ICOT Technical Report: TR-0883

TR-0RA3

Constructing a Legal Knowledge-base with

Partial Information

by
T, MNishioka (MED, K. Yokota
C. Takahashi (JIPDEC) & S. Tojo (MRI)

Tuly, 1994

© Copyright 1994-7-8 ICOT. JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F (03)3456-3191~5

I C DT 4-28 Miwa 1-Chome

Minato-ke Tokyo 108 Japan

Institute for New Generation Computer Technology

Constructing a Legal Knowledge-base with
Partial Information

Tashiliro Nishioka Kazumasa Yokota *
Chie Takahashi ! Satoshi Tojo

Information Science Dept., Mitsubishi Research Institute Inc.
ARCO TOWER Bldg. 9F., 1-8-1, Shimomegure, Meguro-ku, Tokyeo 153, Japan
e-mail: {nishinkart:}jo}-@mri_ﬂn.jp
Keywords: knowledge representation, knowledge-base construction,
partial information, conditional query and answer,
deductive object-oriented database

Abstract

In legal reasoning systems, a typical application of nonuative reasoning. partial in-
formation plays an important role in the representation and reasoning of legal kuowl-
cdge. To eonstrict a legal knowledge-base with partial information, many features are
vequired of knowledge representation languages. In this paper. we discuss the repre-
sentation of knowledge-bases and their refinement through our experimental systeim,
THRIAL. The systew is based on the QuiaoTe deductive object-oriented database
tenguage. In particular, we point out that three features {knowledge wodunlarization,
hypaothetical reasoning, and hypothesis generation (abductive reasoning)) are indis-
pensable to the construction of a legal knowledge-base.

1 Introduction

Recently, legal reasoning, a typical example of normative reasoning, has attracted much
attention in the field of artificial intelligence. Legal reasoning systems are applications,
whose development, like that of theorem provers, dates back to before artificial intelli-
gence was proposed, (see {11]}. In fact, laws are closely related to the judicial world and
all social activities. To support legal interpretation and reasoning in a wide range of situ-
ations, many systems have been developed, including those capable of planning tax-saving
strategies, negetiating the payment of damages, making contract documents, predicting
judgments, and supporting legislation. Although many works on expert systems for such
applications have been published, a powerful legal database system has not yet been re-
ported.

The Japanese FGCS {Fifth Generation Computer System) project considered legal rea-
soning systems quite critical and developed the TRIAL prototype legal reasoning system|16,

“Institute for New Generation Computer Technology ([COT], e=mail: kyokotalfiicot.or.jp
Japan Information Processiug Developmest Center (JIPDEC), counil: j-takahaflicot or.jp

17, 20, 22]. For the TRIAL system, we provided the QurxoTe [21]. QurxoTe is a deduc-
tive object-oriented database (DOOD) [5, 6] language which may be used for knowledge
representation and management.

From our experience, we concluded that purtiality of information plays an important
role in legal reasoning systems. For example, in designing a new case knowledge-base,
we were confronted with the following problems: the data structures of a new case can-
not be specified in advance, attributes can have indefinite valnes, and the data itself can
be ambiguous or inconsistent. That is, a new case model can have partial information:
the details relating to various important points in the problem domain may be insuffi-
cient. Similar problems are encountered when constructing other legal knowledge-bases
for information such as precedents.

The following example shows many of the problems we confronted in constructing
a knowledge-base with partial information. Some features of QuixoTe are useful for
processing such partial information. TRIAL uses the QurxoTe language to model data
and knowledge as objects with partial information. Some advanced query processing
mechanisms, such as hypothetical reasoning and hypothesis generation, are also used for
refining a partial information knowledge-base.

In this paper, we report on the TRIAL system and how we construct a legal knowledge-
base using the advanced knowledge processing features of a DOOD system. In Section 2,
we present a legal reasoning example to illustrate the kind of problems we contronted.
Section 3 provides a brief explanation of QuTxoTe. Section 4 explains the design strategy,
contents, and a series of queries for an example knowledge-base.

