ICOT Technical Report: TR-0897

TR-0897

Implementation of Parallel Database
Management Svystem on KLIC

by

M. Kawamura & T. Kawamura

Movember, 1994

@ Copyright 1994-11-10 [COT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F (03)3456-3191--5

|['O 4-28 Mita 1-Chome
Minato-ku Tokyo T8 Japan

Institute for New Generation Computer Technology

Implementation of Parallel Database Management System on KLIC

Moto KAWAMURA, and Toru KAWAMURA

lustitute for New Generation Computer Technolagy (1COT)
21F. Mita-Kokusai Bldg., 1-4-28, Mita, Minato-ku, Tokyo 108, Japan
eemail: {kawamura, toru }Gicot.or.jp

Abstract: A purallel database management system (DBMS) called Kappa is developed in order to
provide efficient database management facilities for knowledge information processing applications, The
data model of Kappa is based on a nested relational model to treal complex structured data efficiently.
The system is written in KL1, and works on parallel and/or distributed environments of conventional
machines with KLIC. In this paper, we give an overview of Kappa.

Keywords: Parallel DBMS, Concurrent Logic Progranuming Language

1 Introduction

[the Japanese FGCS (Fifth Generation Computer Sys-

tem) project. many knowledge information processing

systems (KIPSs) were developed under the framework of
logic and parallelism. In these systens, R&D of databases
and knowledge-bases[9] aims at an integrated knowledge-
base management system {KBMS) under a feamework of
deductive object-oriented databases (DOODs). Kappa !

13 A database management system (DBMS) loeated in

the lower layer and is also the name of the project. The

objective is to provide database management facilitics
for wany KIPSs. In the Kappa project, we developed

a sequential DBMS, Kappa-If]8] and a parallel DBMS,

Kappa-P[3. Doth systemns adopt a nested relational
wodel, and rin on experimental hardware and software
environment developed in the FGCS project. We have
been developing a parallel DBMS called Kappa, which
works on parallel andfor distributed environments on

conventional machines, to make il easier to adopt our
research resnlts,

The following is a short description of Kappa-1I, Kappa-

'Enowledge Applicatiou-Ogiented Advanced Database Man-
agement System

P, and Kappa. Kappa-II is written in ESP, which is a
kind of prolog with object-oricnted features, and runs
on the P51 sequential inference machine with the STM-
POS operating system. The system showed us that our
approach based on the nested relational model is suffi-
cient for KBMSs and KIPSs, for instance natural lan-
guage processing systems with clectronic dictionaries,
proof checking systems with mathematical knowledge,
and genctic information processing systems with molecu-
lar biological data. Kappa-P is logically based on Kappa-
Il with the configuration and query processing extended
for a parallel environment. Kappa-F is written in KL1,
which is based on FGHC, and runs on PIM parallel
inference machives with the PIMOS operating system.
Kappa is based on Kappa-P, modified to be snitable
for parallel and/or distributed environments on conven-
tional machines with KLIC, that is; as a portable imple-
mentation of KL1.

We give an ontline of Kappa in Section 2. We give an
overview of data placement in Section 3, and Section 4
covers implementation issues.

2 Outline of Kappa

Our cnvironment containg a variety of data aud knowl-
edge with complex data structures. For example, molec
ular biological data treated by genetic information pro-
vessing systems inclndes various kinds of information and
huge amounts of sequence data. The GeuBank/HGIR
database[2] has a collection of nucleic acids sequences,
physical mapping data. and related bibliographic infor-
mation, and the amount of data has heen increasing ex-
ponentially. The sige of the sequence data ranges from a
few characters to 200,000 characters, The data becomes
longer as genome data, and is analyzed gradually: the
size of a human genome sequence is about 3.000,000,000.
The conventional relational wodel is not sufficient for ef-
ficient data representation and efficient query processing,
Moraover the rapid increase of data will require more
processing power and secondary memory to manage it.

