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Abstract

The applicability of the Multi-Scale Structure De-
soviption (MSS5D) scheme to the inverse-folding
problems was investigaled. An MSSD represents
a 30 protesn structure with multiple symmbolic se.
quences, where fine siructures are represented unll
the sequence af low levels, the maddle seale strue-
tural motifs af middle levels, und global topology
at high levels, Each symbol in the symbolic se-
quence denotes a fype of local structure of the level
scale.  The structure frogments ere classified af
tﬂf.'h SL'I;.IIL' -I!EL'{.'I FC.FP(.'E!'E-TJL'!H a(_‘card:'ng E'l',l‘ !IFI-I:' .E,”.II.N‘.‘
and the environment around the fragments: how
the structure is exposed fo the solvent or buried
in the molecule. | modeled the propensity of an
aming-acid sequence to the structure fragment type
{t.e., primary constraint) al each scale level. The
local propensity 15, therefore, modeled at small scale
{low) levels, while the global propensity modeled af
large scale (high) levels. Thus, superposing all the
primary comstruints, a J0 protein structure yields
an amino-acid sequence profile. Fvaluating the fit
af an amine acid sequence to the profile derived
from the kmown 3D proiem structure, we can iden-
tify which 3D structure the given amine-ocid se-
quence would fold into, I checked whether a se-
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gquence deniifies ity own struciure over two hun-
dred profetn sequences. In many cases, un aming
acid sequence identified iis oum 30 protein siruc-
ture.
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Introduction

With the recent rapid inerease in the number of
kaown 3D protein structures, more and more re-
scarcher think that the method to identify pro-
tein sequences that fold inte a known 30D structure
would be more promising than the 3D structure
prediction ab mitio. The inverse protein folding
prablem has heen attracting a lot of researchers
and many papers have been published on this is-
sne. This is chiefly because of Cholhia's shock-
ing declaration that “There would e no more {han
thousand protein families!” (Chothia 91). In any
method for the problem, some kind of scoring func-
tion is defined to evaluate the fit of an amino-acid
sequence | 112 being) to protein confonnations (3D
heing). To define one, some focused on the com-

patibility of each amino-acid type to the environ-
ment around the residee (Bowie et al 91), some
on the empirical potential derived from the known
3D protein strocture {Sip]ﬂ and Weitckns '92), and
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other on the statistical potential based on Bayesian
principle (Goldstein et al 94).

Since 1 found weak but meaningful relationships
between the type of local structure of various sizes
and the primary sequence at that region, | began
to nvestigate the applicability of the Multi-Scale
Structure Description {MSSD) scheme o the in-
verse folding problem . An MSSD reprosents a pro-
tein conformation at muolliple seale levels, At each
lewel, the conformation is deseribed by a syinbolic
sequence, each symbol of which denotes a type of
local structure of the level scale. Local structures
are classified into several types at each level re-
spectively according to their shape and the envi-
renment.  The classification is, therefore, closely
related to the secondary stenctures particulardy at
the small seale levels. The deseription at middle
geale level is considered to represent the supersec-
ondary structures, and that at high levels repre-
sents the global topology. Since I classified the
structures according not only to their shape but
to their environment, two structares with similar
shapes but in the different environments are clas-
sified into different types: the helix exposed to the
solvent is classified into a different type from those
buried in the molecule. Let us call the compatibil-
ity of the strocture Lype to e aming acid sequenec
“primary constrains” which we regard as the con-
straints from the primary sequence to the choice
of structure types, Henee, given an amino acid se-
quence fragment, we can roughly estimate which
tvpe of local structure it would form. The 3D
structure prediction method based on the M3SD
Eclgeme is discmssed in the literature {Onizuka et al
94 ).