2 An Example from Legal Reasoning

In this section, to concretely illustrate the types of problems we are studying, we examine
the following new case related to “kardshi™ (death from overwork}:

Mary, a driver emploved by company ‘S, died from a heart attack while taking
a break between jobs. Can this case be applied to the worker's compensation
law?

We will first give a brief summary of the legal reasoning process we adopted. Next, we will
introduce part of the legal knowledge related to this example, and the most appropriate
interaction sequence between a user and a knowledge-base management system for dealing
the example. And last, we will present some requirements for a knowledge representation
language, as deduced from this example.

2.1 Legal Reasoning Process

We decompose the analytical legal reasoning process into three steps: fact finding, stalu-
tory inferprefation, and sfafufory epplication. Although fact finding is very important, il
is beyond the capabilities of currently available technologies, 5o, we assume that any new
cases are already represented in a form that is compatible with our system. Statutory
interpretation is a particularly interesting theme from an artificial intelligence point of
view. TRIAL focuses on both statutory interpretation and statutery application.

Among the many approaches to statutory interpretation, we decided to apply the
following procedure:

1. Analogy detection
Given a new case, precedents having similarities to the case are retrieved from an
existing precedent database.

2. Rule abstraction
Precedents (interpretation rules), extracted by analogy detection, are abstracted
until the new case can be applied to them.

3. Deductive reasoning
The new case is applied in a deductive manner, te the abstract interpretation rules
transformed in the previeus step. This step may include statutory application be-
cause it is used in the same manner.

Among these steps, the analogy detection strategy is essential to legal reasoning to enable
the more efficient detection of beffer precedents. Analogy detection ultimately determines
the quality of the result. As the primary objective of TRIAL is to investizate the capa-
bilities of QuryoTs in this area and develop a prototype system, we have limited the
scope of our present study. That is, we have chosen to investigate the extent to which
interpretation rules should be abstracted for a new case, to obtain plausible answers. We
“have not attempted to devise a general abstraction mechanism.

2.2 Example

In this example, we use a statute and a theory for its application:

s labor law: An organization is responsible for employee compensation, if the case
Judgment is for ‘insurance.’

o theory: If the case judgment is for both ‘job-causality’ and ‘job-execution’, then the
case judgment is for ‘insurance.’

Assume that there are two precedents related to the law which have already been ab-
stracted as follows:

s precedent ! (fob-execution): If an employee has a relation of employment, and this
relationship causes the case, then the judgment considers the case as being part of
ob-execution.’

s precedent {ja&vcaumﬁ!y}: In the case, if a disease-related incident occurred within
the job's period, then the judgment considers the case to be ‘job-causal.'

Note that these statements are abstracted from certain concrete precedents in the rule
abstraction step by abstracting concrete concepts (e.g., a caze name, or a person’s name)
into abstract concepts (shown in italics): employee, relation, case, disease, and job. We
will introduce our implementation of rule abstraction in section 4.

Finally, for the above knowledge-base, we consider queries and expected answers.

2.3

guery I: According to past precedents and theory, what kind of judgment can we
predict for the new case?

answer {: If, in the new case, Mary’s activities are work-related and they are the
cause of the new case, the judgment is for ‘insurance.’

guery 2: According to labor law, what responsibility does Mary's company have?

answer £: If, in the new case, Mary's activities are work-related and they are the
cause of the new case, company ‘S’ is responsible for compensation.

Requirements of Knowledge Representation Languages

To realize the above system, we consider the following advanced features:

A.

3

Classification of knowledge: Situation-dependent knowledge and inconsistent knowl-
edge should be munaged.

. Supply of any lacking informafion: Hypotheses may be needed to supply lacking

information. For example, a break between jobs might be considered as being part

of the job.

. Inference of lacking information: The knowledge-base management system must

generate any information which is lacking. For example, in the previous section, the
clause: “If in the new case, Mary's activities are work-related and they are the cause
of the new case” is a generated hypothesis.

