
gation mechanisius can be introduced into MGTP with slight modification.

The new modified MGTP system is called CMGTT (Constraint MGTP).
CMGTTP treats negative atoms, aud s the ability to perform unit refutation
and nuil simplification with those negative atoms.

In this paper, we introduce Lhese two sysiems and show their effectiveness
in solving QG problems.

2 Definition of Quasigroup(QG) Problems

First, we brielly introduce quasigroup (QG) problems.

2.1 Quasigroup
A Quasigroup is a pair (¢}, o) where @ is a finite sel, o a binary operation
on ¢ and for uny a,b, e € Q,

tch=agoe=h=rc
aoe=boe=>na— b

The mulliplication table of this binary operation o forms a Lalin square
[shown in Fig 1)
A quasigroup (Q, e} is called wlempotent iF ¥e € Qv 0 2 = 1,



2.2 Inverse Operations

For any = and ¢ in o Latin square, there exist unique values of z; and
such that & ¢ 2 = y and 25 02 = y. With these features (the disifeciness
praperty for each row and column on the Latin square), we can define the
following inverse operations o

Ty =3 === ITOoy=
T 01;1] y= Z —= yOE =
rompy=z += zor=y

5o

Inverse operation o 15 called (i )-conjugate. The (123)-conjugate is
the same as the original quasigroup. Multiplication tables of the inverse
operations defined above also lorm Latin squares. Inverse operatioms play a
significant role in solving (0 problems,

2.4 QG Problems

We liave been trying to solve 7 cutegories of QO3 prablems (called QG1.
0G2,..., QGT), each of which is defined by adding some constraints 1o the
original quasigroup comstraints. ()G problems are existence problems in
Latin squares which salislv some specilic constraints. The additional con-
straints for each QO problem are shown helow:

QG1: Vabed C . (ab=vdracyy b=coyndi 2 ja=brc=d)
QG2: Yabede Q. (ab=cdAaoypb=coynsd) = (a=bre=d)
QG [Vabed € Q. (ab)ba) = u)n

(Wabod £ () (ab =cd Aoy b = rons dl==la=btcs= )
QGA: Yabc Q. (ab)(ba) = b
QGH: Yabe . (()b)b =a
QGE : Yabc Q. (ab)h = alab)
QGT: Yab o O alba) = (halk

Since the Latin square shown in Pig.l satisfies the condition of QGa,
(G5 has at least one idempolent solution for an order of 3.

There are atill many open QG problemns; for example, QG5 of order
i (0 = 1T) has never been solved,

The characteristies of QG problems are smminarized as follows:

¢ QG problems can be defined as finite-domain constraint propagation
problems.

¢ QG problems bring serious combinalory explosions. A simple generate-
R . =
and-test strategy needs NV size search space for arder V.

o A complete seareh is neoded beeanse in QO we need to find all solutions
il any, otherwise we need to show that no solutions exist.



3 CP

CP is a CLP based constraint propagation system written in S1CStus Prolog,
In this section. we first discuss approaches wsing ordinary CLP languages,
and then explain the constraint propagation mechanism in CP. We also show
the results of our experiments with CP,

3.1 Approaches using CLP languages

It seems to be very natural to represent (he constraint propagation rles
fur QG problems in CLP languages, where domain variables are assigned 1o
each cell in a Latin square to store a result of mulliplication. The constrain:
propagalion rules for (363 can be represented as follows :

constraint(Y,X,5q1,592,5q3) :-
mult(Y,X,5q1,4), mult{4,¥,5q1,B),
mult(Y,X,542,B), mule(Y,B,5q2,4).

where 3q1, 5q2. S3q3 denote the (123)-, (231)- and (312)-conjugate lLatin
syuares respectively. Using the conjugate Latin squares enables constraint
propagation when cither & or B is instantiated.

mult(X1,X2,5q,%X3) calenlates X1 o X2 on the square Sg when both X1
and X2 are instantiated. wnilying the result with X3, which is a domain
variahle,

CLP can propagate consiraints between domain variables when these
variables are nnified. For example, the constraints lor he variable & in the
ahove program can be propagated not only [rom mult(¥,X,5q1,4) but also
[rors malt(Y,B,S5q2,4). This means the domains of two variables must be
equal if they are unilied. CLP, however, cannot propagate some negative
constraints belween different confugate squares, such as ;

Vabe (aoymbFE e bognefacreonan £b) i1).

becanse domain variables representing a oyg5 b, bogay ¢, ¢ ogpy a are different
and CLP has no way o propagate negative constraints between dilferent
domain variables. CLF can propagate constraints between different squares
when at least oue of these 3 variables is instantiated as follows:

Vabe (noymb=c S boygpe=a s copan=08) (2).

