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Abstract

In this paper, we give an overview of the order-sorted knowl-
edge representation and reasoning in the formal legal reason

ing system HELIC-II developed by ICOT. In section 2, we
introduce the y-term theory proposed by Ait-Kaci, analyze
this theory by fype-based finite wutomaia, and define the sub-
stitution, and unification concepts completed. In section 3,
two levels of order sorted knowledge are introduced : One is
the object knowledge represented by acyclic and non-acyelic
i-term; The other is the statement knowledge, the basic for-
mula of erder-sorted logic, H-term, which is similar to acyclic
y-term. Subsequently, two kind of order sorted rules {normal
rule and extended rule) have been introduced and form the
narmal and extended sorted logic program. We discuss the de-
notational (fix-point) and operational (resolution) semantics
of normal SL program without operator not and conclude the
complete result. Then we discuss the argument theory based
on standpoint in extended sorted logical program; At last, we
compare our works with other SLP approaches.
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Argument, ¥-term, H-term
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1 Introduction

1.1 Motivation and Contents

Historically there are many papers on inte-
grating order-sorted structure into the tradi-
tionﬁogjc programming such as [2] [8] [9].
Main reasons introducing the order-sorted
structure into logic programming are:

1. Inheritance hierarchy structure can
express real problems very naturally,

2. After introducing the order-sorted con-
cept, the logic program can become shorier
and the inference steps can be decreased.
For example, the logic inference rules, like
Modus Ponens rule, can be decreased greatly.

3. Order-Sorted logic is an extended and
hence more powerful knowledge representa-
tion tool than non order-sorted logic. Here
more powerful means economical and effi-
cient in knowledge representation, convenient
[ur programming, not in the sense of com-
pulability.

4. Many papers (for example, [2] [16])
argue that we can introduce different {ype
of reasoning, such as deductive reasoning (
knowledge generalization), analogy reason-
ing, negative as failure, argument reasoning,
etc. in order-sorted logic programs. In this
paper, we discuss the argunment reasoning,
negative as failure reasoning in SLP.

The basic difference of these SLP approaches,

in our opinien, lic on how to represent the
basic logical symbol (variable, type, func-
tion, predicate, label and so on.). Accord-
ing to this idea, most approaches on order-
sorted logic programming can be classified
into two categories, We call the first one
function-hased approach, and take C. Beierle
et. al's work HE{, [27] as typical example.
This approach has a clear semantics about
order-sorted unification as well as order-sorted
resolution. In this approach, unary order-
sorted literals can be introduced and henee
form the order sorted predicate concept. How-
ever this approach has lwo problems, First,
the object representation ability is wealker
than ¥ term. Second it can only deal with
the inheritance relationship between unary
predicates,

We call another approach label-based ap-
proach, and take Ait-Kaci et. al's work [H],
[9] as typical example. [n this approach,
the term of FOI formula is repla.cecl by -
term which was first appeared in system Lo-
gin. In fact, there are many similar con-
cepts, such as Bob Carpenter et. al's feature



structure (3, [17], and Kuniaki Mukai’s par-
tially specified term [13]1, Although ¢-term
expresses the object in the data record struc-
ture style and has strong knowledge repre-
sentation ability, semantics of Login (unifica-
tion, resolusion) has not been clear defined.
Recently, an experimental inlegrated system
Life, which integrate i-term, logie, function
and equation together, has been proposed by
Ait-Kaci et al. Although in paper [10], three
equivalent descriptions about ¥-term, O5k-
term, O5F-clanse and OSF-graph, have heen
proposed and the type-theoretic, logic and
algebraic renditions of a calculus of order
sorted feature approximations have been given,
we still think that Life only discuss the se-
mantics of ¢-term in three differcal aspects
and may provide a first step for integralion.
The semantic of integrating the logic, func-
tion, algebra and equality nced be further
studied. In this paper, we proposed a new
description of ¥-term thmngﬁl type-baszed fi-
nite antomata theory. By this concept, we
have given a formal definition of substitu-
tiom and SLD -resolusion of SL program. Fi-
nally we shown the equivalent relationship
between connecled type -based finite automata,
and O8F-graph of L‘i{e.

Readers may wonder why we choice fune-
tion and label to distinguish the SLP ap-
proaches. Mainly there are two reasons. First,
st SLP approaches adopt either function-
based fuew or label-based form. Second, it is
very difliculty Lo integrate the real function
style and label style programming into a uni-
fied vrder-sorted logic environment. Discus-
sion sbout the theoretical difficultics of this
integration can be found in Ait-Kaci’s paper
[8] in section 6.3.3 on page 339, And it’s nec-
essary to poiul oul that, although Life try
to integrate three orthogonal programming
paradigms together, it is still unclear the se-
mantbics was completely solved according to
our knowledge,

In Aif-Kaci's logie programming language
Login [9], predicate symbols are required to

ave fixed variables and there are no hier-
archy inheritance ameong predicates. ‘This
seems too constrained for legal reasoning,

Lel's look at the following statements.

Tom kit Jim at elass room. ... (1}

Tom hit Jim. e[ 2)

For statement (1), we can formally ex-
press it by hit(T'om, Jim, class-room) , for
stalement (2), by hif(Tom, Jim). What is
the relationship between these two expres-
sions? We think hit(Tom, Jim, class-room)

contains more information than hit(Tom, Jim),
and from a complete statement we can infer
an incomplete statement. So from the fact
hit(Tomn, Jim, class-room), we can get the
statement hif(Tom, Jim). This is rcason-
able in common sense reasoning. '

If we allow predicate have non-fixed ar-
ity, then it would be necessary to introduce
labels attached to the arguments to express
every argument’s function in the predicate.
For example, in expression hit{ Tom, Jim,
class-room ), Tom is the person of subject
(or agent) who hit, Jim is the person of ob-
ject, who has been hit and elass-room is the
place where action kit take place. When we
introduce the labels agent, object, place at-
tached to the corresponding arguments, the
formal statement would bhe muci easy to un-
derstand and contain more information. So
the expression hit{Tom, Jim, class-room )
should be replaced by hit{agent= Tom, ob-
ject= Jim, place= class-room). Such expres-
sion is called H-term? in HELIC-1L.

Suppose A1, k2 are two H-terms, if we
can jndge k1 contains more information than
h2, then we denote this relationship by k1 <
k2. Our philosophy is very simple, if h1 <
h2 and Al is a fact, then A2 does also hold,

[n this paper we give an overview of the
SLT research results in developed formal le-
gal reasoning systern HELIC-11®, which is
a formal legal reasoning system based on
order-sorted logic programs. Its knowledge

representation language describe the lagal knowl-

edge include following categories.

1. Type

Type is the primary component in le-
gal reasoning glossary [21?[?.‘2]. It con-
tains two classes and the corrcspond-
ing relations among them. One is ‘ob-
ject” (or ‘nonn') glossary such as Mary,
person, male, relationship among ob-
Jects can be Mary <, person, male <,
person. The other class is called “verb'(or
‘event', ‘predicate’) glossary such as hit,
do-violence, punishable, kill, injured,

'According to this idea. both Tem Rit Jim ot
clogz-ropm and Toin hit Fim on saturday can infex
T hit Jim. So we can regard every bosic formula
hoof BLI as an costendial statement. That is, b is
tetwe 17 ond only if there is a fact b 'such that & con-
tains more information then b,

*H means Hypothetical Statement

*HELIC: means Hypothetical Explanation con-
strivctor by Legal Inference with Case by two infer-
R g,



with-criminal-intent, take-gway, rela-
tionship among them can be kil <,
hit, hit <, do-vielence. The former
is used for Y-terms, and the later is
used for legal knowledge description,
H-term,

2. af-term and H-term

-term is a well-defined object, Ob-
jects such as ‘a person whose age is
30, sex 15 male' is formally represented
by person{age = 30; sex = male). -
term plays the similar rale of tradi-
tional logic programs term, H-term

defines a legal description about an event.*

Statement such as ‘person Jim watches
persone Tom hit a male person’ can be

represented by H-term watch (agtl =Jim,

obj =hil (agtl = Tom, agl? = person
{sex = male )})). Obvionsly, [l-term
plays the same rule of atom in tradi-
tional logic programs.

e

Legal ruele and priority knowledge,

There are two kind of {legal) rules, One
is mormal rule, where logic negation
operator - appears. The other is called
e‘xt(‘.“!lﬁi rltll‘:‘ w.h[.'rlf' I!I:g.i'ltlulll it ril.ill] e
operator not as well as logical nega-
tion operator - appears. Example of
an extended rule is:

- break-low{agt=z:person) — not break-

law{agt=z)
Means: If vou can not prove person x
break the law, then you can assume he

does not break the law,

Each rule has at least one namne called
unit. We can define priority relation-
ship among units, These priority re-
lationship reflects the standard value
of legal code. For example, *New low
has priority over old low'. Standard
knowledge is used to determine the best
argument among contract arguments.

Detail description about HELIC-II can be
referred n [20], [21], [22]. In this paper, we
only focus on its theoretical aspects of order-
sarbed knowledge representation and reason-
ing.
Compared with the existed works on order-

sorted logic programming, main contents and
contribulions of this paper are:

4 this paper, we don't distingnish the difference
helwoeen event and general property atatement

1. In section 2, we describe the tf-term
theory by type-based finite automata
which is more powerlul and cfficient
analyzing tool for ¢-term.’ Coneepts,
such as substitution are clear defined
and hence form the definite operational
semantics, the resolusion SLD proce-
dure, Further in the subsection of sec-
tion 3, we compare the O5F-graph con-
cept proposed in [10] with onr type-
hased finite antomata, and get that
they are equal. Efficient algorithm for
t-terms unification have heen listed in
appendix.

2, In section 3, we extend the order-sorted
structure into the predicate domain,
wnd propose the predicate {or verb) lat-
tice signature and define the basic for-
mula H-term of legal programs. H-
term is CDIIStTul:thg on the noun and
verb signatures. We give a clear se-
mantics of sorted-logic program and,
prove the completed result.

3. In section 4, we introduce the stand-
point knowledge in our legal program
and argument theory based on stand-
point. There are two reasons to intro-
duce priority knowledge (standpoint)
and legal arpument into SLI%: iest,
the legal knowledge hase is large-scale,
it hecomes difficulty to calculate the
stable model of extended logic programs;
Second a legal knowledge base may con-
tain incompatible information. Argu-
ment can help us to get the justifi-
able conclusion, standpoint knowledge
can help us to distinguish which con-
clusions are more believahle and hence
form a standard in argument process,

1.2 Two Approaches of SLP

In this section, we briefly introduce the two
approaches of SLP and show the relationship
between them, Our main conclusion in this
section is: label-based SLP has a more pow-
erful knowledge representation ability, function-
based SLP has a more clear semantics,

Funetion-based order-sorted logic programs
have the following syntax. The concepts and
definitions here are borrowed from Beierle et
al’s work(2].

*Prof. Kuniaki Mukai introdnes Bob Carpenter’s
the feature structure [3] to anthom. Feabure she-
ture is similar to to our type-based finite antomata
coneepd,




Detfinition 1.1 An order-sorted signature o
= (5, P, F) consists:

(1) A partially ordered set of sorts (5, <)
with a least element L and a greatest ele-
ment T. (S, <) is called the sort hierarchy.
We require that there are no infinitely as-
cending chains in (5, <).