To apply the MSSD sclheme to the inverse pro-
tein folding problem, the primary constraints are
used inversely, Given a fragment of amino-acid
sequence, we can evaluate its fit to the structure
tyes of tlue rr:.l.ﬂuu-'!ul,.-s. Or rather, givuu a slruc-
ture tvpe at o level, we can oblain an amino-acid
seduence profile attached to the strocture type un-
der my model, The it of & given aminc-acid se-
gquence io this profile is, therefore, equivalent to
the fit to the structure type. Since the structures
are classified according to their shape and environ-
wment, my approach is, in some sense, the extension
af the method proposed in the literature (Bowie at
al 91}, where the compatibility of an amino-acid
sequence to the secondary structure type and the
environent around cach residne in the sequence is
considered Lo evalnate the fit. The extension, here,
indeed concerns the multiple scale evaluation of the
fit. The sequence profile iz calculated by superpos-
ing all the subprofiles derived from the strueture
fragiuent types in the given M33T3. The fit of a se
quence to the whole 30 structure is uol only eval-

watedd at the small scale level in the MS5D, ot
at all scale levels available, Chatces are that even
though a given scquence does not fit to a MSSD al
low levels, the sequence may well fit at high levels.
Thus, we can identify a sequence that fold into an
unknown 300 structure but similar to a known 3D
conformuation, even though the loeal fine structures
of the unknown one would be guite different from
those of the kuown one: the fine structures may
differ even if the amino-acid sequence of the two
protein is very similar to each other,

Methad

This section describes the methods used in my
inverse-folding scheme. The first subsection il-
Instrates the technigque applied to the structure
fragment classification at various scales, The sec-
ond subsection shall define the primary constraints
hetween the structure Ly s and the primar}f S
guence fragments. And then I formalizes the scor-
ing function for the inverse folding problem. The
last subsection shall illustrate the dynamic pro-
gpramming with A* algorithm applied to the align-
ment between the sequence profile derived from the
AD structure and the amino-acid sequence.

Classification of Structure Fragments

The classification of structure fragments is the
most crucial part of my wmverse-folding scheme. A
pood classification may produce pood results with
high degree of accuracy. In order to incorporate
the relationship between a large structure frag-
ment and the primary sequence at that region,
we have Lo classily not only the smadl stracture
feaginents but large ones, However the classifica-
tion of those large ones is diflicalt withoout some
technique to abstract the structure because large
stroctures have many degrees of freedom. [ over-
came the difficulty by introducing linear transfor-
mation of structure fragment into fixed number of
numerical parameters. Here, the fixed number of
parameters are extracted from the structure frag-
wents of any seale, and then, they are classified
into several types by sophisticated clustenng tech-
niques at each scale level, Among the paramncters
represeniing the structure [ragments, somne repre-
sent the structure shape, and others represent tle
environment around the structure, how the strue-
ture fragment is buried in the protein molecule or
how exposed to the eolvent.

First, I overview the technique applied to the pa-
ramecterization of strocture shage. This is detailed
in the literature [(Oniznka et al 93). Then, T am
going Lo illustrate how Lo pavameterize L environ-
ment aronnd Lhe raguents. The technigue applicd



to the structure classification will be briefly illus-
trated. Finally, I will be showing the description
examples of protein structure using the classifica-
tion at multiple scales.

Topological Parameters In order to represent
the shape of structure fragments with small num-
ber of parameters, T applied linear transformation
to the coordinate representation of o structure frag-
ment. The set of expansion coefficients obtained
from the transformation turms out to be, after a
slight modification, the sct of parameters repre-
senting its abstracted shape. We can restrict the
number of parameters by choosing a cut-off order
in the expansion. This transformation shall not
loose the important feature of the large structure
becanse the significant coefficients usually appear
at the lower orders in the linear expension. The
cut-off, here, is equivalent to the neglect of the use-
less information on the shape at higher orders,

Fuin s,

Figure 1: Abstraction of Structure Fragment

The procedure of the parameterization involves
several steps as follows. First, a set of orthonor-
wal bases for linear expausion is provided. Sec-
ond, the set of topological vectors 1s calculaled as
the abstracted form of a structure fragment by lin-
early expanding the coordinate representation of
the fragment. Then we extract the orientation in-
variant parameters from the set of topological pa-
rameters,  Finally, we define a parity parameter
that dizeriminate the mirror images.

The set of hases for the linear expansion in this
study must be orthonormal e the diserefe systen,
A special set is thus required. One of the simplest

set of bases is defined by polynomials. Tet N be
the number of components of the base. Let o p i
denote the ith component of the base of kth order.
This is simply defined by a kth order polynomial
of 7, prai = pnal(m) = e+ azi+ ozl ozl +
cor 4 cpxd. The orthonormal condition for this set
is,
N-1
0= E WNEENL TFK
A

1= (pns)
=0

Let S; denote the positional vector representing
the position of ith residue in a structure fragment,
By operating the orthonormal base @y i to the
geries of the positional vectors S; | we can obtain a
topological veetor Ty as the expansion coefficients
of the linear expansion.