Negative constraint propagalion as shown in (1) is signilicant becanse
it can reduce the number of candidates [or each domain vadable. To do
this efficiently, C1" introduces domain clorment variables w.r.t. each domain
varlable. Domain element variables in different conjugate squares can be
linked [nnified) with cach olher.



Lol 1 | 2 | 2l

= . 1 GT) Viz ¥ia
. ﬁfl1lﬂ"¢f~ [ Ay As) | 4B By Bud | {0y & )
(123 )-conjugate ] Fay ¥z ¥aoy
[Ih Nz IR} {El Er E;} {F, FJ F}_a}
4 Fay Vag Vaa
1650 (2 G} | [Hy He Ml | (B & L}
(o i [ E T 3 |
1 Wi Wi s
I=square : {h Dy G | [y Dy Ga) | {As Dy Ga)
(231 ) conjngate 2 W, Wiy s
1H: ki Hi} | (A ks Hil | {Ba &5 Hal
3 Wi Wi [LET)
€0 K L) o B L) [ {0 B )
=T 1 [ 4 | # |
. 1 1 Liye [
R squa.rfe ' fd By Cab [ {ih kg K} HL L]
(312) conjugale ] Ly Ly Uin
{42 By Cu} [ {0 e 15} | {6y Ha ta)}
:." Uﬁ] !.r'lz r'rj.s-
{Az H;-._IH_;} {Lly Ky J':!__I-_ {67 Ha Iz}

Figure 2: The variables in conjugate Latin sqnares

3.2 Variable Maintenance in CP

Let V' be a domain variable whose domain is {1, ...0} and {4y....,4,}
be a vector of domain elemenl variables woet, V. Each domain slement
variable Ay represents the possibility of V taking the value £, That is, if a
domain element variable A; is bound (o ges, ¥7's value is lixed 1o &; if bound
lo ne, Voshould m take the valne of £ and if it remains nnbound, V' mav
take the value of k. From the finite-domain property, if n — 1 variables of
{45, A} excluding 4, are bound to no. Ap s bound to ges and variable
V iy bound to &

Fig.2 shows the variables of {123}, (231)- and (312)-conjugale Latin
sijuares for order 3, where V(1 £ ¢, 7 < 3) are dowmain variables with the
range {1,2,3} and Ay, By, L (1 € & < 3) are domain element variables,

Nomain element variables can be shared by the 3 squares according to
the definitions of conjugate Latin squares. For example, let the domain
variables V. W, 7 be delined as -

aopmb = V1 Doy
bogye = W Domp
Coypfl = i H Dﬂru,{;

where Doney (Ve (V171 s a vector of domain eletnent variables cor-
responding o domain variable V. The variable ol the -tk argument of a
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Figure 3: Constraint Propagation Rules for QGH

vector Diomy ranges over {yez, no}. The assignment of this variable deter-
mines whether or not ¥V = k. Here lel us consider the following 3 variables
XV and 7 delined as :

argle, Domy ., X}
argla, Doy, ¥
argl( b, Doy, #)

where argi N, F, Ay unifies the ¥th argament of a vector } with A.

The wnification ¥ = ¥ = 7 cuables the constraint propagation shown
in (1) and {2). That is, when X, Y, 2 are assigned to no, the relation shown
in (1) holds, and when they are assigned to ges, the ralation shown in ()
Hioldls.

In this way, negative constraints belween different conjugate squares can
be propagated by the unilication between linked domain clement variables,

Fig.3 shows the constrainl propagation rules ! needed to fully propagaie
QGH constraints, Rule (a) says that for any value r, ya.b, il yr = a.ay = b
then by must be z. Rules (d) and (g) can be devived from (a) berause of the
distinctuess property lor each row and columu in the Lalin square. Rules
(blie), (ed(f), and (h)(i) are logically equivalent to {contrapositives of) (a).
(d), () respectively.

