ICOT Technical Report: TR-0877

TR-0877

Multiple Sequence Alignment Editor Featured
by Constraint-Based Parallel Iterative

Aligner

by
M., Ishikawa, Y. Totoki, R. Tanaka (IMS)
& M. Hirosawa (Kazusa DNA)

May, 1994

© Copyright 1994-5-31 1COT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg, 21F (03)3456-3191~5

I C DT 4-28 Mita 1-Chome

Minalo-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

MULTIPLE SEQUENCE ALIGNMENT
EDITOR FEATURED BY
CONSTRAINT-BASED PARALLEL
ITERATIVE ALIGNER

M. Ishikawa®, Y. Totoki®,
R. Tanakaf, and M. Hirosawal

“Institute for New Generation Computer Technology (ICOT)
21 Kokusai bldg., 1-4-28 Mita, Minato-ku, Tokyo 108 JAPAN

tInformation and Mathematical Science Laboratory, Inc.

{Kazusa DNA Rescarch Institute

1

Multiple alignment of protein/DNA seguences is an important method for predicting
function and structure of molecules, and for investigating the phylogenetic relationships
among creatures. Many algorithms have been devised to help biologists align sequences.
Once a similarity value between characters is determined, Dynamic Programming {DP)
1] can be nsed to theorctically solve a multiple alignment problem. Applying an N-way
DP to an N-sequence aligniment problem, however, requires computalion on the order of

Abstract

We have developed a multiple sequence alignment editor, on which a parallel
iterative aligner works while considering user-defined constraints. The tree-
based method, widely adopted as an alignment algorithm, tends to accumulate
errors when aligning sequences of low similarities. It was recently found that
iterative improvement could correct such errors, but that teo many teration
cycles were needed to solve a practical-scale problem. We made the itera-
tive alignment method cfficient enough to be incorporated in an interactive
alignment editor by employing parallel execution technology. 'I'he alignment
editor, which features the parallel iterative aligner, realizes alignment which
is not only fast and high-quality it is also constraint-based., When a user
has some biological knowledge which indicates that some characters might be
aligned in a column, a constraint can be defined for those characters. The
constraint set is considered simultaneously in each iteration cycle of parallcl
alignment. Then appropriate multiple alignment is generated by the aligner
and displayed on the editor’s full-color display. The alignment editor also con-
tains the following characteristic funetion modules: a phylogenetic tree drawer,
a motif-database matcher, and a stem region specifier.

Introduction

the N-th power of sequence length,

To date, most multiple alignment systems emplay 2-way DP as a basic algorithm and
combine the resulls of Z-way DP in a tree-like order for sequence similarity (2, 3, 1]. These
algorithms, called tree-based algorithms, are fast enough to be applied to practical-scale
problems. If sequence similarity is low, however, they often produce low-guality alignment.
This happens because once an error occurs in the alignment process, the error cannot be
corrected.

Recently, an iterative improvement algorithm was developed for multiple alignment
15, 6. In this algorithm, alignment of all sequences is iteratively improved by repetitive
application of group-to-group 2-way DI, The algorithm can remedy errors that occur in
the alignment process. In our previous study [7], we revised the iterative improvement
algorithm by introducing a best-first heuristic search and parallel execution. The Hid-
den Markov Model for multiple alighment can be considered equivalent to the iterative
algorithm [8].

Such iterative algorithms improve an alignment with respect to its score. Whatever
scoring system we use, the optimal-score alignment is not always the most significant
result from a biclogical perspective. In addition to optimizing alignments under some
scoring system, it is also important to refine them using biological knowledge. Alignment
editors [9, 10, 11, 12] have been developed for this purpose. In this paper, we introduce
our parallel iterative aligner and an alignment editor which features constraint-based
alignment.

Alignmeant Partitioning

CRWVYRIR--3T

RHLFEIg--3T
Update (eration l

HRGIQGFLET
G W (5 (=))
—]l

ERWLFEIQST

. U Two-way DP on each
Selecled result processing element

Figure 1: Parallel best-first iterative algorithn

2 Parallel Iterative Aligner

In this section, we propose two parallel iterative algorithms for multiple sequence align-
ment and evaluate their performance on some test problems with three sequential algo-
rithms.