(2) A (8" % §)-indexed family of sets of
function symbols (Fy.)wes-se5. For f €
Fl o we write f : 851, ...,8, — s where w =
a#l...sm.

 is called the domain and s the range
sort of f. The elements of w are the argu-
ment sorts of f.

(4) A S*-indexed family of sets of predi-
cate symbols (P lyese. For p € Py we write
F: 5.8, where w = 5q...8, is called P's ar-
gument sorts. o

Generally we assume that S, P, F are pair-
wise disjoint, each sort has at least one ground
term(see the [vllowing definition of term).
Say o is a siguature with equality if there is
a binary relation symbol = with argument
sorts (T, T), Le. =¢ P,

Furthermare, o is a signature with sort
predicates if for every sort 5 in 8 there is
a unary predicate, also denoted by s , with
argument sort 1, i.e. 5 € Pr.

Definition 1.2 Given a signature ¢ = {5,
P, F'), a family of variable over ¢ is a vari-
able of V' attached with type of § as follow-
ing:
Foreveryz c Visc S,s# L,x:5isa
type variable.,

The family of o-terms T,{V) over o, V,
called the set of well-sorted terms, is the
least s-indexed family of sets such that;

Vs €TV forevery 2 € Vs ¢ 5.
2) e e TL{V), for every c € F, .

[3} f“l'. veny tu} = Ilr“"r}a if fe Fﬁ‘l...i“ r
and for i € {1,..,n}, 8" < s;, £ € To(V)r,
U 1

For any well-sorted term § we represent
its sort by function serift). A well-sorted
ground term is a well-sorted term in which
ne variable occurs.

We can see that if there is no infinite as-
cending chairs in {8, <) then for every type
s, except L of 5, there is at least one well-
sorted ground lerm of s.

Formula in function-based order-sorted
logic is defined as usual except the basic for-
mula definition. Basically, if p is a predicate

with argument sort (sy,...,£,), t1,..., I, are
well-sorted terms with index (s, ..., 5),) such
that for i = 1,...,m, s < s, then p(ty,...,1,)
is a atomic formula. Quppase 1,12 are weli-
sorled terms, then i1 = 2 is also basic for-
mula,

In function-based SLP approach, we can
also introduce hierarchy among predicates.
However, this hierarchy description ability
among predicates is limited to unary pred-
icates. In [lilog system [15], every logic sym-
bols (predicate, function) may have non-fixed
arity. This property seems necessary fream
the programmer's opinion. Legin allows ob-
ject symbal have different arguments, but
each predicate has fixed srity. In our sys-
tem, hoth the object symbol and predicate
symbol can have variable arguments.

The typical theory of label-based SLP is
proposed by Ait-Kaci and his collaborators
in [8], [‘QJ In their theory, every term was
expressed by a type record structure called
yr-term. An example of f-term is:

student {id = neme (lost = zstring ));
domicile = yraddress (cily = aunstin); father
= person (id = name { last = z:string );
domicile =y:address P

Here, student, name, string, address,

austin, person are type symbols; id, last,
domicile, city, father are labels; x, y are
called tags or variables.

The meaning of above y-term is: all the
student whose last name is the same to his
or her father's last name, whose residence
city is austin which is also the same of his
or her father's,

Compared with function-based approach,
label-based approach is mare natural and
the y-term is more accessible to the type
record structure. That is one reason we choose
label-based order-sorted approach as our start-
ing step in implementing the formal legal
reasoning system HELIC-TL.

In the rest of this subsection, we will in-
formally show that every function-based sort
term can be equally iranslated to a label-
based y-term. The formal definition of -
term can be referred in section 2. So the

*Tn [9], this ¥-term is weitten by: student{id =
namee|lost = string); domicile =+ y
wldress{cily =+ osustin); father = person(id =
nasne(lost = 2 string); domicile = 3 1 address))
Lu [10]. this g-terne is written Ly studentid =
name(last = = siring; domicile = 3
wddress(cily =+ oustin); fother = personiid =
name(last = = Tl domicile = 4 T))



knowledge base based on function-hased SLIP
can be translated into a knowledge base based
on label-based SLP.

Definition 1.3 Suppose of = (S,P.F) is
a function based signature, V' is a variable
set, <y 18 a subsumption relation on 5. Now
we construct the corresponding label-based
signature, called triey) = (51, L1, V) such
that:

(1). S1=SuU{Fset JUF, (81,<g)is
defined as: r <sy yiffc=Lory=T or
r=yorzycSanda <;yorz e Fand
y = Fset. Generally, we denote <g; by <.

(2). L1 = {functionname, Iy, ..., [,,...}.

O

MNow let’s show how each function-based
well-formed term was translated into label
hased well-formed +-term.

Definition 1.4 Suppose o is o lunction-
hased signature, fr{oy) is a label-based sig-
nature, We now translate every function-
bazed well-defined term into y-term as fol-
lows:

(1) z:s where x € V and s € §. tr{x:
5} is:

Fs

{2) e, here c € F. . tric) is:

s function = ¢).

{(3) Suppose f({1;, ..., 1) is function-based
signature and f 1 {81,...,8,) = s, for 1 €
{1, n}, t; © T,J,{V:IH? and ) < s;, then
tr{ fti, .., tn) is:

s { functionname = f; Iy = tr(fy); .0 by

=tr(t, ). O

For example, suppose fis a function with
sort argument (51,52} = 83, g is a function
with sort (51 = 52), then the function-based
term f{z : sl,g(y : 51)} can be translated
into an acyclic 4-term

3 funetion = fily = 2 slyle =
g2 function = g; L, =y : s1}).

It is easy to check that:

Suppose {is a function- based term, o =
{21 : 8181, .., zn : snltn} is a substitution of
tunder definition of page 173 [2]. Then tr(x)
is also a substitution of ¢-term (tr(t). Here
tr{a) = {x1 : sl|tr(t1), ..., zn : sn|tr(in)}.

Suppose o is an mgn substitution of two
function-based terms ¢1, {2, then we can also
get that tr{e} is an mgu of two ¥-lerms
trt1), tr(12). That is glb(tr(t!), tr{t2)) =
fritl) otrfo }=tr{t2jotr(c).

2 Label-based SLP

y-term theory was first proposed by Alc-
Kaci [9]. We select this theory as the ob-
jeet expression form for the following rea-
sons, Firstly, ¢¥-term is more natural than
function-based order-sorted term. Its ap-
pearance is more accessible to the data record
structure and hence has the more power-
ful representation ability. Secondly, we find
type-based finite antomata is a proper tool
to define the s-term. In fact type-based
finite antomata is a date record structure
hased on type symbols. By type-based fi

nite antomata, -term, and operations on
i-terms, is more easy Lo understand. Fi-
nally, we give the completed glb and lub algo-
rithms. Same to the conclusion of [9], the al-
gorithms computational complexity is nearly
in liner with its input length.

2.1  y-term Theory

In this section, we introduce the ¢-term the-
ory. More details can be referred in Ait-
Kaci's work [9] [10].

Diefinition 2.1 Siguature

Say Ep = (T, La, V,) is a lattice sig-
nature, if T, L., V, are parewise disjoint,
<2 Ty, <> 15 a lattice in which T is the max-
imal element, and | the least element. We
say T, is the set of type symmbols, its element
is always denoted by ti; [, is a label set, its
element is denoted by f; V), is the variable
set, its element s denoted by 24, O

Definition 2.2 4-term [9]
We define the y-term on signature Z,, =
(T, Ln, Vi) inductively as follows:

L. z:tiisae-term,ift € 1), and = = V..
a1t s called simple term, when # =
L, it is called empty term.

2. Suppose 0 € Ty, w € Vj,, L1,... In are
th-terms, {1,..., fn are labels. 1[0 &£ L,
i 1, m, 08 not emply term, then
o)l =t1, e = hﬁ 15 a Y-term,
Fori=1,....,n, {115 called £’s subterm
under ;.

O
Suppose t = = : s(..), we define root-

type(t)=s, root-variableft)=z.
Example of ¢-terms are:



t1=z0 : person(id = 10 : name(first =
20 : string; last = 21 : siving); father =
zll : person(id = 22 : name(last = z21 :
string})).

t2= 20 : person(father = 22 : person
{som = 20 : person)).

All the variables (such as =0, ..} ap-
pearcd in the y-term are called tag symbols
in [9]. We can see that some tags may ap-
pear more then one time. The first if-term
express the sel of person whose father's last
name is the same to his last name, [t is
easy to see that only the tags appear more
then one times are nseful. For simplicity, we
sometimes omit the tags that appear only
once in a ¥-term. So i-terms appeared in
ahove example can also be written as follows:

ti= person (id= name (first= striny; los!
= x@1:string); father = person {id= name
{last= 2 1:stringl}).

t2=x0 : person( father = person(son =
20 : person)).

ubterms are defined as usual. We say
a1 5 is asimple term if # is a variable and s
s a sort svmbol. A simple term is empty if
the sort 1s L,

Definition 2.3 well-formed #-term.
Say 4-term ( is a well-formed 9-term, iff
For every two subterms of ¢ like o : {1,
@ ;12 we must have
1. At least one subterm is simple term.
2. rool-type(z:tl) =root-type/r:td).
We denote the set of all the well-formed
af-term on signature ,, by W5, O

This definition says that if a i-term £'s
two different subterms have the same rool-
variable, then they must have the same type,
and at least one is simple term.

Hence, y-term #1 2 are well-formed, Fol
lowing two -terms are also not well-formed.

3 = X0 o011 = X1: 0112 = X1:02)

M= X0: w01l = X0:el{ll = X1 :
vl{i2 = X0)}12 = X1:90({L = X2:v1))

Suppose [ is a well-formed 4-term, we
define V(1) = {x|x is a variable appearing in
t}, L(t) = {{|l is a label appearing in £}

Definition 2.4 7, on well-formed y-term f.
Suppose ¢ is a well-formed ¥-term. We
define a partial function
mer V() = L{t) — V(1) ,
type, : V(1) — T, as follows:
For every = € V(t), l € L,,

=1

types(x) =root-type(z:t1), here x : 1 is
the subterm of £.

#y(x,0) = y iff There is a subterm y : ¢1
such that y : {1 is the subterm of » under
label 1. m|

For every y-lerm {, every label string o,
every variable x, we define 7z, o) as follow-
g
gﬂ;(:r,r:j =
ae{z, ol) = mywe(z, ), )

Suppose @l =root-variable(t), il n;(x0,a) =
¥, we say o can he accepted by 4-term {5
variable y and denote this fact by Vi(a) = y.
For every two different prefixes aq, as of o, if
w20, ) # w20, ), then we say o is the
economic path accepted by y . We denote
Fat(t, y} as the set of all the strings accepted
by ¥, and Ext(t) as the sei of all strings ac-
cepted by any variable. Denote domain(t, )
are all the cconomic paths attaining r and
domain(t) is all the economic paths of -
Lerm .

Definition 2.5 Say af-term £ =~ L if it has
an empty subterm. (]

Definition 2.6 Complete Definition of <.
Suppose £1, {2 are two ¢-terms, we define
relationship ¢1 <, ¢2 iff

Lot~ 1 or

2, The following twa conditions hold.
2.1. domain(t2) C Kat(t1).”
2.2, For every a € domain(2), we
have
lype(root-variable(t] ), &) <, type{root-
veriable({2), a) and
Lzt(t2, waf root-variable(t2} o)) C
Ext{tl, m root-variahble(tl) o))

o

The condition 2.1 can be replaced by con-
dition Ext(t2) C Ext(t]). Compared with
the definition 4.10 of |9] in page 311, the sub-
sumption relation between well-formed -
terms here is more formal and casy under-
standing.