. Selection of knowledge resources: The knowledge-base management system has to

provide a function capable of selecting knowledge modules that are appropriate for
the query. For example, the part Yaccording to ~" in the query in section 2.2 means
that they are directed toward specific knowledge modules.

Trigl end error environment: I features B, C, and [, above, are provided, users may
want to scrap existing knowledge modules and build their own temporary modules
to test hypotheses or classified knowledge configurations. Using such pew modules,
users can issue queries to examine the plansibility and legality of their legal con
tentions.

Versioning knowledge: Users may want to impose version control on the knowledge-
base to enable its incremental construction.

. Abstracting /specializing rules and knowledge modules: In section 2.2, abstracted

rules must be developed from the concrete rules in the precedent database,

Analogical matching of concepts: In analogy detection, nsers may want to compare
concepts for analogies.

In next section, we will explain how Qurxers can (or cannot} realize the above require-
ments for constructing and managing knowledrae-hases.

3 Overview of QUIXOTE

From a database point of view, QuIxoTe is a DOOD language, while, from a logic pro-
gramming point of view, it is an extended constraint logic programming language based
on subsumption constraints. In this section, we explain some of its features, used in the
above example. For details of QuixoTe, see[lﬂ-, 21, 22]‘

3.1 Object Identity and Subsumption Relation

Concepts are represented by object terms in QuzxoTe '. mary, driver and employee are
simple examples of object terms, while company {name= “57] is a slightly more complex
example, representing “a company whose name is ‘3"

Object terms are partially ordered by the subsumption relation 'C’. For example,

mary C driver, driver C employee, company [name="5"1C company.

Relations between concepts such as “Mary 15 a driver,” and “heart attack is a kind of
disease™ can be represented by this partial order.

3.2 Suabsumption Constraints

To represent relations such as “Mary is emploved by company 'S™ ", we use a subsumption
constrazni;

mary.employer 2 company [name="8" |,

where mary.employer is called a dotted term and represents *Mary's employer’, and A = B
mecans that AC B and B L A.

We use an abbreviation r:rg"[f — t] to represent o | {a.l C t}, as well as of[l — 1] far
o|{ed 2t} and of[l =1t] for o] {o.0 = t}. These are called aitribuie ferms.

3.3 HRules

A rule is defined as follows:
dp 4=y, -0 iy E D!

where ag,a;,---,a, are attribute terms and D is a set of subsumption constraints. ag is
called a head, a;, -, aq || [is called a body, and a;'s are called subgoak. A rule means
that if the body is satisfied, the head is satisfied. For example,

compalriots [person; = X, persony = Y|
e= X/ [nationality= N1|, Y/[nationality= N;]
| {X C person, Y C person, Ny C nation, N3 C nation, Ny = Mo},

means that il two persons X and ¥ have a same nation as their nationalities, there is a
relation ‘compatriots’ between them. A rule without a body is called a facl.

Yaltheugl Gurvors can havdle ohject seby as terms, we du wot deseribe this here,

3.4 BRealization of the Requirements

We now show how the requirements for the knowledge-base system, proposed in section
2.3, are satisfied {or otherwise) by QuryoTe.

QurxoTe supports three powerful features for handling partial information. Let us
consider their utilities.

1. Knowledge modularization:

The concept of knowledgze modularization is important in the field of knowledgze
representation [13|. QurxoTe allows sets of rules to be modularized:

oo {'?"1..' ' '1rlt-}1

where m is an object term called a modile identifier {mid) and +,--+,ry, are rules,

The definition of rules is extended to the external reference of objects:
Qg <= My DGy, e, My bay || D

where my, -+, my are module identifiers. This rule means that if a; and D are
satisfied in module m; for 1 <1 < n, then og is also satisfied. If module m contains
the rule and oy {= og | Cp) is satisfied, we use the expression: “op erists in m and
has O in m,”

Rules are imported and exported by rule inheritance, defined in terms of the binary
relation (written as ‘Js") between modules, called & submodule relation. If m; Jg
ma, my tnherifs all rules in omea. The tight hand side of ‘g’ can be a lormula
consisting of module identifiers and set operators: U (union) and *\' {differance).