Such situations requires a parallel computational en-
vironment with database management facilities provid-
ing a data model which can treat complex structured
data efficiently, and connternmeasures for huge amounts
of data. We have two solutions to these requirements,
One is & parallel enviroment using PIM machines, the
PIMOS operating system, and the Kappa-P DBMS in
KL1, which was developed in the FGCS project. An-
other is a parallel and/or distributed environment for

conventional machines with KTIC, and the Kappa DBMS,

which we have developed.
Some features of Kappa are listed below,

Nested Relational Model

As there are various data and knowledge with complex
data structures in our environment, the conventional re-
lational model is not appropriate for efficient data rep-
resentation and efficient query processing. In order to
treat complex structured data efficicntly, we adopt a
nested relational wodel. The nested relational model
with & sot constructor and hicrarchical attributes can
represent complex data paturally, and can avoid unnec-
essary divisions of relations. Semantics of nested re
lations matehes a kuowledge representation language,
Qurxote(7] of KBMS. There have heen other nested
relational models[5, 6, 1] since the proposal in 1978[4].
Specifically, although syntactically the same, their se-
mantics are not necessarily the same. Operations on

ra

ILPS'}M4: Design and Implementation of Parallel Logic Programming Systems

nested relations are extended relational algebra, which
is a simple extension of relational algelra.

The model is the same Kappa-P's data model which
shows us to be able to handle complex stroctured data
efficiently, but the implewentation of the model is a little
different. Kappa-I' has two kinds of operations: primi-
tive commands and a query language based on extended
relational algebra. To reduce the code size of the sys-
tew, Kappa provids primitive commands only. Primitive
commands arc the lowest operations for nested relations
based on tuple ideatificrs. Term is one of the data types
in both systems, because term is a primitive data struc-
ture in KL1. While the character code in Kappa-P is a
2-byte ende because this is usual in the PIM and PIMOS
environments, the character code in Kappa is a 1-byte
code becanse this is wsual in a KLIC envirenment.

Configuration

Kappa s constructed of a collection of element DBMSs
which manage their own data. Each element DBMS con-
tains full database management facilitics, and manages
a sub-database. This is called shared nothing architee-
ture. A global map of relations is managed by element
DBMSs called server DBMSs to improve availability, and
to decentralize access to it. Element DDMSs with the
cxception of server DBMSs are called local DREMSs.

Interface processes are created to mediste between
application programs and Kappa as a collection of ele-
ment DOIMSa, and receive queries as messages in KL1, A
query is processed by some element DBMSs, in which re-
lations accessed by the query exist. To allow the element
DBMSs to coaperate, Kappa provides distributed trans.
action mechanisms based on the two phase commitment
protocol.

Data Placement

Placement of relations is the responsibility of the database
desiguer, because it shonld he deterpined in considera-
tion ol relationships among relations and kinds of typical
queries to the database. Kappa provide three kinds of
data placement: distribution. horizontal partition, and
replication.

In order to use parallelism, relations can be located in
some element DAMSs. The simple case is distribntion of
relations like distributed DDMSs. When some queries to

ILPS'04: Design and Implementation of Parallel Logic Programming Systems 3

a relation need large processing power, the relation can
be declustered as a horizontally partitioned relation and
located in svie clement DBMSs. For example, a molec-
ular biological database including sequence data which is
increasing rapidly requires homaology search by a pattern
valledl motif. If & relation is frequently accessed in any
queries, multiple copies of the relation can be made and
located in some element DBMSs. The replicated relation
s implemented &s a global map only.

3 Data Placement

Inorder to obtain larger processing power, relations should
be located in different elemnent DBMSs. Kappa provides
three kinds of data placement: distribution, horigontal
partition, and replication

Distribution

Distribution of relations is as for the simple case ol dis-
tributed DBMSs. When relations are distributed in some
element DBMSs, larger processing power is obtained,
hut communication overheads are generated at the same
time. The distribution of relations is the responsibility
of the database designer,

A query to access these relations is divided into sul-
queries for some clement DBMSs by an interface pro-
cess, and sub-queries are processed as distributed trans-
actions,

Horizontal Partition

A horizontally partitioned relation, which is a kind of
declustersd relation, is logically one relation. but com-
prises some sub-relations containing tuples according to
some declustering eriteria. A honoutally partitioned
relation s cffeetive, if some queries to the relation need
large processing power. or Lhe relation is too large to
treat in an element DBMS. Horizontal partition of rela-
thoms s also the responsibility of the database desiguer,

A query to access horizontally partitioned relations
is converted to sub-gqueries to aceess each sub-relation.
Eacl sub-query is processed in parallel in different el-
ement DBMSs in which the sub-relations exist. Espe-
cially, when the query is an woary operation or a bi-
nary operation suitahle for the declustering criteria, each

sub-queries can be processed independently and commu-
nication overheads among element DEMSs can be disre-
garded. In other cases, communication overheads among
element DBMSs cannot be disregarded, and it is neces-
sury to convert the queries to reduce the averheads.