Ta implement these propagations, negative information must be com-
pletely propagated. The O constraint propagalion rules in Fig.3 are imple-
wenled by the CP description shown in the next section. By contrast, in
ordinary CLP, since propagation of negative imformation is nol complete,
somne negative infurmalion may be overlooked.

"Lhese vules can be considered as forward-checking enles wet the domain element
variables appearing in the anteesdent parts of the mles o this case, constrainls arm
propagated only when all domain clesent variables in the antecedent are bound, On the
other hand, feokehced cnalili= constraint propagation even if a domain clement variahbie
is nnbouned by caloulaling constraints with a possible value which the variable may take.
We discuss dowkiehend propagation in Scction 5.



3.3  Problem Description in CP

Fig.1 shows the problemn description for QG35 in CI. init_set geucrates
the initial data siructure, 1ink defines the relationship between domain ele-
wenl variables of each square. idempotent defines the idempotent condition,
iso_check is for removing isomnorphic prools,

qg5_constraint delines the ()3 constraints for every ¥ Y. 8q, 15q.
RSq are squares corresponding Lo (123)-, (231}, and (312)-conjugates re
spectively. consl, cons2 and cona3 defines the QG5 consiraints for given X
and ¥ :

ey, ((yr)yy = =
Vay. yllzyy) = 2.
View. (ylry))y = .

The last @ equations are equivalent to the lirst one.

mult(X,Y,5q,Z,Zdomain) ralculates X o ¥ on the Square Sq and returns
the value Z and the vector of its domain element variables Zdomain. mult is
coded using the freeze predicate in SICStus Prolog.

For every domain element variable, var_mainte creates = [rozen PRy
{var_constraint)in SICStus Prolog. Fach frosen process is unblocked omly
when the domain element variable is assipned to yes or no.

make_5q is the main routine [or solving QG problems, which chooses a
vatiable having the smallest number of candidares, amd assigns o value 1o
that variable. 'I'his process is controlled by [2il backtrack in Prolog.

3.4 Experimental Results on CP

Table | compares the experimental results for QO problems on CP and
other systems, The vunbers of [ailed brauches generated by CP are aliost
equal to DDPP and less than those from FINDER and MGTP. In fact, we
confirmed that CP has the same pruning ability as DDPP by comparing the
prool irees generated by CI" and DDPP for QGS. The slight differences in
the number of failed brancles were caused by the different selection functions
(according Lo which a disjunction lor case splitting is selected [rom the seq
ol digjunctions) nsed.,

For general performance, CP was superior to 1he other sysiems in almost
every case.  Tu particular we found that no model exists for QG316 by
running CP on a Sparc-10 for 21 days in October 1993, IL was the first new
resuls we obtained.

As lar the effect ol propagating negative constraints, CP without unilica-
tion between domain element variables in different conjugale squares gener-
ales 3456 branches for QG512 (198 sec), while CP with unilication generates
only 372 branches (19sec) as shown in Table 1. Vor problems of higher or-
ders, Lhis gap becomes much wider. This shows the considerable effect uf
negative constraints propagation in reducing the namber of branches,



Table 1: Comparison of experimental results using CI' and other systems
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runfSizal 1=
init_set(Size 5q,label}, link(Size,5q.[5q,R%q,Label,Ilabel ELabel),
idempotent(Size Label), iso_chockiBize, Sq),
qeS_canstraint{5ize 1,1, 5q,15q, R5q).
var_mainte(Size, Labal Hy, I8q,R3q) ,
make_Sqlfize Labal ,ILabel RLabal, Sq,I5q,R8q2,
tall.

rup{_) - '.