‘This condition can oot be  roplaced by
domain(t2) C domain(tl). A contradich exampls is
tl = ull : persen(like = 20}, £2 = g = person(like =
yl = w(like = y0)).  Although &1 =, {2 is resson-
able . bt demein(i2) & domain(il), conversely,
domain(tl) C domaindi2).



Definition 2.7 Supposc { is a ¢-term, z,y
are variables appearcd in t. We say = ap-
pears in y's valid scope iff there are two label
sequence a, 4, # # ¢, such that Vi{a) = y
and Vi{e.8) = o O

Look at y-term th = 20 : sO(I1 = =1 :
s1{12 = 22+ 52);42 = 22 : 52(13 = z1 : 1)),
It is easy to check =1, =2 appear in scope of
z0. Bnt we must be carclul that =1, 22 also
appear in the scope of xl and 2.

Definition 2.8 Say ¢-term f is acyclic about
its variable x, if  does not appenr in its own
scope, else say ¢ is non-acyelic about variable
£
Say y-term f is acyclic, il it is acyclic
about every variable, else it is non-acyelic,
N

Let's consider another example:

06 = X0 :vl(l1 = X0: w1312 — X1:42)

7= X2 :03{ll = X3:v4({3 = X2
vl X4 e1)

18 = Z0: v134(11 = Z0: v134;12 ~ Z1:
v2);13 = 20 v134)

Here v134 = glb({v], v3,v4}).

We can see £R <, {7, 8 <, 1G. In fact {8
is the great lower bound of 6, (7.

We define #1 22 42 iff #1 < 42 and 02 <,
tl. I\'s casy to conclude that =2 on Wim
forms an eguivalent relation. Let @5/ ==
be the equivalenl class, then we have the fol-
lowing important results:

Theorem 2.1 (Refer [9]) If stgnature B,
= Th, Ly, ¥V, = is a lattice signaiure, then
< ‘I-"E"I,u" = <> s alse a lullice. O

2.2 Type-based Finite Automata The- Example 2.1 |

ory

Definition 2.9 Say Auto=< L, V, 7, type,
all > is a type-based fnite automata on lat-
tice signature ¥, =< Ty, L., V, >, if L,V
are finite subset of L, V,, 20 € V, 7 is a
partly function from V x L — V, and fype
is a function of V' — T,

We assume that for every = € V, if type(z)
=l then V = {z0} and L = {}. In this case,
we call Auto an empty automata, O

Definition 2.10 Say sequence [1...0n (n >=
1) is accepled by type-based finite automata
Auto =< L V7, zg,type >, if there is a

variable sequence xq, 21, ..., 2, such that for
every t,n > i >= 0, m{x;, ki) = z;41. We say
I...in is accepted by x,. I

Specially, we say € is accepted by zp. We
denote the set of all the accepted sequence of
Auto =< L,V m,z0,fype > by Ext(Aulo),
and denote length of Aute, |Auto|, is the sum
length of L,V and =, denote the accepted
sequence of Auto by variable y is Exf{Auto,
v)-

Il is casy to see that,

Fxt{ Auto} = 5

reVof Auto

Generally, we assume that if L # {},
then for every variable = € V of Auto= <.,
V, o, 20, type >, Ext (Auto, x) # H} and
for every | € L there are z,y € V such that
w(x,0) = y. That is, every node in V lies
on a directed path starting at the root node
z). In this case we say Anto is connected,
We denote the set of all the type-based fi-
nite antomata by C A% and the set of all
the connected finite antomata based on sig-
nature ¥, by O AL

Ii is easy to conclude that

Ext( Auto, ).

Theorem 2.2 Every type-based finite automata

can be transieled into a well-formed - ferm;
And conversely, every well-formed o -term
can be translaled into a connecled type-based
finite automata. O

Let W : AU — W% means translati
an antomata into a well-formed ¢ -term, an
A: W5 — AU then it is casy to get:
Theorem 2.3 Suppose idgs=, is the iden-
tity function on domain W5 id.. e, is the
identily function on domain CAU>, then

Ted =idyz,

Aol =id;ye, O

et’s consider y-term {1,
ti=z0 : person(id = 210 : name( first =
20 : string, last = 221 ¢ string), farther =
211 @ personfid = 222 : nome(last = 321 :
string))).
t1’s corresponding type-based finile au-
tomata is:

x| person 1d =10

father | x11

¥ 10 | name first | «70

Tast x21

x11 | person 1d xad
w20 | string
x4l | string

¥42 | name Tast x2l




O

Translaling algorithins can be refereed in
appendix. Now, we define the relationship
between two automates.

Definition 2.11 Suppose oute; =< L, Vi, =,
type;, @; >, i = 1,2 are two connected Lype-
based finite antomates, we say auloy <, autos
iff there is a map [: Vo — V] such that

L flza) = 2.

2. Por every = £ Vi, typesl flz))} <.
typea(z).

3. Ly C L, and for every | € Ly, {x,y} C
VEI:I if ﬂﬂ{h ﬁ?] = then 'J'I'1“,f[1::|:| = f[y}

The following theorem holds:

Theorem 2.4 For every two well-formed v
terms 11,12, lweo connecled aulomales antoy,
auloy, we have
111 <y 12 iff A1) <, A(12).
. 2. autoy <, autos iff Wauls) < Ulaulos)

In the last section, we describe the con-
cept of variable's scope in a well-formed term.
Using antomata, we can define subterm of a
well-formed 4b-term,

Definition 2,12 Suppose { is a well-formed
pai-term, ils sulomala is AlY) = < LV, 7,
type, w0 >, For every y € V, we say {'s y-
sublerm |, denoted by subterm(t, y), is the
well-formed d-term ®{< L, V, =, lupe, v >).
a

For example, in well-formed i-tevm #1,
the £10 sub-term of t1is: 210 : name( first =
220 : string,last = 221 : string). The 2
sub-term of 3 is £2 : person{son = 20 :
person( farther = 12 : person)).

From delinition 2.11, we can see that def
inition of <7, there iz much more simple than
the definition in section 2.1. From theorem
2.4, we can see that type-hased finite an-
tomata is another proper tool to define 1%-
ferm.

While we finish this paper, Prof. Kuniaki
Mukai introdnce anthors the feature struc-
ture in Bob Carpenter’s book |3|. Feature
Strncture is nearly the swne o our type-
hased finite automata. Illtun;atin{; readers
can also vefer [3] for more detail wtroduc-
tion,

2.3 Computation and Complexity
Analyze

In this section, we show t-terms glb and
lub computations and their complexity an-
alyze. Detail algorithms can be refereed in
appendix and [9

In HELIC-II, every ¢-term's inner struc-
lure 15 in fact a type-based finite type au-
lomata. Algorithms listed in appendix can
help us understand the computing procedure
of ¢h-terms’ greatest lower bound and H-term’s
least upper bound.

Example 2.2 Consider following two ¢-terms:
s=X0:vl{ll = X0:vl;i2=X1:v2)
= X2 e3(l1 = X3 : o4(13 = X2:

vl = X4:04)

Tuble,t) is Z0 : s13(11 — X1 : s14{13 =
Z0 2 513)), here 513 = lub(vl, v3), 514 =
tub{vl, v4).

gl(s, 1) should be

20 2 w13{Il = Z0 : 134512 = Z1
©2;13 = Z0: v13d)

Here v134 = gib{{vl, v3,v4}).

Supposs d-term 9 = X0 : o{{1 = X0,12 =

X3 =X1:vl{i4= X0)),
The corresponding type-based finite au-
tomala is:

=0 [wvo [IT T X0
2| X0
3] XT
AL [vId [ X0

The well-formed ¢-tern:

O = V0:w2(01 =¥1:03(12 =¥Y0);12 =
Y2:vd{i3=Y0d=V¥Y3:a5);3=Y0:1H=
Yi).

The corresponding type-based finite au-
tomata is:

YO vZ2TIIT YT
21Y2
I y0
5] YT
Y1 w3 12| Y0 |
Y2 vd [ I3 Y0
MH1Y3
Y3 vh

glb{19, £10) is:

20 2 el = 20,02 = 20013 = 20,14 =
zlivhilh = z1)

Here 01234 is glb({v0,v1, v2, 03, v4}).



2 | vOIZ34 T 11 T 20
12 [ =0
BRI
=1
15 1T =1
zl vh

lub(t9, 110) = 20: sga (11 = z21: 8y {12
= 20: sga); 12 = 28: sy (13= 23: sya), 13=
zdr 592 )

Here, dg1 ik = duh {ﬂ,.,,,i'k}.

a

Main conclusions are:

Proposition 2.5 Forevery finite antomata,
Auto =< LV, x o0, type =, every label se-
quence c,

1. The computational complexity to de-
cide whether o 1s accepted by Autois O{|al+
| Auto|}.

2, The computational complexity to de-
cide whether o is accepted by a given stalc
¢ is also Of|a| + !Au-loﬁl o

Theorem 2.6 The complexity deciding whether

a label sequence o belongs to a path of o-
ferm £ is O[ae|), and The complerity decid-
tng whelher two vi-terms h1, h? have the re-
lation h1 <; h2 45 O(|h1 + |A2]). o

Suppose s and { are two terms, we always
have the following two questions:

1. Does s equal to 17

2. Does s equal to £78

From theorem 2.4, above proposition and
thearem, we can easily get that

Theorem 2.7 The complexily deciding whether

a i lerm s equals to | 1 Of|s]).

The complexity of deciding whether two
w-terms & and t are equivalent is the liner
time of the total length of s and t, O(|s|+|¢|).

O

Theorem 2.8 [9f

The complexily of the algorithm comput-
ing the grealest lower bound of any two -
terms 15 almost lncar of n,” where n is the
total length of § and s. u

"Here, s equals # means & 2 ¢, that is & < b
£ <p s 1t differs from s = ¢ where 5 and £ are totally
eoelvenent by syntax

In fact, The complexity is (O{nG{n)), since for
all n < 2559 G(n) < 5, G(n) can be considered
ag a constant, Heve Gin) = man{kle < F(k)).
Fioy =1, for all i, 0 < i, F{i+4 1) = 250 Detajl
disenssion, see [4]
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2.4 Substitution and Unification of
P-terms

Now we turn to -terms substitution and
unification problem.

Definition 2.13 Suppose label sequence o
can be accepted hy s variable y, then we de-
note a-subterm of ¢ | denoted by subterm(t, a)
is subterm(t,y). O

Definition 2.14 Suppose { is a ¢-term, 2, y
are two variables of t. if y appears in z's
scope, then there must be a least label strin

« and alabel string 3 such that § € Exf(t, :rﬁ,
fJoe € Lxt(t,y). We say o is a address of y
in variahle x of 1, |

Definition 2.15 [Substitution|
Say @ = {xl/tl,...,zn/tn} is a well order-
sorted substitution of ¥-term ¢, if

L. tl, .., tn's variable is disjoint with 's
variahle. We assume #4's initial vari-
able is @i, initial lype is vi.

2. If variable = appears in the scope of
any xi ¢ = 1,....n of [, then 2 must
also equals to some i, 1 = 1,..., n.

3. If variable xi appears in the scope of
X7 of ¢, and the address of xi in xj of
tis a, then subterm{o,tj) = ti.1°

L

For zi, suppose zi-subterm of ¢ is sub-
term (xi, 1), then ti <, subferm(wi, t).