(1)

N1
Ty = E ON kS
=0

The set of topological vectors are the abstracted
form the fragment. Considering the properties of
the bases used to ealeulate these vectors, Ty rep-
resents approximately the abstracted length of the
structure fragment; T3 represents approximately
the abstracted curvature; Ty obviously represents
the twist; Ty represents the meander.

The direction of the topological veclors depends
on the absolute orientation of the structure frag-
ment, We have to extract the orientation invariant
parametera. In additien, we need to defiue a par-
ity parameter to discriminate one from ils mirror
image. Hence, eleven parameters are required lo
represent & structure: four for the length of topo-
logical vectors |T;| six for the absolute difference
hetween the two vectors |T; = T;] and one for the
parity. The parity parameter takes such a value as
follows.

e The sign of the parity parameter of a structure
is different from that of its mirror image. If the
sign is negative for a structure, positive is the
sign for its mirror image,

s The intensity of the parity parameler is suall
when the structure is nearly symmetric, while
large is it when strongly asymmetric.

(z)

We can obtain such a parameter by calenlating the
vector product of topological vectors. T defined
the parity parameter Poas ([(Ty - Ty} = (Ty =
L3)}, Ty = Ty)/L?, where L is a constant specific
to the scale of structure whose dimension is lengtl.
L is defined as the meau length of topological vee-
tors. Hence, the dimension of all the topological
parameters is the length.



Environmental Parameters Here, 1 discuss
how we can incorporate the solvent accessibility
of structure fragments into the structure classifica-
thom.

More and more biologists are aware of the im-
portance of hydrophobic interaction between the
residues during the folding process. A protein
chain so folds into a tertiary structure that the
hydrophobic residues would be burled inside the
malecule, whereas the hydrophillic ones exposed to
the solvent. The hydropathy of each residoe mnst
be a strong factor determining the environment
aronnd the residue. When a structure fragment
is deeply buried in the molecule, most residues
in the fragment should be hydrophobic, while hy-
drophillic when exposed to the solvent, Indeed is it
that, when the fragment is half buried and half ex-
posed, the residues around the buried region should
be hydrophobic and other residues hydrophillic.
The propensity of cach amine acid type to the en-
vironment is considered even stronger than that to
the secondary structure (Saito et al 93). Consid-
ering the propensity from the primary sequence,
we can estimate how the the structure fragment
wonld he buried or exposed . In order to char-
acterize the environment around a structure frag-
ment, T introduce a new parameter attached to
each residue in the structure, the Quasi Buried
Depth (QBD), which takes positive valne when the
residue is buricd inside the molecule while takes
negative value when cxposed Lo the solvent. The
dimension of the parameter s length a0 that the
calenlation with the topological parameters physi-
cally would make sense. First, T give the delinition
of QBD, and then 1 illustrate how to paramelenize
the solvent accessibility of & structure fragment.

A residue deeply buried inside the molecule is sur-
rounded by more residues than those exposed to
the sulvent, The number of residues nearby a given
residue within a certain distance can be eonsidered
to measure how the residoe s buried or exposed.
This number is given by counting the nwmber of
residues in a sphere with certain radivs centered
at the position of & given residue. The predictabil-
ity of this number from a given primary sequence
is discussed in the literature {Saito et al 93}, The
COnast Buded Depth is derived from the number,
aned has the dimension of length.

From the investigation of the maximom number of
residues M in a sphere whose radins is v, I found
that M is almost proportional to the r***, and is
calculated as M — 0.157*%%. This suggests, the
residnes are not optimally packed but are subop-
timally packed in the sense of fractal dimension.
We can consider that when the actual number of
residues N in the sphere with radius r centered at a
given vesidne would be equal to M| the depth from

the surface of the protein molecule to the residue
would be estimated greater than r, while the depth
wonld be estimated around zero when N is a half of
M. The number N can be, therefore, transformed
into the quasi depth of the residne from the surface.
The Quasi Buricd Depth d9 is, therefore, calcu-
lated as d9 = (2N/M — 1)r, where M = 015745,
When d9 takes a positive value, the residue is con-
gidered buried, while considered exposed for the
negakive d9.

