ICOT Technical Report: TR-904

TR-904

Reference Loop Management in a Distributed
KLIC Implementation

by

K. Rokusawa, T. Chikayama,

T. Fujise & A. Nakase

Januwary, 1995

© Copyright 1995-1-17 1COT, JAPAN  ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F (03)3456-319] -5

I‘: OT 4-28 Mita [-Chome

Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology



Reference Loop Management in a
Distributed KLIC Implementation

Kazuaki Rokusawa Takashi Chikavama Tetsuro Fujise Akihiko Nakase
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

{rokusawa, chikayama, fujise, nakase|}@icot.or.jp

Abstract

This paper describes the management of interprocessor reference loops in a distribated
KLIC implementation.  ‘Uhe reference on s reference loop does not have dereferenced
results, and the simple forwarding of a read request may not terminate. In a distributed
KLIC implementation, reference loops can be created by unification, and remote value
fatch operations can create Iut}]m as well. A value 'l‘.l[!l]i]lg selieme whicly can cope with
reference foops crcated by unification, and a collection seheme which can reclaim loops
created by remote value fetch are presentad.

1 Introduction

This paper describes the management of interprocessor reference loops in a distributed KLIC
implementation [1].

A reference loop is a closed chain of references, The reflerence on o reference loop does not
have dereferenced resulls, and the simple forwarding of a read request message along the loop
may not terminate. Although several collection schemes which can recloim cyelic structures
have been proposed, they are costly and operations are complicated |2].

In previous implementations of KL1 [3] on the Multi-PSI and PIMs 4, 5|, much work has
been done to avoid loop ereation by unification. Some attribite is attached to each variable
and external reference; and the possibility of loop creation is examined using them before
binding [6]. The unifier which performs unification involving an external reference is thus
different from the one for intra-processor processing. Although cyclic structures cannot be
reclaimed, no problems caused by cyclic structures have been reported.

In a distributed KLIC implementation, exactly the same unifier as the one for the se-
quential core [7] is used to perform unification invelving an external reference, becanse the
implementation iz designed to provide a portable system. Since the unifier allows binding
of a variable to any reference pointer, loops can be ereated by unification. In addition, re-
mote value fetch operations can create loops as well. To overcome the problems above, new
schemes for value fetching and loop collection were invented. The value fetching scheme can
cope with reference loops, and the collection scheme can reclaim reference loops created by
remote valne feteh operations.

This paper is organized as [ollows, Section 2 defines external references. Creatiom of
interprocessor referenee loops is deseribed in section 3. Solutions to cope with reference loops
are presented in section 4.



processor i processor | processor i processor j
— export table M export table e
. vanapig . Yaria
I id | —]—- EX ] _11

<j,id> 7 ++ |

<, 1d>

(1) Sending an exref (D {2} Receiving an exref [D

Figure 1: Generation of an external reference

X expart table
| —fEx referenced
T E
I I export table \l
¥
[

Figure 2: Creation of reference loops by unification

2 External References

When a message is sent to another processor and the message contains references o
variables, references across processors conscquently appear; these are external references (fig-
ure 1).

To make it pussible to perform local garbage collection independently, each processor
maintains an export table to register all lacations of cells which are relerenced from outside.
The entries in the export table are ones of roots of local garbage collection. An external
reference is represented by a pair < proc,ent >, called exref ID, where proc is the processor
number in which the referenced cell resides, and ent is the entry number of the export
table. When externally referenced cells are moved as a resull of local garbage collections, the
references from the export table entries are updated to reflect the moves, while the exref IDs
are not affected.

3 Creation of Interprocessor Reference Loops

In a distributed KLIC implementation, interprocessor reference lnops can he ereated hy
unification and remote value fetch. This section presents the creation of loops in both cases,

Loops Created by Unification

In a distributed KLIC implementation, loops can be created by unification, because a unifi-
cation scheme of binding a variable to any reference pointer is employed. Even if a variable
may be referenced from outside, the unification between an external reference and the vari-
able is done by simply binding. Therefore, interprocessor reference lonps can be created Ly
unification {fizure 2).