O

Obviously, we have

For any i-term f, suppose # is t's substi-
tution, then for any subiterm (1 of ¢, # must
be alsa $17s substitution.

Definition 2.16 Suppose # is a substitu-
tion of t-term £, then we inductively define
t# as follows:

L. If ¢'s initial variable is zz, then t# is #i.
else

Ywe assume that if zi appears in the scope 25 of
W berm 4, we needn't write of|subfermio, £} in the
silebitntion.



2. Suppose tisz:w(il = £, .. .im = tm)
then i is

z:e(ll =18,..., Im = tm#).

Here we assume that after =1 is first re-
placed by ¢, the following 21 should be
replaced by zi : vi, vi is the top-type of
term #i. This assumpiion insure that
il a variable is substituted more then
one time in a ¥-term, then the result
lerm must be also wefl—defined.

]

Theorem 2.9 For every substilulion # of
g-ferm f, we have t8 <, ¢ O

Prool: We inductively prove above proposi-
tion on the depth of the y¥-term.

Step L. When & = zi o, if 0 = {..., xi]ti, ...
then t8 — # < f, else 00 = § <, £,

Step 2. Suppose above proposition hold
for depths 1.

Step 3. Hnppose -zl wfll =ti...., In
=ln}in which every ties length is not greater
than 1.

Il 8 = {..,z|t1,...}, then according the
definition we have t§ = ti <, ¢, clse t§ — z1 :
(il = {18, ..., In = tn#). Firstly, accord-
ing Lhe inductive step, we have {16 <, t1,
...... . Inf <<y tn, Secondly, please notice that
xl can not be appeared in the scope of any
ti,i = 1. ...,n, henece if two address in t has
the same variable then the two address in i
must have the same variable.

Hence, t8 <, t and, conclude the theo-
rem.

Obviously, we say a ¢-term set F is unili-
able, if there is a unification # of £ such that
for every two gi-Lerm t1,42 of £, t18 — 128

Theorem 2.10 Suppose {1,112 are fwo 1 -lerms,

{ Generally we assume their variables are dis-
joint), then t1,¢2 can be unifiable iff gIb(11, (2)
L O

Proof:

“+ Suppose there is o & such that ¢16 =
20 2 | and 18 <, £1, 120 <, (2. Since
I <y glb(tl,12), we gel

gib(tl,42) & |,

= Suppose (3 = glb{1,¢2) 2 |, and
£L, 82,13 are variable disjeint. Suppose t1's
initial variable is z, {2's initial variahle s g,
it iz casy to construct the substitution

fis {x|t3, y[t3}.

11

If 1 <; £2 then not for every substitution
8,618 <; 128, For example, = : bird <, y :
antrnal, = {y : animal/z : ostrich}, then
{ : bird)d £; (y : animal)d.

Definition 2.17 [maximal general unifier|
Suppose E is a t-term set, F can be
nnifiable. For every two substitution #, 3,
we define § <; 3 iff Ef <<, E3. Say E's su
stitution [ is the maximal genceral unifier iff
if # is a unification of F then # <, 4. J

Theorem 2.11 Fvery uniffable -term set
E have one (and only one) mazimal gencral
unifier 8, m|

3 Sorted Predicate and SL

Program

HELIC-IT provides two different signatures.
(Ine is noun-signature, denoted by Z, = {
Ty Ly, Vo). Symbals of T, is called type
O noun-type, a}rmhnls of Ly 15 called noun-
label or label, symhbols of V), is called vari-
able or noun-variable. The ather is verb-
signature, denoted by 2, = (1, Ly, V5, where
symbols of T, is called verb type or pred-
icate, symbaols of Ly 15 called verb-label or
predicate label, symbals of ¥, is called verb-
variable or ll-variahle. All the objects [ol-
lowing described are based on these two sig-
natures and the subsumption relations.

Motices that these subsumption relalions
can he regarded as a part of the knowledge
stored in legal knowledge base which was
written by legal knowledge engineer, Exam-
ples of these two relations are:

Some noun-type symhbols and their sul-
sumption relations:

adult <, person, child <, person,

Japanese <, pevson,

Japan <, counlry, monlhname <, name,

Bome verb-type symbols and their sub-
sumption relations:

kilt-with-brows <, strike, sirike <, violence

kill-anith-brows <, kill, kIl <, violence.

There are two basic objects in traditional
logic prograwning, lerm and atom. In HELIC-
M, we also have the corresponding two ob-
jects, ¥ —term and H-term. We assume ¢ —terms
are based on E,. Sometimes, we use new
ﬁ;;:uhu] to name certain ¢v—term, for exam-
ple:

man =g person[sexr — male]

Jjapancse-man =g person | sex = male;
nationulity = japan|.



Obviously, japenese-man <, man, man
g PErSOT.

Different from the if-term, H-term is not
only defined on verb-signature Z, = (T,,, L,,
V!,.), but also defined on noun-signature ¥,
= (Tm Lm 1"';;:]

H-term is of the form: plel = g1, ...,en =
gn) or ~p(cl = ql,...,cn = gn) where p is a
pradicate, gi is a ¥e-term or H-term, of is
a lahel [noun-label if gi is y-term or verb-
label if g1 is H-term). Generally we assume
. —p are symbols of T, and lub(p, —p) = t,
alb{p, '-pg =f, t = f, =f = t. Further we
assnme if p <, g then —g <, —p.

There are two kinds of negations in SLP,
One is -, called logic negation; The other
is mot , called negation as failure. A simple
example is:

P = { flylagt =
fly{agt = x : bird),

aslrich < bird,

—flylagent = osirich),

tweety <, bird }

In this section, we will introduce H-term,
its substitntion and unification, normal SL
program and extended SL programs, and their
denotational and operational semantics.

r : bird) — not —

3.1 H-term

Now, we define the acyclic H-term. Infor-

mally, H-term is a constrained ¢-term based

on signatures L, and X, The constrained

conditions are: H-term is acyelic about its

verb-variable, every verb-label should be fol-

lowed by H-term, and every noun-label should
be followed by 1i-term.

Definition 3.1 Suppose ¥, =< Ty, Ln, Vi =
is a noun lattice signature, 5, =< T, L,, V}, =
is a verb laftice signature such that ., T,
are disjoint, Now we define H-term of T,
based on 1, as fellows:

1. Farevery v € T, @w & V,, @x : v is
a ll-term.

This kind of H-term is called simple H-
term, when v is £, we call it a false state-
ment, when v is t, it is called a true simple
statement.

2. Buppuose Gy0 € V,, v € T, {11, ...,
kY C Lo {hl1, ..., him} C Ly, i, ..., ik are
P-terms, kY, ..., fim are H-terms, then

h = @yl: v (l1= tl, lk=tk, blt= ki, ...,
felm=hm) is H-term, |

Definition 3.2 Well-defined H-term,
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Say H-term b is well-defined, if the fol-
lowing conditions hold:
For every two subterm of b, z2:a , z: 3

1. x: o and x : 7 have the same initial
type. . )
2. If r is noun-variable then at least onc
of x : o and = : 7 is the simple ¥-term,

3. I & is verb-variable, then at least one
of the subterms is simple H-term and x can
not be appearcd in its own scope. o

Here concepts, such as snbterm of H-
term, variable's scope is defined similar to
the ¢-term’s. Generally, we don’t write all
the variables, except the variables appear
more then one times. All the H-terms dis-
cussed in this paper are assumed well-defined,

Before introducing the formal semantics
of H-term, we first explain H-term’s meaning
informally. Suppose hi = hit (agent = Tom,
object = Jim, place = housel), h2 = hitf
agent = Tom, object = Jim, plece = house],
fime = 1994.7.20 ) and h3= hit | agent =
Tom, object = Jim). k1 means Tom hit Jim
al housel, h2 means Tom his Jim at howasel
on 1992.7.20, h3 means Tom hal Jim.

Imagine hl iz a fact in the real world,
then which statement can be concluded? A2
or h37 It is easy to sec that we can gel A3,
Besides, from A2 we can also get hl.

The logical relationship between H-terms
is expressed by the ordeved relation <. Later,
we will see that A2 <, k1, R1 <, k3, and
hence from Al we can get A3 instead of A2,

Definition 3.3 Say H-term h = t iff L ap-

pears in h.

Say -term h == £ iff i 2 ¢ and [ appears
[

in h.

For example, flagt = = ; person) is a
false statement about person, so it equals
to f; hitlagt = ¢ : 1L, obj = y : person)
is a statement whose subject domain s L
jempty), we regard (his kind of statement
as true,

Definition 3.4 Suppose hi= @ewif I} =
ST fﬂ = ln, 'll':: =iy, ..., va = T.’fm,;l,
hi= @yl ln =1, ..., l =1, vlj =vi],
ooy vl = ot} ) are two H-terms, such that
{it, o ik} {1, o, b gl S,
e m}p, {1, lnoare noun-lahels, oly, ..,

wly, are verb-labels. We define
Rl <, h2 iR M 2 F ar A2 =2t or



1. vl <, v

2. Forevery s = I, ..., k, t{ <, #;,. 1

3 Forevery s = 1, ..., [ vl <4 vtl.

4. If variables appear in two different
places of h2 are same, then the variables ap-
pear in the corresponding places of hl must
be also same. o

The meaning of Al <y h2 is:

Il hl is a fact in the real world, then h2
is also a fact in the real world.

We denote h1 = A2 iff A1 < A2 and
h2 <y hl.

For example, suppose

ostrich =, bird <, animal, fly-by-wings<,

fly <, move,

Fact: flylagent = = : bird).

Then we can get:

Sly because fly(agent = z : bird) <4
ffyl:i

move becanse fly < move!?

flylagent = = : ostrich) because flyf
agent = wbird) <, flyf ageni = zrosirich )1

move(agent = z ; bird) becanse fly{ agent
= w:bird) <p movefagent = g:bird)

mwa{agﬁni =I: mtrich} because move
{ agent = ebird) <y, move {agent = rostrich)

Definition 3.5 Conclusion of a fact set

Suppose [ is a H-term set, We say Con(F)
is the conclusion set of F, if Con(F) is the
least sel satisfies the following conditions:

1. FC Con(F)

2 I Al <3 A2 and k1 € Con(F) then
2 € Con(F) O

Definition 3.6 Say fact set F' is inconsis-
tent iff there is a H-terms b such that:
Lohe Con(F) and -k & Con{ ).
2. For every hl,-h2 € Congf"}_. if hit =y
foand = h8 <) = & then R = A2 [

Suppose F={ hilfagl = Tom, obj = Jim,
time = sunday), — hit{ agt =Tom, wbj =
Jim, pluce = housei)}. Although Con{F)

"Someone may prefer that & = n and [ = m.
W don’t keep these constramts. We think o H-term
Wois Lroe iff Lhere is a k', auch that &' <, h, A is
a fact, In our system, b and —f can be both tre.
This treatment does not lead inconsistency, The def-
inition of inconsistency in type-hased logie program
ean be found in following definition.

“fy means something flv.

2 e means something move,

14 . -

Flylagent = = @ awfrich) means something such
that aﬁ ogllich can fly. ] 8
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contains both hit {agt = Tom, obj = Jim),
— hit {agt =Tom, obj =Jim), Con(F') is con-
sistent according to above definition.