Likewise the topological parameters which are ob-
tained by linear transformation, the set of envi-
ronmental parameters representing how a struc-
ture fragment is buried or exposed is calculated by
transforming the set of residues’ QBD in a struc-
ture fragment. The environmental parameter of
kih order Ey is calenlated as helow.

M1
Fe= 3 wnpds, ()

where -:!? is the QBD of ith residue in the frag-
ment, Since the physical dimension of environmen-
tal parameters is lengih, these parameters can be
nsed with topological parameters. In my study, the
maximum order of expansion is five, and five envi-
ronmental parameters are to represent the solvent
accessibility of the structure fragment,

Classification of Structure Fragments The
structure fragment abstracted and represented
with a fow parameters may be classified by a clus-
tering technigues. Tadopted Leaning Vector Quan-
tization (LVQ). LVQ classifics cach data in the data
set according to the nearest centroid to the data
The distance between two data ;5 s, in my study,
defined the Euclidian distance below,

Dy = [ (Tow - Tkl (4)

where Ty, 15 the kth component of the ith data.

The centroids for the clusteriug here are obtained
by the iterative process as follows. The initial cen-
troids are arbitrary placed in the m-dimensional
space where n is the number of components of the
data. Each data in the set is classified according
to the nearest initial centroid to the data. By this
initial classification, the data set is classified into
the clusters represented by each centroid respec-
tively, Each centroid in the next step is calenlated
a3 the mean of the data belonging to the cluster.
Then the data sel is again cassified according to
the new centroids. This process is iterated until
the difference between the population of each new
cluster and that of previous one is less than 2% of



the population, when I consider that the position
of each centroid almost converges.

Seale | @ i 2 3
129 | cCEcoocect

97 | ABBEEEGERERERBEEEERERRARREREREEHEEE
65 | CONNNNNODCCCCCIIIIII0CCCCCCoCooocer
49 EJJJQQQHMHQH.TJLLLLGBCCCC].LCCCCCE’G
33 | GFFFCJIQQIILLLLLERRRR.] JEEHRBEBEEEFF
25 | GOOOPPPPPGGGEERHHIIIIIILIIEEKKKRUVY
17 | AACERELLLLLLLLLFFFEEJJSS5SRKIBHHRILII
13 | PCAGGGEEKEKAEKKKRKDDDATOUDUULEAT IMML
O | WOLMABIITIOOONOOTGCCCRRAHTTTTHLFFFH
7 | WUUEKEEFEOOOO000000GGGAESLOJQOLDAFY
5 | WWWVESQIDLENHMMMNMMMNEEDAJFPPPPPEIDA
DssF =geean=-asshhhhhhhhhhhhhhhtt-=-eseat

Seq. | MKIVIWSGTGNTEKMAELIAKGIIESGKDVNTINY
'-Eca.lc 4 5 &
130
97 | BEBBERR

fi5 | CERRREBRBBCCCCCCCCCCCOCCODOCCOOCOCE
49 | CCCCCCCFFFEEEEEEEE]JIIFFFOCCCCEEECT
33 | FFFITITIIJIJIFFFEELTTWWWGPJEERFFFFRE
25 | TUOWTTTLLLCACIKKERRRSIIJIFIEEEHHUIY
17 | EHEOOOTWWWYEEDDDFFFIMIIIIMMHHMIGEEE
13 | HMECEODOYVSEIWWRCCCCEEJJEEEEJJIJIJHHE

0 | HFDDEEBNQVVVIXUULAACCHALAREDDDDDODD

7 | HOCEERFCHMVWIIIUUSDEECLLNEABEGREERE

5 | FIHABAAAFOLWWWIIVVSIJOLONJERCDDAALR
DESF [ tt——sttttt-neaacea--httth-=ttthhhhh
Seq. | SOVNIDELLNEDILILGCSAMODEVLEESEFEFFL

a 7 B ]

12%
o7
£5 | HBEB
40 | CCJJCEEEEEEEEENNFFFF
33 | BBEIIIHCGRGGGGFFCITIJQQPPPFLLLLLSSSTG
25 | UEXTUMMMCCCFFF JRERRRTIEEEHHHHQDQNNL
17 | O00OWTTTVEK &AAGGMMMMMMMMFF 1 THEG JORR
13 | LGIOOSSIXIWRRCCCEEEIIIIIIIIIDDEEDILG