This feature is strongly related to the requirements A, D, and F:

A Classification of knowledge
This actually requires static modularization of the knowledge, and can he real-
ized by feature 1.

F. Versioning knowledge
This can be partly realized by the same feature. 4 module in QuryoTe can
be used to represent a version of the knowledge. This is done by adepting
some conventions to represent a version in a module identifier, e g all module
identificrs must be like labor-law [version=2]. When we say ‘partly realized’,
we mean that QuzryoTe does not provide any of the special version control
functions already provided by widely used version control systems.

D. Selection of knowledge resources
Using feature 1, a user can select knowledge resources by selecting kuowledge

modules.

In [9], an ATMS-based experl system is described as it deals with inconsistency
by controlling inconsistent knowledge modules, each of which is itself consistent.
Actunally, QUIXOTE provides a similar facility for handling inconsistencies. For ex-
ample, several precedents which have (apparently} contradicting legal contention can
be represented Ly providing a knowledge module for each precedent. Furthermore,

_5__

QuraxoTE can handle local inconsistencies within a knowledge module by allowing
objects to have properties whose values are L (inconsistent) and enabling the com-
putation mechanism of QUIxOTE to deal with L.

2. Hypothetical reasoning:

Query processing in QUIroTE corresponds to resolution and constraint solving in
constraint logic programming.

A guery is defined as a pair (4, P) (written 7-A;; F) of a set A of attribute terms
and a program F, where A is referred to as the goal and P as the hypothesis. If the
query is issued to a database DB, the meaning 15 ‘il P is in DB, is A7 Although
that sounds like a subjunctive query, like that below, QuTxOTE treats it in a simpler
way than other current research into this topic [7].

A database or a program is defined as the triplet {5, M, R) of a finite set § of sub-
sumption relations, a set M of submodule relations, and a set R of rules.

Consider a database DB. A query 7-4;; P to DB is equivalent to query 7-A to
DBUP (DB = (8, M,R)and P = (5, Ma, Fa) then DBUP = (5,08, MU
Ma, By U R2)). That is, P is inserted into D8 before A is processed. [n other words,
F works as a hypothesis for 7-4.

As hypotheses are incrementally inserted into a database, nested transactions are
introduced to control such insertions. See [21] for details.

This feature is related to the requirements B, D, E, and G:

B. Supply of any lacking information
This is satisfied by featurc 2 by definition.

D Selection of knowledge resources
To satisfy this requirement, a little more functionality is required than that
provided by feature 1. That is, without the dynamic configurability of knowl-
edge modules, a user cannot freely merge modules or issue queries relating to
them. Feature 2 supports this flunction, because hypotheses permit new module
definition and addition of submodule relations.

E. Trial and error environment
More [unclionality is needed to satisfy this requirement: it must be easier
to canstruct a knowledge-base using a “trial and ervor’ style, As mentioned
in the explanation of feature 2, QurxoTe provides nested transactions which
allow users to easily roll back any changes to the knowledge-base within the
transactions. Furthermore, as rules can be marked as not being inherited by
submodules, and/or inherited rules can be overridden if they have the same
object terms in their head, various knowledge confizurations can be examined,

G. Abstrocting/specializing rules end knowledge modules
If a rule can be parameterized, rule abstractions and specializations become
possible by adding a parameter module as the hypothesis. As shown in section
4, TRIAL adopts this method.

3. Hypethesis generalion:

An answer of QUIXOTE is defined as the triplet (2, V, E). D, which is called the
assumption part of the answer, is a set of subsumption constraints that cannot he
solved during query processing; V', the conclusion part of the answer, is a set of
variable constraints that are bound during query processing; and E, the explanation
part of the answer, is the corresponding derivation flow. Note that only subsumption
constraints of object properties can exist in the assumption part.