qgS_conatraint{Eize §, M Sq, 0%q,RE8q) = .. ..
..... % oconsl(Y Kb, comns2(Y X}, consa{Y X! for all X.Y

consl (¥, X, 5q,.08q,R5q) :-
ek oY X B, A, Adamaind a1t (A ¥ Sq R Rdomnind
mlt{T,l.ISq,B,Bden],nult"f‘l’.l]-.iﬁq.h.,ldmi_n!.
cons2(X,¥,8q,03y,R3q) ;-
rul £{E ¥ S A Adomadin) mulf (A ¥ Sq R Rdomnind |
mult{L ¥ R5q.B, Bdomain) male(Y B I54q,A Adomain) .
consd(X, ¥, 8q, 19y, R8g} =
wlt{!,‘f,iq..ﬂ.,hdn-lin!.nulh{f,l,ﬂ-q,k,ﬂd_maiu},
mult{¥ X, I8q 6, Bdomaind mulc(B. ¥ RSq, A, Adamaind .

'rm._mﬂ.i.uhulﬂj.au.[] ,Hc‘,Iﬁq.Hqu =,
var_mainte(3ize [vi¥ M Var Cons)|Rest] , 5q,18q,RS8q) :=
'l'a.u:_mu{nt-e.'lfﬂi.:se..l,H'{I_.H."a.r.ﬂ-un'u}.?rq.IISI.'l.H.Bq_}.
wvar_mainte(Size Rest Hq,185q RHql.
var_-ri.ntni{ﬂiza,.ﬁ.,r{l’,ll..’iar.:':n:nsfl,Eq.]ﬂq‘,kﬁqi = A » Sizae,!.
var_maintel (Size A.v(§ 0, Var Cons),8q,13q.B3q) = !, argih,Cons, Elemant),
freane (Flement , var_comstraint{Biza Flamant A, v{F M Var Cans) VA, The RSqd),
&1 ia A+1l, var_maintel{Size Al ,w(N,M, ¥ar,Cons!, 5q,I15q,R%q).

make Sqi{Size Label, ILabel RLabel 5q,I8q,RE8q) :-
chofce{8ias , Lobhel, [Lubel.B:Lnbel.v{l..‘,\'nr,ﬂnu::r'ﬁ .
gness{vil M Var Oansl ),
maka_%q{8ize,Label TlLabel Rlabel, 8q,[5q R8¢},

Figure < The problem deseription for (305 i CF

4 CMGTP
4.1 Key Features of CMGTP

MG is ol fivst-arder thearem prover * hased on the model generation
method[3]. Oune meril of solving QG problemns by MGTP is that they can
he described in very short first-order forms, This enables concise problem
deseriptions. In the case of (G5, MOGTP ouly requires seven input claises.
However, MGTP has the demwerit that it cannol propagale negalive con-
straints since it 1s based on forward reasouing and only uses positive aroms.

To overcome Lhis, we developed CMOTP [Constrainl MOTP) in SICStus
I*rolog with a slight modification 1o the original MGTP. CMGTP introduaces
tle [ollowing Key leatupres:

o negalive aloms can be nsed to represent negative constraints propaga-

‘Although MGTT imposes & condition callead remage-restrietedieas oo clause sel, any
figst weder predicate e B el range-reairicted by iulmducing the dom predicate.
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RefiNewUnit, MU{A})
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Generation ol
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Figure 5: CMGTF model generation processes

tiomn,
o the inteprity comstrainy (unit relnation), 4, -4 — false is introduced,

o unit simplilication is pecformed between atoms in the model candidate
set and disjunctions in the model-exlending candidate sel,

4.2 The Algorithm of CMGTP

Fig.5 shows the CMGTP wodel generation processes, whose structure is
basieally the same as MGTP. We first note the algorithm of MGTP briefly.
[u Fig.5, MCTP input clauses are represented in an implicational form:

A'Il-- --uJ"!.n_ — ("',' . ..:vf-.',_,,

where A; (1< ¢ = npand O (1< 7 < m) are atoms; Lhe antecedent is a
corjunciion of Ay, ..., A,; and the consequent is a disjunction of Cy.. .. O, .

Model Extension Rule: I there is a clanse 4 0 O and a substitotion
aosuch thal A is satislied in the model candidate set M, then o (which
corresponds 1o NewUnit il Co is an alom, or o NewDis) il Co 15 a disjunction
in Fig.h) is added to the madel cotending candidate set 1) . We call the
matehing process beiween the anlecedent and elemenis in M, conjunciive
mealeding.