D | DFFQONNYYEWWUULACCOQEEEGGGGEEGEERERT

7 | BEFFIFPREWWWIIUSDEIMCCE COGRGCABG IO

5 | AADEFFELTWWEWEVVNEFUOLCEDGCEDGCDDED

DE5F | bhhstt-tt-aueesenesss-shhhhhhhhhhhh

Seq. | EEISTRISCKEVALFGSYOWCDGEWHRTFEERKNG
Scale 1 2 K]

12
a7
65
44
33| a
25 | LLACEEKEK
17 | RRRAKEKHBERHHHANME
13 | VUUUUUPHOCDDIGE] JIKKT

9 | RMLOGTWRMMHHRFEEEETIITIGE
7 | VULNMRANUSNHNAACMEXEEKE KRGS
9 | LSSKJOOTWSQQQNABEFDGEEGGEEGTA
D5SF | tt-ee-s--eeees--ggghhhhhhhhhbhhht-
Seq. | YGCVVVETPLIVONEPDEAEQDCIEFCEEIANT

Description Examples The data set used in
this study was taken from the sclected pro-
tein structures of Protein Data Bank by EMDL
(Hobolun et al 92). From the selection, [ further
selected 245 structure determined by X-ray chiys-
tallography. The sequence homaology between each
pair of protein chains is always less than 25%. The
radius of sphere to determine the QBD is 10 A.

The data set at N-residue level is obtained by
calculading the sixteen parameters of all possible
structure fragments with N residues in all the se-
lected protein chains. I classificd the structure
fragments with 5, 7. 9, 13, 17, 25, 33, 49, 65, 97,
128, and 193 residues and obtained the twenty four
types at each scale. The letters from A to X denote
the structure types. The conformation of 4FXN
(Flavodexin) is described in this scheme as above,
The lines at “DESP" denote the secondary struc-
tures assigned by DSSP. At the 5-residue level, the
site symboled A E G, or M usually takes Lelical
conformation denoted by h, and those of V,'W or
X usually take strands denoted by e. The strie-
ture types at the 5-residue level, therefore, well cor-
respond Lo secondary structures, The description
at high levels can be considered to represent su-
per secondary struclures, and those at the G5 or
129-residue level would corrcspond to the some
domaing or global structures. We can conclude
that the M55D precisely represents the hierarchi-
cal property of 30 protein structure,

In this way, a protein conformation described in
this multi-scale structure deseription scheme shows
how the conformation is built up of the substruc-
tures and structural motifs.

Primary Constraints

The primary constraints relate the primary se-
quence and the structure type at each region.
MESD scheme is particulatly suitable to model
hath local and glabal factors of structure forma-
tien. The primary constraints for short strocture
fragments naturally represent local lfactors, amd
those for long oncs represent plobal or long-range
factors. For further discussion, I define several no-
tations here.

Let 4f denote a structure type, where normally
7= Ak 4 = BE 4k = PR Let of denote a
printary seruence fragment at the Lbth level, And
we further denote w® as the number of residucs in
the structure fragment at the kth level, We denote
¥ e [AF BY . XH) as the varable that takes
a structure type, where ¢ denotes the position in
the primary sequence. We also denote ¥ as the
variable that takes a primary sequence fragment.
Note that the position 1 here denotes the position
of the first residue of the structure fragment in the



primary sequence.

The probahility of a primary sequence fragment
o* furming a type of structure 4f is represented
as Pp(TY = 4f|2F = o). Since we assnme that
the primary constraint is invariant of its absolnte
position in the primary sequence but only depends
an the strneture type and the primary sequence
at that region, it may simply be represented as
Pp(T¥|EE),

In the previons literatures [Onizuka ot al 93;
Cuiguka et al 894}, T defined geometric con-
straints between the overlapping strocture frag-
ments, which iz essential factor for 3D protein
structure prediction ab initio, In this paper, | don't
discuss on this isswe becanse they have nothing to
do with the inverse-fol ling scheme using MSSL0.