Definition 3.7 Complete Set, Minimal Set.
Say fact set F'is a complete set iff
Con(F) = F.

Say fact set F is a minimal set iff if h € F
and h 2 h' and h < &' then ' & F.

Say fact set F' can be minimized iff There
is a minimal sct, defined by Min(F) such
that Min(F) C I and Con(F) = Con{ Min{
F }). Element of Min(F) is called the com-
plete information or fact of /. o

From the inconsistent definition, we can
prove that:

Theorem 3.1 Fact sef F is consistent iff
Min(F) does not contuin contradictory fact.
O

Obviously, not every complete set can be
minimized. For example,

Example 3.1 Suppose complete set 1 is:
( {h, h{ 1= c1}, h{ 1= el h2= ¢2)), ...,
hi ll= eif... { la=en )...}), ...}
Then ;‘_‘l can not be minimiged,
Suppose complete set F'2 is:
o BT = 1), s bl = o), ookl =
Cin bl = "-;:]1 vhll) = ey s = Ciny o)
en 2 can nol be minimized. 0

Theorem 3.2 For every complete fucl sel
F, if I contains ne infinite decreased chain,
then F' can be minimized. O

3.2 Unification of H-term

In Prolog, if two atoms can be unified then
we can find the most general unifier. For
example, {p(f(x),z), p(y,a)} is unifiable, its
most general unifier is 8 = {y/f(=),z/a}.
How about unification of H-term in typed-
based logic programming? From above dis-
cussion, we have already known that we can
calculate any two y-terms greatest lower bound
{zlb}) and least upper bound (lub}. In this
section, we study the substitution and unifi-
cation of H-terms.

Suppose H-term b = p{ll = z : v1{l1 =
v =gy 02), 8 = {z]z ; w12(11 =
z), 9|z}, v12 = glb(vl,v2), then @ is a well
order-sorted substitution of H-term h, b =
plil =z : 012(l1 = 2),12 = z) and h <}, ho.



Definition 3.8 Well Order-Sorted Substitu-
tion of H-term h.

Say # is a well order-sorted substitution
of [{-term h if

@ = {xl|tl, ..., en|tn, @yl|kl, ..., Gym|hm}
" where @t is t'lnnll-'l.rd_nd.h].e ﬂy} ji-3 'l.-'(frb-—
variable, 1 <4 < n,1 < j < m, and

1. Forevery noun-variable i (1 = 1....,n),
if it appears in h then ti <; subferm(ai,
b

For every verb-variable @yj ( = 1,...,m)
. if it appears in h then mbierm{@yj h}
<h his

2. If = appears in the scope of 2 of b, and

the address in zj is add, (j = 1,...,n}
then = must be some xt and subterm
{Lf, add) = ti.
If a,pp-F'ars in the scope of @yy of &,
(i =1,-..,m), and the wddress in yf
i8 udd then z must be some xi oand
subterm ( ki, add) = ti.

If @y appears in the scope of @yj of
hy (7 — 1,...,m) , and the address in
y7 is add then, then Ty must be some
Wyt and sublermhj, add) —hi.

We define domain(#') = {=1, ..., an, @yl,
. @ym}, and Oxi) — ti, #(Gyg) = by for
l<¢i<nl<jy<m. O

Definition 3.9 Substitution.

Suppose @ is a well order-sorted substi-
tution of Il-term A

T'hen we indnctively define b as follows:

L. @y wf=0y : v if Oy & domain(f) else
@@y}, here @a € V), v & T,.

2. Suppose fi = Ty : ol{ll = tl, .. Im
tim, vll = vhl, .., vin = vhn) then
if @y € domain(#) then hf = #{Ty)
else

R = @y @ vl(ll = 14, ...,
ol — whlf, .., vl = vhnd)

I = tmi,

a

Theoremn 3.3 For every H-term h's well order-
sorled substitution 8, we have b <, hi). O

Proof: We inductively prove this statement
by H-term's length.
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1. & = @y : v, then for every 8, it is easy
to check that h < h{.

2. Suppose h = @y : w{ly = Y1,y =
‘#J“,}i.fl S hl:"ﬁ f.‘r.fm = hm},
Above statement hold fur H-terms &y,
¥ h!‘.‘l‘l L
3. Let @ is &'s well order-sorted subatitu-
tion, then

{a) if @y € domain(8), then accord-
ing to the well order-sorted sub-
stitution definition, we can get that
h <y, he = 8(Gy).

(b) if @y ¢ domain(f) then hé =
@y :1’{'{1 Wl ol = Pull Rl =
b, il = hmﬂ}
We have hl <n ﬂlﬂ, ....... h,,, Eh
b,
Notices that 18 <¢ 1, coere, Wl <
Yy
So it is easy to prove:
h < hé.

End our inductive proof,

Definition 3.10 Suppose hi, A2 are two H-
terms, and their variables are disjoint. Say
they can be unifinble il there is a substitu-
tion # such that h18 = k26 ¥ t. Say sub-
slitulion @ is the most general unifiable, if
for every substilution § of &i, A2, we have
hig = h28 <, h13 = hia. O

3.3 Horn SLP's Semantics

Definition 3.11 H-terms are atoms or pos-
itive literals. Suppose h is an atom, then
not h is negative literals. Literals are posi
tive or negative literals, and we denote lit-
erals by li. Suppose A0 is an atom, {1, ..., In
{0 < n) are literals. If every variable ap-
pears in them has the same definition, then
Al — 1, ..., In is called an extended clause;
When all 1 (1 < i < nf are atoms, it is
called normal clanse or Horn clause. A SL
program is a set of extended cluuse and a
hgrn Sl program is 2 set of nonal claoses,

Example 3.2 penal code in normal rules.
pen2ll: death-by-negligence-during-business
(n-object = Qaccident } w—
@work : work | agent = X: person ),
negligence {agent = X, olject = Gucctdent },



Wacetdent - a rn:’:fﬁnf{rageuiz X},

causality (cause = Qaccident, effect
= @death), @death : diefagent=Y:person).
()

This rule is sdopled from the stalemenl
of Japanese legal panel code, Chapter XXVIII,
Crime of Inllicting Injury by Negligence, Ar-
ticle 211, A person, who fails to use such
care as is required in the performance of pro-
fession, occupation or rontines and thereby
kills or injures another, shall be regarded
as death by negligence during business, and
punished with penal servitude or imprison-
ment for not more than five years or a fine of
not more than one thonsand yen. The same
shall apply to a person who, by gross negli-
gence, injures or canuses the death of another.

Following we will define extension of a
normal program P under assumption set E.

Definition 3.12 Kzt )

Let M be a program, I a [l-term set. We
define the new [act set Kot P, F) of P under
Fis:

Fat{ P, 1) = {h0Bh0 — k1, ... hin e P
and # is its well order-sorted substitution
{h1f ..., hnf} C Con(E)}. O

Definition 3.13 Suppose P is a program,
we define a fact set sequence as following:

Eat(P)" = {],

For every 1 >=10, _

Ext(PY* = Con(Ext(PY) U Ext (P,
Eaxt{ P)*)

The semantic of normal program P, called
extension,denoted by Ext{P), is defined by
the set: _ .

Ext(P)=UZy Bxt(P) O
Definition 3.14 Say program /7 is well-defined
iff Ext{P) can be mimimized. O

Example 3.3 Suppose the relationship among
nonn and verb symbols are:

Jim =, pevson, Tom <, person, bird <,
animal, e <, bird, fly <, move

Suppose

Pl = {hit{agtl = Jim,agt2 = Tom)},

2= {fly (agt= z:bird} — fy( agt= bird(
son= z:ird)), fly (agt =bird { son —c)}}.

el

Exti{}, Pi} = {fl {agti = Jim, agt2=
Tom), hit{ agtl = Jim), hit { agt? = Tom),
hat, t }.
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Min (Ext({}, P1) =

{ hit{ agti= JSim, agt2= Tom} }.

Eﬂffj}r P2) = {fly (agt =bird (son=c)),
My (agl =c), move{ agt— ¢}, move [agi—
bird{ sen= c}}, fly. move, t}.

Min{ Ext{{}, P2)) =
. { Ay( wyt= bird( son=cJ), fly { agt =c]}

3.4 Hesolution Method

Definition 3.15 Let goal & be « - AT, .,
Am, ..., Ak, O be A — B1, ..., Bg"® and
R a computation rule. Then G.q is derived
form &; and iy using mgu #;4, via R if
following conditions hold:

L. A, is the selected atom given by the
computation rule R.

2. Ay = Amfip"®

3. Gi'i'l 15 |-|1'12 g,ual - {Al,...,ﬂm_h

H[,....: Hl]’, .4,“.;_1...?!1;:)5,:4.1. [

The definition of SLD-derivation, the prop-
erties of Sounduess and Completeness of SLD-
resolution are same to [18] page 36-56.

Theorem 3.4 Soundness

Fet P be a type based logic program, (7 is
a goal — Al, ..., Ak, and R a compulafion
rule. Suppose PUG has o SLD-refufation of
fength n wie R and #y, ... 8, is the sequence

aof mkg'ar,"s of SLD-refutation. Then we have
W= (4,0,.0,] € Hap*(P) O

Proof:

We prove this proposition according to
the refutation length.

Step 1. When the prove length n is 1.
Then it is obvious that k=1 and there is a
rule A «— and substitution # such that Af =
Al8. It is easy to prove that A10 € Ext!(P),
and hence {A16} C Kap'{P).

Step 2. Suppose above proposition is
true for length n.

Step 3. We assume goal «— A1, Ak's
refute length is n+ 1.

Suppose the first goal is Ay, | <=m <=
k, substitution is &, the sclected rule is A
By, ..., By, then the second goal is

v (A Ay B B*?‘- Apty e, A8

According to the inductive step, we have

“We assume that varinbles of (; and 4 are
1|i:q.j|:|iuL_.

T s syntax equal, not =,



Uizh sl A9100s] € Fxp™(P)

UiZ [Bith..fn ] © Exp™(P)

Since A « By, ..., By is a rule and A#; =
Ay, we consequently get that 46y..0,,, =
-‘1“191.-.1911_4.[, Hence Amgl'"ﬂu+] = f',.-'.‘l‘.‘p"l I{P}

Thus we inductively prove ahove theo
rem.

Theorem 3.5 Completeness

Let P be a normal program and A an
atom. Suppose A € Fxi(F), then theve ex-
ists an SLD-refutation of P U {+ A} with
the wdentily substituiion as the answer sub-
stitulion, O

Hint of Proof:

We inductively prove the [ollowing state-
ment:

For any atom A ¢ Ezp"t! [Pl), there must
goal — A’s refutation, whose length must
less o1 equal to n.

3.5 Extended SLP’'s Semantics

In this section, we introduce the extended
order-sorted logic programs semantics. Many
people argue [6], [12] that, it is necessary to
introduce two negations into logic prograun-
ming in order to deal with the ‘exception’
knowledge in legal field and linguistic field.
Like Gelfond and Lifschitz’s stable semantics
for non-sorted logic program, we propose the
stable models for extended SL programs. [t
is also easy to see that stable model of nor-
mal 51 program is the same o ils extension
model.