M orelalus atoms that laave besn used in mode] extension. IV is a sel of
madel extending randidates which ave generated as o resalt of appleation
of the model extension rule,



Ais called an extending candidate, which is selected from I accord-
ing to some criterion (basically we use the unit prelerence siralegy), I an
atom is selected as A, that atom is added 1o M unless 1t 15 subsumed in
M. Conjunetive matching is performed nsing A and W for Lhe next model
extension. 1f a disjunction Cy;... ;O Is sclected as A, MGTP performs
case-splitting unless some (7 is subsumed in MW, creating m new branches :
(M, DU (M DU .

Il false is derived for a branch {M, D}, that branch is terminated with
unszat, [ 0 becomes smply, that branch is terminated with sof and A
is returned as a model. The detailed algorithm of the original MGTP is
deseribed in [1].

The differences between CMGTP and MOTP lie in the unit relulation
[IOCesEes A ned the unit s'.’nllprtlif‘.al.‘l:‘m [roesses . M there exist A and =4 in
M hen false bs derived by the anit relutation mechanism as follows:

(M) (M)
A4
JIES

Il for am atom -A € M{A ¢ M), there exists a disjunciion which includes
A(=A), then A{-A) is removed from that disjunction by the unit simplili-
cation mechanism as [ollows:

(M) i (M (1)
A Iy A T A ™My =Av Dy
Dy iy Dy Py

Il a disjunction becomes emply as a result of unil simplification, then
false is derived,

In Fig.d, Be (il Ua) and Sempl( 17, D) are the lunctions described above,
where L7y, {7y, U, are sets o atoms and D is a set of disjunctions. e (I, U5)
returns folse il thore oxist A & 84, B € 075, 5.4, A and I7 are complementary,
I thig case, the hranel is terminated with wnsat. S4mpd( 7, D) returns
Che siniplified sel ol disjunctions by a set of atoms 7. Tf false 15 derived
as a result ol simplilication, then Simp! returns false, and the branch is
terminated with wesat,

There are 2 refutation provesses and 2 siwplilicalion processes added Lo

the original MGTF:

Re f{{A}, )

We fiNewl nit, MU {AY})
Simnpl { A, D)

Simpl{ M U {A}, Newlisj)

* # & »

where Ais an atom. As a result, these functions guarantee that [or any
atom A€ M, A and =4 are not both in the enrrent M. and disjnnetions
in the current 17 have already been simplificd by all atomes in M,
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Figure 6: CMGTP rules for (G55

4.3 CMGTP Rules for QG5.5

Fig.6 shows the CMGTP inpul clauses for QG5.5. In this figure, (M)
defines the domain of variables, (M2) eorresponds 1o Lhe idempotence con-
dition, (M3}-(M5] are lor generaling disjunctions, (M6)-{ M&) represent the
distinetness property, { M9) is a heuristic rule in order to remove isomorphic
prools, and {M10-(M12) are the constraint propagalion roles for QG5 As
shown here, constraint propagation vnles in Figd can be written directly as
CMGTE ipul clauses.

In this sense, CMGTE can be considerad & meia-langnage for represent-
ing constrainl propagalion. For example, the original MGTP rule for QG35.

plV X AL p ALY, BLpl BY, L X #0 — false

can be rewritten in CMGTP rules us :

MY, X AL A Y. B) = p(BY. X
(¥, XA} ~p(B,Y, X1 — ~p(A, Y, B).
Sp(B.Y, X ). p(A, Y, B) — —p(V. X, A).

wlhere noegative information is propagated by using the last 2 roles.

In the representation of Fig6, we can write the integrity constraint
F,~F — false as an inpul clause instead of using the built-in Be f funetion.
Tu this case. we do nwol need the function Hef.
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Table 3: Fxecution time profile

4.4 Experimental Hesults on CMGTP

Table 2 compares the sxperimental resulis for QG5 problems on CMGTP
and 1" with the same selection muction, which is different from the selection
function used in Table 1

The number of failed branches is the same. We confirmaod that CMGTI?
and CP generate identical proof trees when they use the same selection
ometion. When it comes to O Gime, however, CMGTP is about 10 times
slower Lhan CP lor problemns of order [rom 7 to 14,

Table 3 compares the execution time proliles of CP and CMGTE for
QGa 10, For hoite-domain checking and candidate selection, botl systems
take almost the same time. The main speed difference occors during 1erm
remory manipulation.