In the field of molecular biology, the sequence pro-
files are freguently used Lo analyze the relation-
ship helween a scogueuce patlern and the structure
or function st thal region, where the frequency
of each amino-acid type s counted with respect
to the position. This teclhnigue is directly appli-
cable to model the primary constraints at small
scales, though it requires large number of param-
eters, again, for the primary constraints at large
scale. For example, at five-residue level, the num-
ber of parameters representing the fn-.ql:{-mcy i=
100 = 20 = 5 where 20 is the number of amino-
ackd types, and 5 s the sumber of residues in the
structure fragment at that level, At the large scale
levels, where the nmmber of residaes are more than
100, more than 2000 parameters ace requived. In
this case, however, we can compress the sequence
profile using the same technigue as 1 applied to the
structure abstraction. We can always reduce the
number of parameters into 100 using linear expan-
SO0 again.

Inverse-folding Scheme

Given an MSSD representing a 30 protein struc-
ture. we canu estimate the most probable sequence
from the MS3SD using the inverse primary con-
gtraints IMp(EIT), which is simply given by caleu-
lating the fit of a sequence to a profile. Pp(T|T)is
caleulated by applying the prior P(T) to Pr BT
Let i denote a position in the sequence. Let ¢4
denote an aminc-ncid type, and let T4 be a vari-
able that takes one of the wnino acid type ¢4,
We can derive the probability HZE;"‘ = {4 of the
amino-acid type occurring at the position 4, from
the structuie frﬁ.g'lnﬂnf. type covering the ot tiom
i Let Pt = t40;) denote the probability of
the amine-acid type t* ocenrring at the position
i in the fragment. To superpose the .F’;['J""'l]‘ we
ltave to divide this value by the prior P(14 = t4),
becanse the prior 15 donbly or tnply caleulated.

Thus, Pp{TA) is calenlated as below.

I PHTA = Ary)
Pit4)

{5)
In this case, however, the prior P(t1) does some-
thing unpreferable. The probability P(T# =
i) almost always sugpests that Alanine ig the
wost probable amine-acid type at any position.
This means that the inverse pr‘tmary constraing
P;[T:"]Ej] is much weaker than the prior. Hence,
Uadopt Op(T = t1) = Py(TA = tY)/P(t4) in-
stead of Pr(T" = ¢*). This value is greater than
1.0 when the aminc-acid type stochastically occurs
more than random level,
The superposition of all the inverse primary con-
straints from the MSSD derived from the given 3D
structure viclds a stochastic sequence profile. The
fit of a sequence to this profile is considered the
fit to the given conformation represented by the
MSED and by turn the fit to the given 3D struc-
ture,

P(T# = t*) = P(t4)

AN covermg

3D-1D Alignment

The alignment between the sequence and the pro-
file is carried out simply by dynamic programming.
The dymamic programming searches for the opti-
mal alignment that minimize the score E below,
Some appropriate gap penalty should be used when
we permit gaps.

E=- E log CpiTA = ) + gappenalty.  (6)

We comsider the resultant score E as the fit
of amino-acid sequence to the sequence profilo
(1) derived from the MSSD representing 3D
strncture, Hence, given a primary sequence of a
protein whose JD structure is nnknown, we can
search for the most compatible 3D structure in the
protein stiucture database, This is far simpler than
that of those schemes nsing Sippl potential (Sippl
andl Weitckus 92 Jones et al 92 Yoke and Dill 92;
Skolnick and Kolinski 92). where it s necessary to
apply the double dynamic progranuning Lhat pe-
quires targe amonnt of caleulation.

I applied the A" algorithm to the 3D-11F align-
ment, which was first applied to the protein soe-
quence alignment in the literature (Araki et al 93}
This algorithm finds the optimal selution while
the calculation amonnt is much smaller than that
of conventional dynamic progranuning slporithms,
though the implementation is muech dilficall.

The choice of the gap penally has not yel estab-
lisheed. o tnost cases, there ave three parame-
ters cotcerning the gap penalty: 1) the slile gap



penalty is the cost for the offset between the two
sequence; 2) the initial gap penalty is the cost to
put & gap in & sequence; and 3} the incremental
gap penalty is the cost for the length of each gap.
When the initial gap penalty equals to incremen-
tal oune, the dynamic progrunming turns out to
be quite simple with a simple network. Thus, 1
adopted this penalty. The slide penalty should be
zero to allow any offset between the sequence and
profile without costs,