This feature is related to requirement C:

C. Inference of lucking information
This is satisfied by feature 3 by definition. The assumption part given hy this
feature is actually the information which is lacking and obtained by abductive
reasoning,

HYPO [2], a kind of case-hased reasoning system, has a similar facility for retrieving
important relevant information through abductive reasoning., A dimension in HYPO
represents a relationship between a cluster of facts and a legal consequent based on
those facts. Dhmensions for which all or part of the antecedents are satisfied are
used in inferences. A dimension where not all antecedents are satisfied is called a
near-miss dimenzgion, and is processed by abductive reagzoning. Althouch HY PO and
QuIXOTE are quite similar in their abductive function, there are some differences in
the design of the abduction strategy. While HYPO is designed especially to produce
legal arguments, QuixoTe is a general purpose knowledge-base facility, such that
Ourrore’s abduction functlon can simulate that of HYPO,

One remaining requirement, H. Analogica! maiching of concepls, is a very difficult
problem which has not been realized in QurxoTe. This [unction is implemented in the
TRIAL svsterm by providing hints of an analogy between concepts with the subsumption
hicrarchy of basic objects,

4 Legal Reasoning in QuixoTtes

In this section, we explain the TRIAL legal reasoning system which we implemented in
QurxoTe. Dy showing the overall architecture, a desiga strategy of a kuowledge-base, and
an implementation of the example knowledge-base on TRIAL, we demonstrate QurryoTe's
ability to construct knowledge-bases with partial information,

4.1 Implementation of TRIATL

The averall system architecture is shown in Figure L.
Note that all the data and knowledze in the database compenent is written in
QuTroTe.

4.2 A Strategy for Designing a Knowledge-base in Quixore

In this section, we present the strategy adopted in the design of our example knowledge-
hase: the construction of an iuitial model, and its subsequent relinement. These methods
are neither formal nor scalable 1o large-scale kuowledge-hases, but provide a practical

/TRIAL

Reasoner component i ...
Analng}' Rule Deduct:w:
Detecmr Transfﬂrmer Reascmer

Qurxore database cmupuneut (" Dictionary)

Statute heory recedent ew Case :
HA\Knowledge-base/ \Knowledge-base/ \Knowledge-base I\nnw]edrre-base

N>

Figure 1: Architecture of TRIAL

means of solving limited problems related to constructing (legal) knowledge-bazes. These
methods should be extended and scaled-up to enable their application to practical situa-
tiomns.

Creating an Initial Model
To create an object-oriented model, we must specify
» what objects are, and

* the relation that exists between objects

in the earliest stage of the modeling [10]. Although there are various modeling method-
ologies [14, 15], most of this important work is based on experience and intuition. Since
QuIXoTE supports a mechanism enabling hypothesis generation, however, the develop-
ment of a strategy for hypothesis zeneration may be beneficial to the overall desizn.

As shown in figure 1, TRIAL includes four knowledge-bases. From the viewpoint of
construction, they are classified into two parts. One part consists of a statute knowledge-
base and a theory knowledge-base, while the other part consists of a precedent knowledge-
base and a new case knowledge-base. We adopted the following methods in designing
knowledge-bases:

» statute knowledge-base and theory knowledge-base:

In the example, statute and theory knowledge could be modeled in sufficient detail in
advance. This enabled the fairly stable design of these knowledge-bases and provided
a framework for the problem domain.

« precedent knowledge-base and new case knowledge-base:

On the other hand, since precedents and new cases are partial information, designers
of these knowledge-bases cannot model them in sufficient detail in advance. The
design work cannot progress without interaction with other knowledge-bases.

In these knowledge-bases, there are two ways of representing a newly introduced
object: an object term and the value of a property of another object. For unstable
objects, it is better to adopt the latter way, because properties are treated as a set of
suhsumption constraints, allowing lacking or incongruous properties to be abduced
as a part of the answer.

The above methods can be thought of as guidelines when modeling knowledge in
Ourxors. Knowledge-bases in the TRIAL system are modeled according to theses guide-
lines:

1. At first, the stable part of a series of knowledge is modeled and a framework for the
problem domain is constructed.

2. Then, using this framework, the other part is constructed. Newly introduced objects
are added as properties of objects in the framework,

By adopting these guidelines, users ean retrieve important suggestions from knowledge-
bases through interaction, without excessive examination of the overall, likely enormous,
knowiedge-base.