Anolher major speed dilforonce cecurs when performing unit simplilica
tion and nnit relutation. CMOGTP simplilies and modilies disjunelions using
a disjunction DI that incorporates discrimination trees. U1 does not manip-
ulate disjunctions explicitly, Instead, it maintalus domain element variables
ol the 3 squares to reprosent candidate values of o domain variable, Tpdat
ing of candidate values is done by unification implicitly, CMGTP handles
unit refutation by conjunctive matching, while CP uses unification failure.

"o the results on C1" shown in 'Lable 2 are slightly different from the results in Table 1.



In CP, constraint propagation is controlled by a lreeze [acility; in CMGTP.
it is conirnlled by conjnnctive malching. Although both CP and CMGTP
performn the constraint propagation rules shown in Fig.d, the lormer is faster
tlian the latter. This is possibly because in CP these rules are compiled into
I'rolag clauses,

The current implementation of CMGTP is only a primary version. We
expect that its performance can be further improved by a lector of 3 or 4.

5 Ihiscussion

As we described, CP implements a finite domain constraint propagation [a-
cility, which can be considered as a generate-and-test scheme with a forward
checking mwechanism. On the other hand. MGTP's proving processes are
eosenlinlly based on the generate-and-test scheme. Thus it suflices to inlre
duce negative atoms and a unit simplilication wechanism in order to add
the lorward-cheeking facility 1o MG,

The forward-checking rules [or (G5 shown in Fig.d can be implemented
in both OF and OMGTP. However, it is possible to further reduce the nuis-
ber of redundant branches, For example, consider the following constraini:

o Variables a, b, ¢ are distinet from each other,
¢ I'he domain of each variable : @ = {1,2}. b= {12}, ¢={1.2,13.4,5}

In this case, sinee values 1 and 2 mwust be assigned to varizbles a and b,
e must not take 1 or 2. So the domain of ¢ should be rewritten to {3,453},
Bui neither CP nor CMGTP supports this kind ol pruning lacility.

If we wanrt our constrainl propagation program o have more pruning
[acilities such as in the above exanple, we need a lookahcad procedure, which
Liswewer 1s jneflicient in general,

We have introduced a naive lookahead wechanism into CMGTP, and
have experimented with several typical examples, Some kinds of problems
such as cryplarithmetic are solved very efficiently by using lockahead. How
ever, many problews including QG problens are salved less efficiently than
by the original one, althoungh the number of branches becomes small. For
example, in the case of QU5.9 the original CMGTP generates 15 branches.
On the ather hand, CMGTP with lookaliead procedure generates only |
brawch. But the execution time is 60 tees longer than for the original one.

The same may be said of CLEP svstems. The lookahead mechanism used
in CLP systems cannot be helplul lor QG problems.

6 Summary and Future Work

O is o OLE based fnite-domain consiraint propagation program written in
STCSins Prolog, With OP, we can direetly handle domain element variables
as owell as domain variables, This mechanizm allows ns to nnify domain



element variables in different conjugate squares in solving QG problems.
As a result, it is possible to have efficient constraint propagation through
inverse operslions, giving CP betier performance than other svstems for (i
problems,

CMGTPE is a modified MGTP to which we can add finite-domain con-
straint propagation rules such as forward checking rules, by incorporating
unit refutation and wait simplification mechanisms as well as negative atoms,
We have confirmed that both CP and CMGTP have the same constraint
propagation ability as DDPP [or pruning the search spaces in QG problems.

While DIYPP needs a huge number of input clauses to solve QG problems,
in CMGTP we can write intuitive constraint propagation rules directly and
connpactly using full first arder formulas. In this sense, CMGTE seems 1o
be a natural framework for representing constraint propagalion.

We now ueed Lo improve CMGTE performance by parallelization and
relining inplementation technigques. We have already developed a parallel
version of CMGTI written in KL1 (a paraliel logic programming langnage).
Faperiments on a parallel inference machine PIM/m and on a parallel UNIX
marchine are in progress.
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