In primitive commands, a tuple filter is taken as an
argument of a read operation. The read operation in-
vohes filters for cach sub-relations and a merger for guth-
ering output of the filters (Figure 1).

Figure }: Read operation with a filter

Replication

Replication of a relalion enables s to decentralize access
to the relation, and to improve availability. A global
wap managed by server DBMSs is the only replicated
relation,

Kappa has two kind of relation identifiers: global re-
lation identifiers and local relation identitiers. Every re-
lation has it own local identificr managed by an element
DBMS in which the relation exists. Some server DBMSs
wianage global relation identifiers as a global map cen-
trally, frecing the identifiers from element DBMS infor-
mation in which the relations exist. The centralization
does not affect performance, because the information is
only referred to find target element DBMSs from rela-
bion identificrs at the beginning of query processing, and
is modified when global relations are created or deleted.

We decided to implement the replicated global map
based on the weighted voting protocol, becanse the pro-
tocol satisfies the above requirements, 1s not complicated

£ ILPS'94: Design and Implementation of Parallel Logic Programming Systems

to implement, and does not work incorrectly in any kinds
of failures. A read operation for the global inap is trans-
lated to rewd operations for randomly selected server
DBMSs, the nmuber of which is one or two over the
read vote. The operation is completed when the num-
ber of read vote results are received. A write operation
for the global map is translated to read operations for
randonly selected server DBMSs and write operations
for server DBMSs replying to the read operations. As
the lalter write operations are performed by nsing dis
tributed transaction mechanisins based on the two phase
commitment protocol to make implementation simple,
failures in the write operations are not treated by the
weighted voting protocol, but by the two phase commit-
ment protocol. This is nol a big problem becanse the
reason for huplementing the replicated global map is to
irprove availability and to decentralize access to jt.

4 Implementation Issues

Element DBMS

Au clement DBMS containg full detabase management
facilities, and aceepts primitive commands, An clement
DBMSE is regarded as parallel processing based on a shared
HILTLOTY.,

4.1

Parallel Processing of Primitive Commands

Prinutive commands for nested relations are processed
by varions parallel processes: for instance, operations on
setg and tuple stroams driven on demand with double
buffering.

A sel is a collection of tuple identifiers, and is ob-
tained by restriction operations on a relation. So a set
corresponds to sub-relation of the relation, operations on
sets: wmion, inlerseetion, and difference can be defined.
A tuple identifier ropsists of a primary tuple identifier,
which specifies a whole tuple, and sub-tuple identifiers.
which specily some occurrences of set values in the tuple.
The operations ou sets are processed on tuple identifiers
without tuples. In order to parallelize set operations, a
set is parkitioned with the range of tuple identifiers.

The way tuples are treated among internal modules
of a DBMS is important. For examnple, a restriction op-
eration without using an index on a relation is performe:l
by two processes. a process to get the tuples of the rela-

tion, and a process to test them to satisfy a restriction
formula, connected by a tuple siream. This is a typi-
cal KL1 program with a gencrator and a consumer. In
a simple implementation of the program, the gencrator
process generates one data contained by a cons cell, and
the consumer process receives the data, triggered by the
cons cell. If these two processes are not scheduled prop-
erly, the generator process will exhaust main memory.
There are some ways to prevent this, for instance, to ex-
ccute the generator process at a lower priority than the
consumer process, or to change the direction of triggers.
That is, a consumer process creates a cons cell to request
& generator process to generate one data, and the gen-
erator process wails for the cons cell and then sets one
data into the car of the cons eell.

Tuple streams in Kappa are based on the latter. In
order to reduee suspensions of goals, a generator process
passes Lhe nser-defined number of tuples as a list of tu-
ples at a time. Of course, the head of the list is passed
when the lust tuple 13 generated. to reduce suspensions
in the consumer process. A tuple streamn is expressed as
follows: [[Tuplery Tuplesg, - Tupleyy).- - [Tuplean,
Tuple ey, - .T-uple;,,—nri, end, -+ end]. Cons cells of the
outer list are created by the consunmer process, and the
mner lists, each of which calls a buffer, iz created by the
penerator process.