2.1 Algorithms

We chose a tree-based algorithm to evaluate the conventional sequential algorithms. The
algorithm uses 2-way dynamic programming (DP) in a group-to-group manner [2] to
align two sub-alignments. In this algorithm, a guided tree is first drawn by the UPGMA
method [13] which depends on previous similarity analysis done by all 2-way DP pairs.
Sequences are merged based on the branching order of the guided tree by applying group-
to-group DP, which optimizes the alignment between sequence groups. The score to be
optimized is the summation of all pairwise alignment scores between the groups. The
pairwise alignment score is derived from a similarity value between amino acids and a
linear relation of gap penalty: a + bk where k is the gap length and a and b are the
opening and extending gap cost. In the other algorithms described below, the same type
of DF is used to align sequences.

Practical sequential iterative algorithms use round-robin iteration. In the algorithm,
group-to-group DP realigns each sequence against the alignment of the other sequences.
This process starts from an initial multiple-alignment state which has no gaps inside,
and is repeated in a round-rebin manner until no change occurs in a round-robin cycle.
This algorithm was originally proposed for refining alignment obtained by a tree-based
algorithm [14].

We propose the parallel best-first iterative algorithm (Figure 1). First, V sequences
which have no gaps are input into an iteration cycle. The sequences are divided into a
sequence and NV — 1 alignment sequences. The N different sets produced by the parti-
tioning are then recombined in parallel by group-to-group DP. The results are compared
and the best-score alignment s set at the starting point of the next iteration cycle. In
this way, the iteration cycle gradually improves alignment of all the sequences. Tteration
terminates when none of the N partitions can be improved further. This parallel routine
reqguires N processing elements.

It is also interesting to couple the Lree-based and iterative algorithims [15]. We conpled
our round-robin algorithm with a tree-based algorithm to create a routine in which every
alignment is refined in the round-robin manner until its convergence whenever the two
sub-alignments are merged according to the tree method. We also developed a tree-based
best-first iterative algorithm, which can be execnted in paralle] for both the hest-first
search and tree-based merge sections.

2.2 Experiments and results

The programs, written in the KL1 parallel logic programming language [16], were tested
on a distributed-memory parallel machine PIM/m with 256 processing clements [17].
Fxperimental results are compared under the same scoring system of multiple sequence
alignment. The N-sequence alignment score is the summation of N(N — 1)/2 pairwise
alignment scores. The similarity values are {rom table PAM250 [18]. The gap penalty is

defined as a linear relation a + bk, where the opening and extending gap costs are a = —7
and b= —1.

—_ e

Figure 2: Alipnments by tree-based (upper) and iterative (lower) algorithms

As test sequence sels, we used the catalytic domain of the protein kinase [19]. Figure
2 shows a couple of typical test set alignments. The bar graph shows aligninent scores
for each column. The alignment in the upper window was generaled by the tree-based
algorithm. The alignment in the lower window was done by the parallel best-lirst iterative
algorithn. They show the merit of iterative alignment; the motif A-x-K indicaled by an
arrow, known as a part of the ATP-hinding site, was completely aligned in the lower
alignment, whereas two sequences were missed in the upper one shown by the circled
positions,

Figure 3 compares the performance of the five algorithms. Each algorithm was exe-
cuted on thirty test scts to aptimize its alignment score. The alignment scores are shown
at the top of the figure. The scores ohtained from the same test set are connected by
dotted lines. Bach score is normalized by all connected scores. The bald lines connect the
average scores for the thirty test sets. The bottom of the figure shows average execution
times for the thirty test sets. Sequential algorithms were executed on a single processing
element. Parallel algorithms used twenty-two. The comparison yielded the following in-
formation: (1) Although the tree-based algorithm is the fastest, it has the lowest average
seare. (2) The iterative algorithms coupled with the tree-based approach show better per-

formance in both average score and execution time than the iterative algorithms without

the approach. (3) On average, the parallel algorithms take less time and yield slightly
better scores than the sequential iterative algorithins.

Tree-Dased Trea-bazed

Round-robin Besi-firet rewsnd-robin basl-lirst
Tree-hased itarative ilarativa iberative ileralive
algarithm algorithrm algonthm algoritm algorithm
{megential) (sequential) (paralial) {sequential) {paraliel)
0z T T T
0.1 -
Q
L
O
[
wl
c
Q
E
=
Ry
<
i Execution Time
02 Y 120
b /\\ / \\
! - 80
I.. V x
: 40
0.3 N 0
[sec]

Figure 3: Performanes comparison

3 Alignment Editor System

In this section, we introduce our alignment editor. First, we mention a recommended
editing process. We then describe the fealures of constraint-based aligners. Finally,
we discuss refinement tools. The entire editor system is written in the C programming
language and works on UNIX workstations with OSF/Motif. The exception is the parallel

aligners, which work on parallel inference machines, and are now being implemented on
a UNIX-based CM35 parallel computer.