(1} Before fetehing

export table
referenced
export table

referenced

b4
L —fex
b |
EX
vl
Ret
expart table

freadiX,Rat) —=

return address

—__|

(2} Generating a return address and semding a §read message,

export tabie
referenced

Feply
Rat

Ret

port table

4

return address

{3) Generating and hooking a reply record.

export table
referanced

fanswer_valua
( Tt. ,valua}

return address

-—

—| value| -l-r:,;;:
i i
JBet,

(4] Sending back an ¥answer_value message,

export table

freleasa(X)—

' export table

| referenced
I—

(3} Release of an external reference

Iigure 3: Fetehing a value from remote memory



X export table

EX referenced
" 5w
Y Rat
export table
return add res;;- T T

(1} A goal is waiting for the value of either X or Y.

export table
referenced

1

¥ )
_ - export tatle

return address

{2) The goal can be resnmed without receiving an %ansver_value message,

Figure 4: Creation of reference loops by remote value fetch

Loops CUreated by Remote Value Fetch

When a goal reduction requires the value referenced by an external reference X, the following
read request message is sent to the processor referenced by X,

Yread(X,Ret)

Ret is o newly gencrated external reference to X, which indicates the return address for the
response of the fread message. The goal waiting for the response is hooked to the external
reference (ligure 3 (1)(2)).

When a kread message arrives at the referenced processor and the referenced cell is a
variable, the return of the value is suspended. A record called a reply record which memorizes
the return address is generated and hooked to the variable. When the referenced cell is
an external reference with reply records, the same operations are performed. The original
external reference and the corresponding reply record form an interprocessor reference
loop; the extcrnal reference points to the record, and the record points tu the external
reference as well (figure 3 (3)).

When a goal waiting for the response of the §read message resides at the external refer-
ence, the loop is active. It is expecled Lhat the referenced cell is instantiated with a value and
the loop is consequently reclaimed; The reply record associated with the cell is released and
an Yanswer_value message which carries the value is sent to the return address memarized:
When the %answer value message arrives, suspended goals arc resumed and the original
external reference is released (figure 3 (4)(5)}.

However, when the goal is waiting for the value of one of a set of variables and external
references, the goal can be resumed without receiving the response (figure 4). In addition, the
instantiation may not be performed, and the loop eventually becomes garbage which cannot
be locally collected. This situation is common in executing nondeterministic or speculative
computations. Therefore, even correct programs can create garbage loops.



goal

. S —
EX {E1 EX EX *"'
Y

Rt :Bﬂt"l
£ S | S b

R )

(2) An Yanswer_value message 1s reburned along Lhe same patl.

Figure 5: Hooking Reply Records Scheme

X X X NI

EX « EX : EX i
i T
fread(X, Ret) —

o=C0-1 |

(1) Mo reply records are hooked,

I 1! g

[Ex ] EX EX EX "rr-—-l-irii—-lil.luii;l

T e

[2) An Yanswer_value message 15 returned directly.

Figure §: Using a Counter Scheme

4 To Cope With Reference Loops

This section describes solutions to cope with reference loops mentioned in the previous section.

Loops Created by Unification

In this subsection, a value fetching scheme which can cope with reference loops is presented.

On receiving a %read message, if the referenced cell is an external reference X' without
reply records, the Yread message is forwarded to the processor referenced by X°. The return
address is not changed so that an Yansver _value messapre can be returned directly, However,
simply forwarding a Y%read message may result in a non-terminating operation, since the
¥read message may go into an interprocessor reference loop which consists of only external
references with no reply records,

If the value fetching operation is reoriginated on receiving a ¥read message, that is, if a
reply record is generated and hooked, and a Yread message with the return address initialized

on



1 expart table
——= EX referenced
Ret * _'_"I reply
Rat
fcancal(X Ret) —=
export table
I return address
(1} Sending a Ycancel message.
I _ ] expart table
EX referenced -
Ret _'_"I_..__._..J "{:wr;’.
\Ret;
export table +— Yreleasal(Ret) :
L
_____ B
return address

(2) Release of the reply recoed.