Definition 3.16 Suppose P1, P2 are two H-
term set, we say Pl <, P2 iff for every
h £ Pl there is a element A’ & P2 such
that h < k'. When P1 = {p}, we denote
Pl<, Pabyp<, P2. O

Definition 3.17 Stable Model,

Suppose P is an extended SL program. §
is & miniable 1l-term sel. We say Trans/ P,
§) is the translating program of P on as-
sumption set § such that Trans{ P, §) is the
least program satisfied the following condi-
f1om:

Suppose v = hg + Ay, . by not by,
not b, € P, § is the well order-sorted sub-
stitution of h. If for i = 1,..,m hlf £,
Mawn(S), and hl# & Con(S) then hol — b8
s ooy hn € Trans{ P, 5).
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We denote Sext(P, §)= Ext{ Trans{ P,
s)).

We say 5 is a stable model of Piff Sext(P,
S)=5 O

Some of the important propertics of tra-
ditional extended logic program dov not hold
in extended order-sorted logic program. For
example, in traditional logic programming,
Sext( P, 5) is anli-monotonic about S, But
here, Sext(P,5) is neither won-monotonic
nor monotonic.

Example 3.4 Suppose
ostrich <, bird <, animal, Jim <,
person <, enimael
tweely <, bird, fly-by-machine <, fly <,
mave
The program P s
{ fly{agent=u:bird} — not - fly{ agent =
bird ),
Ay-by-machine{agent=z:person),
—flylagent = ¢ : ostrich) }
Suppose
51 = {f}
S2=Con{~ fly{agent=x:0strich), ly{ agent
= x:tweely), fly-by-machine {agent =z:person )}
Sext(F,51) = Con{-fly{agent = z :
ostrich), fly = by — machine(agent = = :
person) }

Sext(P,52)=52 N0

Computing the stable extension of a SL
program costs very high. So we must find
another computing method or modified pro-
cedure semantics, One selection is: Argu-
ment Theory.

4 Priority Knowledge and Ar-
gument Theory

Generally, a legal knowledge base is large
scale and may contain many conflici infor-
mation. In order to select a more reasouable
conclusion among incompatible conclusions,
priority knowledge is needed. One kind of
this priority knowledge is called stand point,
which says that some set of rules have the
higher priority than the other sct of rules.
For example, New law has priorily over old
faw. Under this standpoint, we can associate
every rule with its promulgated date and di-
viding the law base according to the date. In
this case, dividing the legal knowledge base
into unit is necessary.



4.1 Unit and Standpoint

Legal rule base is organized by knowledge
umit. Generally under one standpoint, a le-
zal rule belongs to only onc unit.

Definition 4.1 [Standpoint]

We define standpoint a computable rela-
tionship on units.

Suppose s is a standpoint, wf, ul are two
units, il < u0,ul >€ s, then we say ul has
a lower priority than ul and, denote it by
ul) < ul. (W]

For example, suppose decision-of-supreme-
conrt is unit 1, decision-of-high-court is unit
2, then we define lex-superior is a stand-
point, it contains only one element, that is
nnit 1 has higher priority than unit 2. In
legal knowledge base there are many rules
owned by the same unit. So from standpoint
5, we can define priority relationship among
rules.

Definition 4.2 Suppose s is a standpoint,
r; (i=1,2), are rules (normal or extended), r;
belong to unit w;. Say r2 is higher priorily
over rl under standpoint s, denoted by r1 <,
r2 if w10 <, w20 and w20 &, uld, ]

There are many standpoints and people
may nse different standpoint in practice. Be-
sides, different standpoint stands for differ-
ent division of legal rules. Following, we give
some common stand points among logic pro-
gramming field.

The first standpoint is hard-soft stand-
point. We divide all rules into two parts.
One is soft rule, in which the not is ap-
peared in the right body, The rest is hard
rule. One standpoint which has been widely
used is that hard rule has the high priority
than soft rule. It means that a conclusion

inferred from hard rule 15 more believahble,

Definition 4.3 Hand-Soll Standpoinl (L-s).
Every hard rule Las lllgll. privrities then
soft rule O

We use Li-s standpoinl Lo analyze follow-
ing example.

Example 4.1 a <, b a <, o, d <, b
I comtains two mles.

rl: p(l = = : b) — not wb(l = x : h),
Generally & has property p.

2 p(l = & 1 2), @ has the praperties
. a
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We can get p(l = x: a) and —p{l = 7 : a)
respectively. In order to get p{l = x : a), we
use rule r1; In order to infer —p{l = z:a) ,
we use rule 2. Since 2 keeps high priority,
we believe —p(l = x : a) instead of p{f = = :

).

Definition 4.4 Suppose rl and r2 are rules
like:

vl symboll hi — ...

r2; symbol? B2 ...

Here, {symoboll, symbol2} =L = } and
symba”:ﬂify:r symbol2=nil. if h2 <, ki
then we say rl is a more special rule than
r2.

Generally, we say special rules should have
a more higher priority then general rule, We
call this standpoint is $-g standpoint. |

Let's analyze another example;

Example 4.2 fly{ agent= z:bird) — not -
fly( agent= z:osivich}

= Jly( wgent= z:astrich) — not fly{ egeni=
z:ostrich)

ostrich <, bird, fweety <, osfrich O

We can see that under standpoint s-g, we
can get = fly(z : tweety).

Let's conclude this subsection by a sim-
plificd example of legal ficld. In alegal knowl-
cdge base, there are are many kinds of stand-
point and cach onc corrcsponds to differ-
ent division of the knowledge basc. For ex-
ample, suppose we have following 5 rules
where penall, penall, penald arc g:nrmnl le-
gal code, cascl is a casc rule, and facti
is a fact. Under standpoint of secial-justice,
we place the case! rule in the high priori-
ties, so soctal-justice={ {penali} < {casei}}
. However, under proteclion-of-mimor stand-
point, we should take the penalf rule in the
high priorities, so pretection-of-minor = {
{casel} < {penali} }.

penalll;; punishable a-abject = X, goal
= Y} — condilion-af-crime { a-olyect =act{
agent=X: person}, goal — Y: evime].

penall:: = punishable( a-object — X) —
act( agent = X: personfage=[0...15]}).

penalf:: condition-of-cvime [a-object =
@action, goal — crime-of-homicide) — @ac-
tion: kill{a-abject =act{ agent= X:person)).

casel:: punishablel a-object =X, goal=
ertme-of-homicide) «— kil agent= X: per-
sonfage = 13)}



fact

fuell:: killf agent= tomfage= 13)).

It is easy to check that for query

- punishable( a-object = tom {age = 1.3),
goal= crime-of homicide )

The result will be YES in the case of
social-justice standpoint and VO in the case
of protection-of-minor.

In the following section, we will discuss
the argument tree in HELIC-IL

4.2  Argument Tree

For a given goal g, our task is to find an
argument tree to support it.

Definition 4.5 Argument Tree
(iiven an assumption sct S of SL pro-
ram P, we inductively define argument tree
or goal (¢ as following:
FFor every rule
r=ull: p—pl, ... pk, notp'l,... not gy,
0 < k0<j, Suppose

1. There is a well arder-sarted substito-
tion B of r, snch that pff = .

2. Fori=1,.. & tr;is an argument tree
for root node pif.

3. Fori = 1,...,7, pift €5 Min(S),pl8 ¢
Con(S)

Then

tree =< G, 8, v, {try, ... tri }, {pl8, ..., pké},

g'lﬂ, woo P10} == is an argument tree of goal

We define
=k
Tr(tree) = {tree} U Tr(tr;)

i=1

=k

= ik
Sup(tree) = E{Piﬂ} L z Suplir;)

i=1 i=1

i=j =k
Ass(tree) = Z{p‘:ﬁ'} U Z Asstr;)
i=1 i=1
O

Usually, goal (7's argument tree is de-
noted by {r((7). When 5 = {f}, we say
tr{(7) is P's skeptical argument tree. When
S ={}, wesay tr((7) is P's credulous argu-
ment free,
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Theorem 4.1 For every stalement p, trip)
5 an argument free in program P under as-
sumption sel 5 iff p € Sexi( P, 5. Ll

Definition 4.6 Say argument tree tr{p) un-
der assumption set F is rational if
1. Ass{ir(p)INCon(FUSup(tr(p))) = {}
2. Vorevery q € Ass(trip)), g £» Min(FU

Sup(tr(p))). O
From this definition, we can see that

Corollary 4.2 Suppose t+(p) is a rational
argnment tree in program & under assuinp-
tion F, then tr{p) is also a rational argument
tree in program P under assumption set F
U sup(tr(p)). O

Definition 4.7 Rational Assumption Set.

Hay assumption set F is a rational as-
sumplion sct under program P, if for every p
€ F, p has a rational argument tree under F.
Say rational assumption set F is maximal ra-
tional assumption set, if for every statement
P, if p has a rational argument tree under F,
thenpC F. 0O

Corollary 4.3 Assumption set F is a ratio-
nal assumption set under program Piflf F €
Sext{ P, F);

Assumption set F is a maximal ralional
assumption set wnder program P iff F =
Sext (P, F)iff Fis P’s stable model. 0

Given a goal G, it may have no cne or
have many ralional argument trees under
certain assumption set. If it has many ra-
tional argnment tree, we think

1. It is impossible and impracticable to
list all the possible argument of G,

2. Given an argument tree tr(G) of (G,
There may be some anti-argument tree tr{—p)
of & such that p is either G or 1r{)'s sup-
porting node. In this case, we need some
standards to compare which argument is more
powerful.

3. In case 2, if tv(—p) is more powerful,
then in order to continue to support (7, we
need to find argument tree of (7 such that it
may be more powerful then tr{ —p) according
the precious standard.

4. Our ideal target is to find the most
powerful argument tree of (7,

Then what is the most powerful argu-
ment tree for a given goal G?7 In following
section, we will give the formal concepts of
defeat and so on. We argue that the most
argument tree for goal (¢ is the justifiable
argument tree,



4.3 Argument Theory

In the following we consider the relationship
among any two rational arguments on pro
gram I and standpoint s.

Definition 4.8 Directly Defeat

Suppose tr{pl), trip2)are two arguments,
we say {r(p2) dirccily defeats tripl ) if p2is
a counter argument of pI, and the top rule
of tr{p2) takes higher priorily over the top
rule of tripf) under standpoint s. |

Compared with the attack definition in
[25], we can see if tr{p2) directly defeats tr(pl)

under standpoint s, then {r{p2/) attacks tripi).

However it iz not true conversely.

Definition 4.9 Defeat

Suppose tr{pl), tr(p2) are two argument,
trees. We say tr{p2) defeats ir{p1) under
standpoint & if

1. tr(p2} directly defeats &r{pi) under
standpoint s or

2. trip2} defeat a sub-argnment tree of
tripi} under standpoint s . U

Definition 4.10 Suppose trip} is an argu-
ment tree of program P,

1. Wesay ir(p/is justifiable argument un-
der standpoint s, if there 1s no arguo-
ment trg) such that trig) defeats trp)

under s,

Say H-term p is a justifiable conclusion
if p has a justifiable argnment tree.

tr{p} is defeated under standpoint s, if
it is defeated by a justifiable argument

under s.