Sequences

l

Rough alignment

3

Constraint-based alignment

i

Refinement

considering motif/stem/phylogeny

|
Resull

Figure 4: Editing process

3.1 Editing Process

Figure 4 shows a recommended process for using this alignment editor. Sequences are
initially aligned roughly with the tree-based aligner, which is rapid enough to deal with
a lot of long sequences. The rough alignment often reveals some half-aligned patterns,
which can be recognized as constraints and forced into aliznment. Sequences are elab-
orately realigned part by part with constraint-based iterative aligners. Being evaluated
with respect to sequence motifs, secondary structures, or phylegenetic relationships, the
alignment can then be refined manually by mouse-oriented operations and realigned re-
peatedly based on some newly imposed constraints. 'T'hus, the final alignment can be
arranged to meet nser specifications.

3.2 Constraint-based Alignment

The editor features constraint-based alignment, in which the five alignment algorithms
described in the previous section are available. The round-robin and best-first iterative

algorithms are useful for keeping a current alignment to some extent, because they are
executed starting from the currcnt alignment as the initial state of iteration.

Figure 5: Constraint-based alignment

A typical operation of the constraint-based alignment is shown in Figure 5. In the
upper window, protein sequences in the rhodopsin super family [20] are roughly aligned.
The displayed alignment corresponds Lo the G helix of the bacteriorhodopsin family, whose
structure has already been mapped. The first three sequences, from the bacteriorhodopsin
family, are not similar enough to the other sequences te be well-aligned in the rough
alignment. Tt is, however, knowu that proteins in the bacteriorhodopsin and rhodopsin
families contain a retinal whaose binding site is the lysine position in the G helix. This
knowledge can improve the aligninent. A constraint is imposed on the thirteen lysines,
which are indicated by the Ks surrounded by black frames. The other sequences, from
the signal receptor family, are not constrained, because proteins in the family have no
retinals.

Based on the constraint, the tree-based parallel iterative aligner realigns partial align-
ment specified by the user. The small window at the bottom of Figure 5 displays the
improved alignment, in which the thirteen lysines arc aligned at the colimn indicated
by an arrow. If the user accepls the partial a

ignment. it will be embedded 1 the main

alignment.

3.3 Refinement Tools

The alignment editor contains three characteristic teols: a metif-database matcher, a
phylogenetic tree drawer, and a stem region specifier. BEach Lool is useful for refining

alignment from a biclogical point of view.

g .Tws%-&--r-:gw'

- M‘l’J‘ £ £ T

{bgrobein tonisd revmtrs p'wh
+| © [AETE] - [CETRFDE] - (EDPYAH) - T - [L iG]

Figure §: Sequence motif identification

The matcher identifies sequence mwotils ina protein sequence alignment, retrieving mo-
tif data from the Prosite database |21] (release 9.00). Figure 6 shows a display when a sig-
nature motif for G-protein-coupled receptors was found in an alignment of the rhodopsin
super [amily with more than eighty percent consensus. The region is indicated by a black
rectangular [rame, The motil iz represented in Prosile as lollows:

[(GSTALIVMC] - [GSTAPDE] -{EDPKRE}-x{2) - [LIVMNG] -x(2)-[LIVMFT] - [GSTANC] -
(LTVMFYWAS] - [DEN] -R- [FYWCH] =% (2= [LIVM] .

T mme— I;g},-g—l s T 5

j Filw Edil Eoii (ke Trmlewesr: Sl Flwarh #1igrment,. Dot e | Refraosy, St |
E i P TR

|
o f]
.