Refining a Model

Even if designers of new precedents adopt the above guidelines, when storing precedents
in the database, they must still check the rule behavier with existing knowledge-bases.

In Qurxore, a ‘trial and error’ environment helps to refine a knowledge model. New
madel behavior can be examined by setting submodule relations belween existing knowl-
edge modules, which use the hypothetical reasoning mechanism, and rolling them back
with the nested transaction management function. I & new model lacks some informa-
tion, existing knowledge-bases assist in finding it by means of a hypothesis generation
mechanism. This method enables rapid conformance between knowledgze-bases as well as
a model refinement process.

4.3 Implementing an Example Knowledge-base

In this section, we show how our example knowledge-base is implemented in TRIAL (as
modules in QuixoTs). We also show related guery interaction.
The new case is represented as follows:

new-cuse 1 {new-casef [who=mary,
while=hrealk,
resuli=heart-attack |;;
relation|state=employ, employee=mary |
/laffiliation=corganization|name="5"],
jﬂ‘h-— f.{l'"-l'.:ﬂ]‘]}'.‘

where “;;" i1z a delimiter between rules.
The statute and the theory of its application are as follows:

lebor-law :: { organizaiton [name=X]|
[Iresponsible— compensation [object=Y, money=salary ||
<=judge [rase=C] [[judge—insurance |,
relation [stale=Z, employee=Y]
Jlaffifintion=grganization [name=X]|)|
i1 {C C case}}.
theory i { judge [case=X]/[judge— insurance |
=judye [case=X|/judge—job-causality |,
judge [case=X]/[judge—job-ezecution |
I {X C case}}.

The abstract interpretation precedent rules are abstracted from the eriginal precedent
knowledge-base rules by TRIAL and the parameterization method mentioned in section
KX

cuse; 2 { judge[case=X|/ljudge—job-ezecution |
“relation[state=Y employee =Z| /[cause=X|, X
|l {X Cparm.case, ¥ Cparm.state, Z Cparm.employee}}.
casey = { judgelcase=X|/[fudge— job-causality |
< X/[while=Y, result=Z],
| {X Cparm.cese, ¥ Cparmwhile, Z Cparm.result}}.

The object ‘parm’ represents the absiraction parameters. This object results from the
abstraction of precedents. It is used to control judgment prediction. Its properties are
defined as follows:

parm :: { parm/[case=case, stale=relation, while=job,
result=disease, employee=person |}

To prevent over-abstraction, these values restrict the range of the variables X, Y, and
Z in both precedent rules.

Tu enable the use of ‘parn’ for case; and cases, we define the following submaodule
relation:

porm g casep U coses.

This information is dynamically defined in the rule absiraction step, because the choice
of precedents is made on an cxperimental basis,
The knowledge-base has the following subsumption relations:

case J new-cose, persan - mary,
relation T employee, job-cousality 2 insurunce,
disease 2 heart-atlack, job-execution 2 insurance,
job 3 break.

We can now query the knowledge- base:

1. According to the past precedents and theory, what kind of judgment can we predict
for the new casze?

?- new-case : judge {case=new-case |/[judge=X};;
new-case dg parm U theory.

Mote that the module perm is defined to inherit the abstracted precedent rules.
Thus, we get three answers, in which the first is returned unconditionally, and the
last two include hypotheses:

{a) X C job-causality,

(b) if new-case : judge [case=mew-case | has judge C job-execution, then X C in-
surance,

(c} if new-case: relation [state=employ, employee=mary | has cause=new-case, then
X C insurance.

2. According to laber law, what responsibility does Mary's company have?

?- new-case ; organization [name="5"|/[responsible=X|;;
new-cese Jg parm U lador-low,

Note that, before issuing this query, the module new-case is already a submodule
of module theory as a result of the previous query. Thus, two answers are returned
with a generated hypotheses:

(a) if mew-case : judge [case=new-case | has judye T job-execution,
then X C compensalion [obj=mary, money_salary |.