Say pis defeated if either p has no ar-
gument tree or p's every argument tree
iz defeated.

tr{p} is merely plausible under stand-
point s, if it is neither justifiable nor
defeated under s,
Say p is plausible il p is neither justifi-
able nor defeated

[
When standpoint s is empty, we simply

call argument {ree satisfies property X under
s by argument iree iree satisfies X.
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Example 4.3 Consider following program.
P={ fly(z:bird} — not ab{z: bird), -
flyfz:ostrich), ub{z:asfﬁch}}.
Snppose the relationship is estrich <,
bird, tweety < bird | assumption set F = {
v fly(x: astrich), ab{z:ostrich)}.
Then flyfztweely) is a justifiable conclu-
sion, flyfz: bird} is a defeated argnment.
O

=

Theorem 4.4 [f trip) is justifiable under

standpoint 5, then every sub-argument of trfp)
15 also pustifichle nnder s,

5

In this section, we give a brief comparison
with othevs work include Makoto Haraguchi’s
arder sorted feature legal reasoning system,
Ait-Kaci et al’s Login, Life as well as Prakken’s
argument theory work.

5.1 Haraguchi’s Legal Reasoning Sys-
tem

In paper [16], Makoto Haraguchi proposed
a symbol system in which the legal riles are
represented, A partially ordered set (&, <) is
assutmed, where 5 is the set of sort symbals.
A function symbol set F is also assumed, in
which every function [ 15 associated with a
sort specification: &1, .., 8n — & A predi-
cate symbol set P is also assnmed, in which
every predicate p 1 also associated with a
sort specification s1, ..., sn.

(&, <) correspond to our noun and verb
lattice {72, <) and (T'L, <;). We also as-
sume that Fset, being a lunction symbol set,
belongs to our noun set T2, Generally we
assume L < f < Fael <, T,

Every vanable appeared in [16] 15 asso-
ciated with a type. For example, if z is a
variable, then [:cﬁ a type.

We can see how translate a well-sorted
first order term t of [16] into ont y-terms.

Ll =z 2% lype is 5, [t]=s,

frans(t) =x: s

il feF, f:sl,,8n — s tl, ., tn
are well-sorled st order terms and
for i = 1,..,n, [ti] = si, then t =

flil,..,tn) is also a well-formed first
order term.

{'s translation is:

Comparison with others work



trans(t) = & functionname = f,1 =
trans(tl), .., n = trans(in))

Suppose L is a well-sorted term, § = { 1
Jt |zi is a variable and i is a well-sorted
term } is a substitution. Say # is a substitu-
tion of t, if xi appears in t, then [t:] < [zi].

Suppose @ is a substitution of well-sorted
term i, then 7 is also well-defined.

It is easy to prove that:

Theorem 5.1 Suppose @ is a substitution of

well-sorted levm t. Let n (8) = {:r:' : [.'m]

fﬂ?‘ﬂ-ﬂ-&{ﬁj | :E‘E:lll'rtl. e ﬂ}, then we have
trans(t8 J=trans{in(8). ]

So substitution of [16] can be equally re-
alized and expressed in our frame.

Suppose E is a set of well-formed terms,
we say B ocan be uniliable if there is a substi-
tution of E, # such that for every two element
i1 42 of E, (16 = 128,

Theorem 5.2 Suppose E is a set of well-
formed terms, if E' can be unifiable then the
W-lerm set {trans(t)jt € E} can also be unifi-
able. o

According to Makoto laraguchi's argu-
ments, every sort in 5 can be divided jntu
two categories. Ume is ovent type, corre-
sponding to our verb type, another s ol-
ject type, corresponding to our noun Lype.
For every sort type s, either & < evend or
g < object. In fact, he also introduce the
third object set, label sct. Tt is clear that Lis
idea about the concepts world is similar to
DIUrs.

He assumes further that: Fwvery event
sort should he associated with only vne func-
tion. For example, Contact s associaled
with a function contract-f:

person, person, abject — contract.

He also intradnce the label concepls, which

equals to our label set of L.
For example, term confract-f{ X person,
Yo person, Z: object) can be rewritten as:

contract-f{ agll= X:person, agt? = Yiperson,

oby = Z:object).

This form of writing is more close Lo our
i-term:

confact{j‘umﬁnnnmne = run Eu,f:!-f, agltli=
Xeperson, agl2= Yiperson, obj= Z:object)

Generally, a well-formed label term

{= flal = sl,...,an = sn) can be trans
furmed to our ¢-term:

trans(t] = s functionname = f,al =
trans(sl),...,an = trans(in)), where [f] =
5, and s is a event type (corresponding our
verb type). Hence il well-formed term t is
an event term, like conlraci-f { X:person, ¥:
person, Z: abject}, then trans(t) is a H-term
in our paper.

In [16], two predicates, altr and oc have
heen introduced. attr is called attribute pred-
irate, oc stated thal some statement has hap-
pencd. These two predicates can be easily
implemented in our frame work.

Suppose { 1s a H-term (also trne for -
term), say atbr(t, 2 : s) is true iff type,(I) =
& and V-t{l)=x.

Say oc(t) iff { is a fact of our program.
{Naotice that: We take H-term as true state-

ment ).
Dﬂm, we conclude the comparison through
following example:

Example 5.1 Suppose the event sort hier-
archy includes;

contract < justice-act < low fulonel <
human-act < event

A fact in the knowledge base is:

oclcontract- f{a, b, c))

then the query, a well-sorted gnal clanse
— ool X law ful-act) will answer *Yes' aud
give a substitution:

# = { X:lawful-act|contract-fla, b, ¢)}.

Above process can be easily implemented
in our system:

The verh sort hierarchy includes:

contract <, justice-act <, low ful-act
<y human-act <, event

A fact in the knowledge base is:

contract { functionname = contract-f, agtl=
o, uyll= b, obj= ¢}

or the query ? X:lawful-act, the answer

is ‘yes’and the substitution is:

y ={ X:dawful-act | contract{ function-
nume = contrecl-f, agfl -a, agi?=h, obj=c

Notice that contract! functionname =
condract-f, agt! =a, agt? —b, oby =c) <,
X: lawful-act. O

5.2 Ait Kaci et al’s Login and Life

Enowledge Representation proposed in this
paper has a close relationship with the work
of Login where Prolog’s first-order term is
replaced by y-term. An example of Lagin
program is:



student <, person; {peter, paul, mary}
<n student; { govdyrude, badgrade} <, grade;
goodgrade <, goodthing; {a, b} <, goodgrade;
{e, d, ft <. badgrade

Likes(x:person, x); likes(peter, mary); likes(

person, goodthing): got(peter, ¢); got (paul,
[li got (mary, a)

happy(z:person) — likes(z, y), got(z, y);

happy ( x:persan) — likes (z, y), got (v,
goodthing }.

There are two reasons mary happy, mary
likes goodthing and she got a goodthing (a
grade), mary likes herself and herself got a
good thing. In l[JE]'}, a detail procedure of the
resolusion has been given why we get = =

mary when we inquire 7 - happy(z).

We can rewrite above example in our frame.

Here we only write the logical rules:

happy(agt=z:person) — likes{agt=zx, obj=y:

T), got(agt=z, obj=y);
happyfagt=x:person — likes{agt=z, ahj=y:
person), gotfagl=y, obj=goodthing)

When we inquire ¥ — happy(agt = x :
person), obviously, we will met an answer
T = marey,

We can see that

1. In our work, we also take 9-term as
the first order logic term of Pralog. Further,
we introduce the order zorted inheritance in
predicates, and proposed the H-term con-
cept. We allow predicate symbols can have
non-fixed arity and using verb label to dis-
tinguish the argument,

2. Login gives an informal description
about its resolusion method through some
examples. The formal resalision procedure
of Login is unclear. In this paper, we use
Ly pe-based finite antomata describing o-term
and give a formal definition about normal
Program’s resolusion and get the complete
result.

3. More importantly, we introduce the
operator not into 50 program, and make
the SL program can deal with common sense
knowledge and reasoning. Further, defen-
siable reasoning, argument reasoning have
been introduced,

Recently, based on Login, a more pow-
erful experimental programming language,
Life has been proposed by Hassan Ait-Kae
and Andreas Podelski [10] [11]. Life is an
acronym of ‘Logic , Inheritance, Function
and Fauations”. In [10], three different syn-
tactic presentations about ¢:-term have been
proposed. They are normal OSF-term, rooted
solved OSF-clause and OSF-graph. Here,
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we show that our type-based finite automata
has a close relationship with OSF-graph and
they are semantically equivalent.

Definition 5.1 Refer Original Definition [10],
page 215, This definition is a simplified and
equivalent one,

A order-sorled feature graph on signa-
ture Xy =< Ly, Ty, ¥y =, is a finite directed
labeled graph g = (V, E, Ay, Ap, 200}, where
VoV, ECVxV, AV =1, Ag
E — L, x0 &V is a distinguished node
called the root, such that:

1. each node = of g is labeled by a non-
bottom sort, that is Ay(z) # L.

2. no two edges outgoing from the swme
node are labeled by the same feature, Lo, il
Ap(<z,y>)=Ap(< z,y >) theny =3

3. every node lies on u directed path
starting at the root (g 1s connected). ]

Obviously, if avte =< LV, 7 al), type >
is a connected type-based finite automata on
signature &, then we can construet a OSF
graph g-afaute)=(V, E, Ay, Ag, #0) such that:

L E={<ry>|{zy}CV, thereisa
[ € L such that =(x,!) = y}.

2. Ay = type.

3. Forevery < x,y >¢ F, Ag{< z,y >
} = I, here w(z,[) = y.

It is easy lo check that for every con-
nected type-based finite antomata auto, g —
alauto) is OSF-graph. Conversely, for ev-
ery OSF-graph ¢ = (V. E, Ay, Ag, 20), we
can also constriet a connected type-based fi-
nite antomata a-gig)= <L, V, x, 20, type =,
such that:

1. L=Ag(E).

2. type = Ay

3. Foreveryx e V1€ L, w(l,z) =y iff
< xy =€ Eand Ag(< z,y =) =1

Theorem 5.3 The correspondence

g-a: CAUS - D% apd

a-g: DEr o AL Ew

between OSF-graphs and connected finite
aulomata are bijections, Namely,

a-g & g-a=lg gpre, and

g-a o a-g= Lpx,

6 Prakken’s Argument The-
ory

In section b of this paper, we discuss the
argument framework in our legal reasoning



system. In fact, there are lots of works on
this aspect such as Pollack{1987), Prakken (
1991, 1993}, Vreeswijk({1991)and Simari and
Loui { 1992). Main feature on this aspect is
the modeling of inconsistency-tolerant and
defensiable reasoning as constructing and com-
paring argument for incompatible conclusion.
From the formal aspect, the main differences
among tﬂpﬁf research Ere: |

1. ifference in knowledge, cspeciall
the defensiable knowledge mf,lrﬁ’.,»,:fﬂiuu. Y

Muaost of these researches build their knowl-
edge langnage on FO language. But the
difference lics on the defensiable knowledge.
For example, in Prakken (1993), the defen-
siable knowledge is represented by defanlt
rule. In our frame, the knowledge is repre-
sented by extended order-sorted rule.

2. Difference in definition of incompati-
ble knowledge,

Generally, in non-sorted lngic system, it
is agreed that if p and —p can hoth be con-
cluded from a knowledge base, we say this
knowledge base contains incompatible infor-
mation, In order sorted knowledge hase, es-
pecially in our frame work, the situation is
a little different becanse of the degree of in-
formation completeness of a statement (H-
term). For example, Jim kit Tom al room
one and Jim does not kit Tom on Sunday can
respectively conclude Jim kit Tom and Jim
does not hit Tom. Since the later two con-
clusions come from different, complete and
conistency information, so we do not regard
them as incompatible conclusions, Henee,
although fact set A = Conf{ hit {agt = Jim,
abj = Tom, place = room-one), hilfagi= Jim,
obj= Tom, time= sunday)}) contains hif(
agt = Jim, oy = Tem/, = hil {agt = Jim,
obj = Tom), A is still consistent.