Figure 7: Reclamation of reference loops created by remote value fetch

is sent, termination of forwarding is guaranteed. Even when a Yread message goes into a
reference loop, it is guaranteed that the message reaches such a processor where the referenced
cell is an external reference with reply records. However, this hooking reply records scheme
has the following serious disadvantages (fignre 5):

¢ It is necessary to generate useless reply records even when a reference loop does not
exist;

* An Jansver value message cannol be returned directly; it is returned along the same
path as o fread message passed through.

To cope with reference loops, we have introduced a counter for a %read message which
indicates the maximum number of forwardings. The value lelehing scheme using the counter
is called a using o counter sclicme.

An original Yread message is sent with the connter initialiced. When a referenced cell is
an external reference with ne reply records, the value of the counter is checked. [If the value is
maore than vue, the Yread message is forwarded with the counter decremented. If the value is
one, the value fetching operation is originated; a reply record is generated and hooked, and a
hread message is sent with both the connter and the return address re-initialized (figure 6).

Setting the initial valuc of the counter at the number of processors, it is expected that
no uscless reply records are generated and an Yanswer value message is always returned
directly to the originul cxiernal reference.

Loops Created by Remote Value Fetch

This subsection describes a scheme which can reclaim reference loops created by remote value
fetch operations.



If an external reference that has already sent a read request has neither associated goals
nor reply records waiting for responses, the read request can be cancelled. Cancelling a read
request leads to the release of the reply record which memorizes the return address of the
cancelled read request, and the loop can eventnally be reclaimed.

Reclamation of reference loops is performed as a part of local garbage collection. Details
of the operation are as follows, On each external reference X that has alrcady sent a read
request but has ncither associated goals nor reply records waiting for responses, the following
cancel request message is sent to the processor referenced by x.

Yecancel (X ,Het)

Ret is the return address which indicates the read request to be cancelled.

When the %cancel message arrives at a processor, if the referenced cell has a reply record
with the same return address, the record is released and a %release message is sent back to
the return address (figure 7). If the cell has a concrete value, nothing is done. This is for the
ease where an %answer value message has already been sent.

5 Summary

In a distributed KLIC implementation, interprocessor reference loops can be created by both
unification and remote value fetch operations. To cope with reference loops, we invented the
following schemes,

s A remote value fetch scheme which ensures termination of forwarding a read request.

e A collection scheme which can reclaim reference loops created by remote value [etch
operations,

The remote value fetch scheme is based on counting the number of forwardings. Collection
of reference loops is performed by cancellation of read requests.

References

[1] K. Rokusawa, A. Nakasc, and T. Chikayama, “Distributed Memory Implementation of
KLIC,” Proc. Workshop on Parallel Logic Programming and ils Programming Environ-
ments, Technical Report CI8-TR-94-04, University of Oregon, pp. 1h1-162, March, 1994,
Alse [COT Techunical Report, to appear.

12] D. R. Brownbridge, “Cyclic Relerence Counting for Combinator Machines,” Proe. Fune-
tional Progrumming Languages and (lomputer Archileciure, LNCS 201, pp.273-288,
1985,

[3] K. Ueda and T. Chikayama, “Design of the Kernel Language for the Parallel Inference
Machine,” The Computer Journal, Vol.33, No.6, pp.494-500, 19490,

(4] K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Hokusawa, and T. Chikayama, “Distributed
Implementation of K11 on the Multi-PSI/V2," Proc. International Conference on Logic
Programming, pp.436 451, 1989,



[5] K. Hirata, R. Yamamoto, A. Imai, II. Kawai, K. Hirano, T. Takagi, K. Taki, A. Nakase,
and K. Rokusawa, “Parallel and Distributed Implementation of Concurrent Logic Pro-

gramming Language KL1," Proc. International Conference on Fifth Generation Com-
puter Systems, pp.436-459, 1992,

[6] N. Ichiynshi, K. Rokusawa, K. Nakajima, and Y. Inamura, “A New External Refer
ence Management and Distributed Unification for KL1," New Generation Computing,
Ohmsha Ltd., pp.159-177, 1990,

[7] T. Chikayama, T. Fujise, and D, Sekita, “A Portable and Efficient Implementation of
KL1," Proc. International Symposium on Programming Language Implementation and
Logic Programming, LNCS 844, pp.25-39, 1994.