{b) if new-case : relalion [slate=employ, employee=mary | has
causesnew-case,
then X C compensation [obj=mary, meney=salary]

QuIxoTE returns explanations {derivation graphs) with corresponding answers to
TRIAL. The TRIAL user interface displays this giaphically if so equested by the user.
Judging an answer fram the validity of the generated hypotheses and the corresponding
explanation, the user can also update the database or change its abstraction strategy.

4.4 Other Useful Features

Some other features of QuIxoTe are also useful to the TRIAL system.

s A praperty inheritance mechanism enables the reduction of the amount of knowledge
descriptions.

A rule can be designaled so as nol to generate any hypothesis. Among the exam-
ple knowledge-bases of TRIAT, rules in the statute and theory knowledze-bases are
designated as such.

« Various browsing commands zre supporled. For example, & module before fafter the
saturation of rule inheritance can be displayed.

o

Concluding Remarks

We have discussed the representation of legal knowledge, the construction of a legal
knowledge-base, and its refinement. We illustrated these steps with an example {rom
our experimental legal reasoning system, TRIAL, which is based on the QuzroTe,

Ae was clarified by this study, we focused on the following three main features of those
supported by QuIixoTe to construct legal knowledge-bases:

1.

2.

3.

FKnowledge modularization,
Hypothelicel reasoning, and

Hypothesis generafion.

To expand the processing power of Quivore to allow its application to a varlety of
knowledge information applications, we plan the following extensions:

Negation: Traditional logic programming addresses both negation-as-failure (NAF)
and classical negation. Qurxore considers various forms of negation: NAF and
classical negation of an object term, negation of a subsumption constraint (property
of an object term), and negation of a subsumption relation. Actually, NAF of an
object term is already supported by OQuzxors, And, we are planning to introduce
classical negation of an object term with a restricted form of subsumption constraint
negation, because subsumption constraints with negation are generally undecidable.

Meta-operation: In TRIAL, we use a special object, parm, for abstracting and spe-
cializing rules. This is not desirable, however, for handling partial information. Se,
we plan to introduce some meta-operations such as the dynamic reduction of sub-
goals. In (3], Hamfelt et al describes the logical foundation of metaprogramming
typically needed to represent legal knowledge. Although Qurarore has its own se-
mantics of computation, it lacks the semantics of meta-operation. Enhancing the
semantics for meta-operation like that in [3] should be considered.

Locality: In designing knowledge-hases, it is very important to decide what is global
and what is local. For example, in the current implementation of QuIxXoTE, object
identity and subsumption relations are global, while the existence of an object and
subsumption constraint are local. We plan to make these definitions more flexible
to strengthen the representation capability of Quzxore.

Visualization: To support knowledge-base constructions, visualization of the
knowledge-base is quite important. We plan to enhance QuixoTe's graphical user
interface, e.g., by adding a hypertext style for operations such as searching and
information fltering.

Heterogeneous constraints: Legal reasoning presents various constraints besides sub-
sumption, such as algebraic constraints. We plan to extend QurroTs into a hetero-
geneous, distributed, cooperative knowledge-base and problem solving environment
to solve such constraints,

We began the design of the QurxoTe in 1990 and have implemented several versions
of the system. QuzxoTe, which runs in a UNIX environment, has heen released as ICOT
free software.

amm]3 —

Acknowledgments

We would Like to thank Nobuichire Yamamoto (Hitachi, Ltd.} for TRIAL system design
and implementation, and all the members of the QuTxOTE project for their valuable
advice,

References

[1] H. Ait-Kaci, “An Algebraic Semantics Approach te the Effective Resolution of Type
Equations,” Theoretical Computer Science, no.45, 1986,

[2] K. D. Ashley, “Reasoning with Cases and Hypotheticals in HYPO," Int. Journal of
Man-Machine Studies, 34(6), pp. 753-796, June, 1991.