3, Difference in argument definition,

An argument shonld be defined rational.
Here rotional means difference in different
paper. In our opinion, an argument tree of
program I? and assumption set F is rational,
{well-defined) if:

Every defanlt assumption should neither
be in the conclusion set of assumption and
supporting node nor contains more informa-
tion then the most compleie {minimal H-
term) statement of assumption and support-
ing node. That is:

Ass(tree) 0 Con(F ) Sup(tree)) # P

For every g € Ass(iree), g £ Min(F U
Supl tr&[‘?}]] .

It should be also noted thal our defi-
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pition about defeat does not conclude the
‘Noating’ conclusion. For example, in pro-
gtam P={ ce—p,e—q p+~—not ¢ g
«— not p}, ¢is a justifiable conclusion under
standpoint {}.

4. Difference in the classilving of argu-
mient tree,

Prakken classify the different kinds of ar-
gument trees through justifiable argument,
defeated argument and plausible argument.
We agree to his proposal and refine the con-
cepts in our frame work. The motivation he-
hind these refinement is that the argnment
process is the process to reach a stable con-
clusion. We prove that the stable conclusion
of the program must be the justifiable con-
clusion nnder empty priority.

7T Conclusion

Now we couclude our paper. Briefly, we re-
view the contents and main conclusions of
this paper.

First, we think order-sorted logic pro-
gramming is a powerful and profit tool to
deal with legal problems. Among the many
approaches of SLP, we argue that label-based
SLP, that is #-term based SLP, is more proper
because of its knowledge representation abil-
g

We analyze the o-term theory through
Lype based I{ru't.e automata and analyze the
glh and lub algorithms. The complexity is
nearly liner of input ¢-term’s length, this
conclusion is proved by Ait-Kaci. Later, we
prove that the connected type-based finite
automata is equal to the concept of Life's
OSF-graph.

Then we extend the label based approach
to the predicate set and proposed the H-
term concepl. H-term helps us to express
the complex statement such as Tom hit Jim
af classroom one on Saturday and hence get
Tom hit Jim at classroom ene. We analyze
the logical relation between these complex
statement, and get the priorities according
to the information completeness. Simply, we
claim that a complete statement can con-
clude incomplete statement.

Based on these discussion, we form the
new SLP program, which a llorn SLP is a
SLP without operator not , and an extended
SLI? program contains both two negation op-
erators, negation as failure not and nega-
tion as logic =. We first discuss the Horn
SLP program’s denctational and operation



semantics, then extend it to extended SLP
program through Gelfond and Lifschitz’s sta-
ble model.

Then we discuss the priority knowledge,
standpoint, among legal rules. By stand-
point, we can Clil.tﬁllﬁet% arguiment iuto Lhree
categorics, jusltifiable, defeated and plavsi-
Ble. L is casy to see that, under standpoint
{}, a stable conclusion must be a justifiable
conclusion.
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A Samples of Query

We assume that for goal 77, if answer is no,
then & ¢ Scxt[P) elze suppose the return
substitution is #, then (8 € Sexi(P). Here,
we do not consider the Tl-variable substitu-
tion.
The relationship hetween nouns are:
Jim <, person, Tom <, person, person
<y antmal, oatrich <, hird, fweety <, bird,
bird <, animal, Tom <, japanese, Tom <,
male, japanese <, person, male <, person
The relationship hetween verbs are:
fy-by-wings <<, fly, fly <, move, kill-by
gun <, shot, Ell-by-gun <, kill, shot <, ac-
tion, kil <, aclion , hil <, welion
I'ollowing are some simple program and
inguire examples,

Lo fly(l — @ : bard) ? fly(! = z : animal)
Answer is: Yes, @ : animal/x : bird

< iyl = x o bvd) T fly(l = = ¢ tweety)
Answer is: Yes.

o]

el

v Tomi) Answer is: Yes,

- hatlagt = v Jim, oby = v 2 Tom, place =
z 1 class—room) Thitlagt = x @ Jim, obf =



4, hit(agt = = : Jim), hat(obj = y : Tom)
Thit{agt = x : Jim,o0bj = Tom) An-
swor is: No.

5. hitlagt = x : Jim,0bj = y : Tom)
Thitlagt = x : Jim), hit{ab; = y :
Tom) Answer is: Yes,

6. flylagt = x : bird) Tmove(agt = x :

trird) Answer is: Yes

7. move(agt = x : animal) ? flylagt =
z :amimal) Answer is: No.

8. = flylagt = z : ostrich), ?—fly — by —
winglagt = x @ ostrich) Answer is:
Yes,

9. know(agl=e:Muary, object = kill-by-gun(
agl =Jim, obj =y:Tom})
fknow( agt= z:person, vbject= kill{ agi=
Jim, obj= y:person)) Answer is: Yes,
z:person / x:mary, yoperson /oy Tom

10. know( agl= z:person, obj= fly( agt=

y:bird])
Phnow( agt= a:Jim, objeci= fly( agt=
y:lweely)) Answer is: Yos,

11. know{agt=x:person, obj=fly{ngt=y:bird})
fhnow(agl= r:animal, object— fly( agt=
yranimal) )

Answer: Yes, & = (x @ arumal/z :
person, y : animal/y : bird)

Phnow( agt— r:person, objecl= movef
agl= y:bird))

Answer: Yes

fknow( agt—= z:animal, objec! =move(
agt= yiestrich})
Answer: Yes, # = (x :
person)

antmal [z

fknow( agt= a:persen, object =fly-by-
wings {agi= y:bird))
Answor: No,

B A Semantics of i)-term
As H. Ait-Kaci [9]'s doing, we give here a

‘type-as-set’ denotational semantics of the
Pe=term.
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Suppose U is the universe of objects where
every type symbols { of T, is associated with
a subset of [,

Suppose [ is the interpretation, snch that:

LT, <, >V C>

I[T) =1, I[1] ={} ,,,,,, (1)

For every s, €', we have

s <, t=1I]s] C I[!t!’ ...... {2)

Furthermore, if glb and lub exist, it is
desired that

Iiglb(s, t)| = Is| N 1],

Iglhis, t) = Igs] U . 3)

For every label, we assume that every la-
bel is associated with a function of following:
g‘l-{] =07

or every label sequence |, we define:

é [¢] = id, id is the identification function
on 1T,

Il = I[l|.0|e], here | € Ly, a is a
seguence of labels,

The we define the denotational seman-
lics of ¢ term such that every y-term t is
associaled with a subset of 1,

Firsl we define the semantic of -term
wilhout variable,

If wili= t1, ..., In—= in}) ={z & [fv) |
i)z e Ift1), ..., Ifln)z C Iftn)}. .. (1)

Suppose {is o ¢-term with variable and
t" is the i-term deleting all variable of t.

Ift]={ z € Ijt"] | For every 1, {2 € do-
main(t), if V(1) = Vi(i2) then [[1]x
I [f?{x}. ...... (a)

t s easy Lo prove that:

Proposition B.1 Suppose [ is an interpre-
tation, If I satisfies the conditions (1) and
(2) then

for every
Il o f[t?f,

w-term 1,22, if £l < 2 then
(]

C Algorithms

Plauto) is aulo psifauto).

Procedure anto-psi{< L, V, w, o0, fym :.}_
hegin
callinuto-psil{{}, xl, < LoV w20, fype =)
and.

Procedure anto-psil(X, y, < L, V.=, &l type =)

begin

if ill € X then return y else

egin
list e= mil;
For every l & I do
if (. y) is defined then
ligt «— append(list,
l =aute-psid{ X Uy, pd{l, p), awto))



return{T @ typexist)
nd

Procedure pﬂ‘i'l —antofl);
begin
call psi-autol({}. t)
end
FProcedure psi-autol(X, t);
begin
If £ is & simple ¢-term, assume £ =z 5
then
if x € X then return uil
clso return < {}, {z}, (< o8 =} r >
clse assume ¢ =2 : 51 =t1,...,In = tn)

In}.{=}, §| {< i,z roat

vm‘iabﬁ’:fﬁj | R g T }} 4
For every i=1 to n do
i pai — a-ufn(DX SEFH .:1] is nob nil Sup-
pose it is < A, T, 0, F =, then
init < dreih 1A, wndt () VE, indd( 3)U
Cdnat{4) U D andt(5) .
Re;u.rn[init}:

init —< {11,...,

*'-iuppmr Autol =< L, 51,71, 81, Typel >
JAuto2 =< L, 52,72, 52, typel > are type-
based finite automata of -term £1,#2, how
can we calculate Aulod =< 5§, L, 7, 50, type =
such that Autod is the ¢-term 43 = glb(t1, £2)'s
auntomata?

Firat we assume:

1. Fwvery two finite automata states are
disjoint.

2. Ewery stale can be regarded as the
fﬂllﬂwmg structure:

record

tag: variable name

type:

subnode: < label, pointer to the corre
sponding variable

core: used to point the core relation

end

e T R —— —_—— =

Procedure GLH(s, t):
airs +— 5, L >
hile pair= # {} do
bogin
remove < @,y = freon pairs:
1 e— Fined|ah;
v +— Fird
ifau e “EIEL
begin
@ = wiype il vtype:
begin
UNION{u, v, w);

e S S )
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w.iype &= 7
gn:r each | & labels(u) U labels(v)
o
begin
ifw=uv
then Carrylabel(l, u, v)
else Carrylabel(l, v, u);
if | € labels{u)r Iahr’f.ﬂ:{n}
then Pairs « Pairs U
{< subterm{u, ), subterm(v, 1)}
end
end
end
end
return({Rebuild( Find(s)))
end
Find(x)
begin
list «— nil;
while z.core — nil do
begin
add ¥ to the list;
X — I.core
end
For each w on list do w.core — x:
return x

UNION(i, j, w

assume count{root(i)) < count{root(j))
otherwisce interchange 1 and j;

hegin

large ¢ vool(4);

small «— root(1);

small.core — large;

connit{large) < count(large} + count(small)
name(large) « w;

root{w) «— large

end

Procedure Carrylabel(l, u, v);
hegin
if | & lubels{v)
then v.subnodes «—
U< I, Find(subterm{u,{)} >}

Procedure Rebuild(s);
begin
classes U:L'ﬂ.rl'n!u'r'm[a']{and[m}}:
for each x in classes do
ID{x) — Newtagsymbal;
for each x in classes do
begin
node — Newtagnode;



with node do
]J(: .Il
node.id + TD{x);

node.type — ziype
subnodes — {< fIDl:Fmd{Jﬂ =

| < I,y =€ zsubmodes};
node.core - ml
end
end

end
return (ID{Find(s)))
end

I Inw tn {'nmputf- twn Wf-it detined -terms
least upper bound?

Procedure LUB(s, t);
begin
Pairs — (s, t);

while Pairs £ nil do

begin
remove (%, ¥} from Paris;
u — Find(x);
v Find{y);
ifu#uw dn
begin

o wiype Vordape;
for every label | & u.label do
begin
if | & v.abel then
move l-subterm from u
else Pairs «— Pairs U
{< subterm(l,u), subterm{l,v) >}
end;
u.ilype +— T}
V.COTE 4= 1]
endd
end
end
Rebuild{Find{u)}
end