10 e 20000
Exacution Time -+

. Suspended Goals - 16000
S in
@ 8
° {12000 ©
£ g
i= H D e S — —— =]
[= :
§ 4l { 8000 &
= 1 g
o ¥ 7]
g | ”
W 2 F st e, w4000

10 20 30 40 50 60 70
Buffer Size

Figure 2: Restriction operation with various sizes of

buffers

Figure 2 shows the relationship between the execu-

ILPS"94: Dresign and Implementation of Paralicl Logie Programming Systeimns 5

tion L for a restriction operation without using an
index on a relation, and the number of suspended goals
for various sizes of buffers, on a sequential version of
KLIC. The relation contains 10,000 tuples. About 15
tuples of the relation are transferred by one read oper-
ation from secondary storages. This figure shows thut
tuple streams work efficiently.

From a parallel provessing point of view, the genera-
tor proecess and the consumer process can run in parallel
with double buffering techniques. However a buffer con-
taining iuples is processed sequentially. In order to ob-
tain further paraflelism, the consuier process requests
multiple buffers at a time, and the penerator process
perforis the requests in parallel,

Maodules written in C language

We can use C modulbes as generic objects in KLIC. Dut
functions of generic objects are executed sequentially.
Almost all modules in an element DBMS are suitable
to be written in KL1, because of the data structure of
bnples in nested velations, and because sets containing
tuple identifiers are complex.

The lowest data structure in nested relations iz hit-
image, stored as files. Happa accesses the data as byte
strings i KL1. Operations on strings can be teeated
maore efficieney in © than in KL1. Important operations
on strings, which influence the systein performance, are
getting a tuple from strings, getting B-tree components
fromn strings, and similar operations.

We decided to wnplenent the following operations
in C: getting a tuple from strings, setting a tople into
strings. gotting B-troe components from strings, and set-
ting B-tree components into strings. These operations
are implemented sequentially in Kappa-I* written in KL1
also, because ton mmch parallel coding decreases perfor-
mance. Parallelism ts controlled by the numiber of tuples
Lo be processed in parallel.

5 Conclusions

In this paper. we describe a parallel DBMS Kappa on
KLIC.

In ovder to provide KBMSs and KIPSs with effi-
cient database manageiment facilities, the system adopts
a nested relational model, and is designed to nse paral-
lel resionrces efficiently by using varions paraliel proecss-

ing. We intend to experiment on the efficicnt utilization
of parallel resources, to show that the system provides
KBMSs and KIPSs with efficient database management
facilities.

References

[l] P. Dadam, et al, “A DBMS Prototype tno Support
Extended NF? Relations: An Integrated View on
Flat Tables and Hierarchies™, ACM SICMOD, 1086,

“GenRank /HGIR Technical Manual®, LA-UR 85-
J138, Group T-10, MS-KT10, Los Alanos National
Laboratory, 1948,

[2

[3] M. Kawamura, H. Sato, K. Naganuma, and
K. Yokota. “Parallel Database Management Sys-

ten: Kappa-P”, Prec. FGOS92, Tokyo, 1992,

[4] A. Makinouchi, *A Consideration on Normal Forn
of Not-Necessarily-Normalized Relation in the Re-
lational Data Model”, VLDH, 1977

[H.-I Schek aml G, Weikuw, “DASDDES: Concepts
and Architecture of a Database System for Ad-
vanced Applications”, Tech. Univ. of Darmstad?,
TR. DVE-1986-T1, 1980

J. Verso, “VERSO: A Data Base Machine Based on
Non INF Relations”, INRIA-TR, 523, 1986.

(6]

[7] H. Yasukawa, H. Tsuda, and K. Yokota, “Ob-
joet, Properties, and Modules in Quravore™, Proc.
FEES92, Takyo, June 1-5, 1992,

[B] K. Yokota, M. Kawamura, and A, Kanaegami,
“Overview of the Knowledge Dase Management
System (KAPPA)". Proe. FGCS'88, Tokyo, Nov.28-
Dec.2, 1088,

9 K. Yokota and H Yasukawa, “Towards an In-
tegrated Knowledge-Base Management System —
Overview of RED for Databages and Knowledge-
Dases in the FGCS praject”, Proc. PGS 92 Tokya,
June 1-5. 1992,