Results

I used the same data set of protein structures as
that used for structure clussification. To cross-
validate the result, the data set was divided into
five groups randomly so that each group would con-
tain forty nine structure data. [ obtained five sets
of primary constraints, where each set was derived
fromn the structure data in five groups, When a
structure yields the sequence profile, [ did not use
those primary constraints that are derived from the
structure group including that structure,

First, as a preliminary cxperiment, T investigated
how a protein sequence fits ita own 3D structure
evaluating the Z score. Here, 1 did mot align the
profile and the sequence: the gaps are, thus, not
considerad. We can obtain the Z score of a se-
quence to a profile by normalizing the score £
by Lhe mean score < Fegndem = and the devia-
B g L of random sequences to that profile,
where E iz defined as below.

E ——Elng CHTA =t4). (1)
-

Thus, Z score Ex s,

E—- < Ern-ridnm =

(8)

Ey=
TEsusam

I investigated the fit of sequences to the stpnctures
at only one scale level, in order to see which level
best corresponds the sequence. The plot below
shows the mean Z score with respect to the scale
level. The correspondence is the best at the low-
est S-residue level and it decreases monotonously
with the incmase in the level. This suggests that
a local sequence strongly influence the formation
of the seeondary structures at thal region, becaonse
the classilication al e 5-restdoe bevel well eorre-
apiomds the secondary structures, Probahly due to
the over-learuing, the scores al the high levels are
below zero,
Second, [ checked whether a sequence would iden-
tify its own structure. The hit-ratio of the self-
identification direcity suggests the performance of
my inverse-folding schieme. T checked whether the
fit of a sequence Lo its own stencture wonld scores

=i

i LELw
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Figure 2: Z Score versus Scale

the best among all sequence-profile combinations.
We selected 188 protein structures from the dula
set which [ used to model the primary constraints,
because the other structure data contain residue-
lacks or unacceptable bond lengths. T investigated
the hit-ratio of self-identification. When the com-
patibility score of the sequence to its own stiuc-
ture obtained from the 30-1D alignment scores the
best, I consider that the idenlification hits. T did
exhansting 30-1D alignment for 188 x 188 times,
The table below shows the hit rativues,

[ Total | Hit | Hit Ratio |
?_illﬁle Level 188 o 0.325
Multi-Lawvel 188 O _ 04T

This resnlt actnally shows that the performanece of
self-identification is hetter when many scale levels
are imcorporated.

[N
Hit Ratia
LEN S

1‘! ad o8
Gap Paralty
Figure 3: Hit Ratio versus Gap Penalty

T'hird [ investigated how the gap penalty inflnence
the hit ratio. lu this ease, 1 uzed only first group of



data set which contains thirty nine proteins. This
graph shows that the higher the gap penalty is, the
better is the hit ratio.

Discussion

In this paper, I proposed the multi-scale cvaluation
scheme to solve the inverse protein folding prob-
lem. I incorporated the compatibility of sequences
to 3D structures not ouly at the small scale level
bt also at the large scale levels,

Tlhe results show that the multi-scale compatibility
scoring works better than the single scale one, even
though the compatibility scores at large scale levels
poorly eorresponds the fit between the structures
and sequences better than those at small scale lev-
¢ls. Considering size of data set containing 188
protein structures, the result is not so bad.

Oue of the difficuit problems unsolved is how we
can determine the gap penalty. As [ showed the hit
ratio versus gap penalty, the higher the gap penalty
is the better is the hit ratio. In this sense, for
the better performance, the gap penalty shond be
high. However, the high gap penalty does nol per-
mit the robust identification. Why can we inscrt
gaps in the alignments? The gaps in a structure
may change the structure, and then, the ditferent
environment may be furmed.

The length of exterior loops of 2 protein structure
is variable. Even the main chain topology looks
alike. We have to permit the gaps in the 3D-1D
alignment. However, the robust identification by
turn produces worse self-identification hit-ratio.
Considering the poor mean 4 score at high lev-
els, the 3D-1D correspondence at high levels does
not seewm to be stochastically modelable, Thus, we
should not use those levels in order to obtain better
zelf-identification hit-ratio.

I investipated the applicability of M5S5D scheme
to the inverse foldivg problem, and [ound that
the wulti-scale scoring works far better than sin-
gle scale scoring. This means that the score at
high levels does a great deal to enhance the perfor-
TULAILOE.
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