[3] J. Barklund and A. Hamfelt, “Metaprogramming for Representation of Legal Princi-
ples,” Uppsala University Technical Report, No. 61, July, 1990.

4] A. J. Bonner and M. Kifer, “Transaction Logic Programming,” Proc. Int. Lagic FPro-
gramming, 1993,

5] 5. Ceri, K. Tanaka, and S. Tsur {eds.), Deductive and Object-Oriented Databases,
(Proc. the Third Ini. Conference on Deductive and Object-Oriented Databases (DOOD
93)), LNCS T80, Springer, 1993.

6] C. Delobel, M. Kifer, and Y. Masunaga (eds.), Deductive and Object-Oriented
Databases, {Proc. the Second Ini. Conference on Deductive and Object-Oriented
Databases (DOOD "91)), LNCS 566, Springer, 1991,

7] R. Demolombe, L. F. del Cerro and T. Imielinski (eds.), Prec. Workshop on Nonstan-
dard Queries and Answers, Toulouse, July, 1991,

8] T. F. Gordon, “An Abductive Theory of Legal Issues,” Int. Journal of Man-Machine
Studies, 33(1), pp. 95-118, July, 1991,

9] O. Hpdnebo and E. Lekketangen, “The Use of an ATMS in Cousistency Checking of a
Legal Expert System,” Proc. the Fourth Int. Conference on Artificial Intelligence and
Law, pp. 72-75, ACM Press, June, 1993,

'10] 1. Jacobson, ef. af, “Object Oriented Software Engineering,” Addison and Wesley,
19972,

'11] L. Q. Kelso, “Does the Law Need a Technological Revolution?,” Rocky Mt. Law Rev.,
vol.18, pp.3T8-302, 1946,

[12] M. Kifer, G. Lausen, and J. Wu, “Lagical Foundations of Object-Oriented and Frame-
Based Languages,” SUNY TH §3/08, June, 1993,

113] D. Miller, “A Theory of Modules for Logic Programming.” The [nt. Symposium on
Logic Pragrammang, 1986,

{14] J. Rumbaugh, et al., “Object-Oriented Modeling and Design,” Prentice-Hall, 1991,

— 14 —

[15] S. Shlaer and S. Mellor, “Object-Oriented Systems Analysis,” Prentice-Hall, 1988,

[16] C. Takahashi, K. Yokota, “A [.egal [leasoning System on a Deductive Object-Oriented
Database,” FPrec. 5th Int. Hong Kong Compuler Sociely Dalabaze Worlkshop, Kow
Loon, Hong Keng, February, 1994,

(17] N. Yamamoto, “TRIAL: a Legal Reascuning System (Extended Abstract),” Joint
French-Japanese Workshep on Logic Programming, Renue, France, July, 1991,

[18} H. Yasukawa, H. Tsuda, and K. Yokota. “Objects, Properties, and Modules in
Gurxore,” Proc. Int. Conf on FGCS, ICOT, Tokyo, June 1-5, 1892,

119] H. Yasukawa and . Yokota, “Labeled Graph as Semantics of Objects,” Proc. Joint
Workshop of SIGDBS and SIGAT of IPSJ, Nov., 1990.

[20] K. Yokota and M. Shibasaki, “Can Databases Predict Legal Judgements?" Joint
Workshop of IPSJ SIGDSS and IEICE SIGDE (EDWIN), Nagasaki, July 21-23, 1993,

{in Japancsc)

[21] K. Yokota, II. Tsuda, and Y. Morita, “Specific Features of a Deductive Object-
Oriented Database Language Quixore,” Workshop on Combining Declarative and
(Mhgect-Oviented Dutabuses, (ACM SIGMQD 98 Workshep), Washington DC, May
20, 1993,

[22] K. Yokota and H. Yasukawa, “Towards an Inlegraled Knowledge Base Manage-
ment System — Overview of H&D on Databases and Knowledge-Dases in the FGCOS
Project,” Proc. Int. Conf. on FOCS, 1COT, Tokyo, June 1-5, 1992,

— 13 —