Figure 7: Phylogenetic trees

The drawer constructs an evolutional tree, dependent on the current cditing align-
ment, with UI'GMA [13] or NJ [22] method. Trees of aligned sequences shown in Fignre
6 are introduced in Figure 7. The left tree is drawn by UPGMA {unweighted pair-group
arithmetic average clustering), and the right one is done by NJ (neighbor joining). The es-
timated number of mutation events is represented on each branch. The order of seqUences
i an alignment display can be changed according to the evolutional tree,

The stem specifier indicales some possible stacking regions in an RNA sequence align-
ment by using a circle representation of the secondary RNA structure. Figure § shows a
rough alignment (top) and its refined alignment (bottom) for Leucine-tRNAs, in which
the first eight sequences are mitochondrial and the other are neucleic. In the rough align-
ment, the four main stems specify less than Afty-four percent consensus in whitened parts
of the alignment. Four pseudostems are also displayed iu the circle. After refinement con
sidering the real stemns as constraints, the stem regions aligied with more than seventy
percent consensus and uo psendostems.

Figure 8 RNA stem specification

4 Conclusion

We have developed a multiple sequence alignment editor which provides three sequential
and two parallel aligners. We compared performance and found that the tree-based best-
first parallel iterative aligner gave the best results. The aligners work in a constraint-based
way which helps users align sequences [rom various perspectives. The editor also provides
a motif-database matcher, & phylogenelic tree drawer, and a stem region specifier Lo help
refine alignments.

The programs are open Lo the public via Internet as TCOT Free Software. Anyone
wishing to use this editor should contact fip.icot.or.jp and transfer the file:

Jifs/exper-apps/pimos feditalign.tar.Z

Acknowledgements

We would like to thank Prof. 3. Mitaka at Tokyvoe Univ. of Agriculture and Technology,
Dr. K. Kuma at Kyoto Univ., and Prof. M. Lyuch at Univ. of Oregon for their discussions
and seguence data.

References

[1] Needleman, 8.B., and C.D. Wunsch, “A General Method Applicable to the Search for
Similarities in the Amino Acid Sequences of Two Proteins”, J. Mol. Biol., 48, 443-453
(1970).

[2] Barton, J.G., “Protein multiple alignment and flexible pattern matching”, In R.F.
Doolittle (ed), Methods in Enzymology, 183, Academic Press, 403-427 (1980).

(3] Feng, D.F., and R.F. Doolittle, “Progressive sequence alignment as a prerequisite to
correct phylogenetic trees”, J. Mol. Evol., 25, 351-360 {1987).

[4] Higgins, D.G., A.J. Bleasby, and R. Fuchs, “CLUSTAL V: improved software for
multiple sequence alignment”, Comput. Appl. Biosci., 8, 189-191 {1592),

[3] Berger, M.P., and P.J. Munson, “A novel randomized iterative strategy for aligning
multiple protein sequences”, Comput. Appl. Biosci., T, 479-484 (1991).

[6] Gotoh, 0., “Optimal alignment between groups of sequences and its application to
multiple alignment”, Comput. Appl. Biosci., 9, 361-370 (1993).

[7] Ishikawa, M., M. Hoshida, M. Hirosawa, T. Toya, K. Onizuka, and K. Nitta, “Protein
sequence analysis by parallel inference machine”, Proe. Fifth Gener. Comput. Sys. '92,
294 299 (1092),

|8] Tanaka, H., M. Ishikawa, K. Asai, and A. Konagaya, “Hidden Markov Models and
lierative Aligners: Study of Lheir Equivalence and Possibilities”, Proc. Ist Int'l Conf.
lulel. Sys. Mol. Biol., 335-401 {1993).

[%] Barber, AM. and J.V. Maizel Jr, “SequenceFditingAligner: A multiple sequence
editor and aligner”, Gene Anal, Tech., 7, 39-45 (1990).

(10] Smith, 8., “Genetic Data Environment. version 1.0".

[11] Schuler, G.D., 8.F. Altschul, and .1, Lipman, A Workbench for Multiple Alignment
Construction and Analysis”, PROTEINS, 9, 180-190 (1991).

[12] Scharl, M., R. Schneider, G. Casari, P. Bork, A. Valencia, C. Ouzounis, and C,
sander, “GeneQuiz: A workbench for scquence analysis®, Proc. #nd Intl Conf. Intel.
Sys. Mol. Biol., (1984).

[13] Sneath. PILA., and R.R. Sokal, “Numerical Taxonomy”, Freeman and Company
(1973).

[14] Barten, J.G., and M.J.E. Sternberg, “A strategy for rapid mulliple alignment of
protein sequences”, J. Mol. Biol., 198, 327-337 (1987).

— 11 =

[15] Subbiah, 5., and 5.C. Harrison, “A Method for Multiple Sequence Alignment with
Gaps”, J. Mol. Biol.,, 209, 539-548 (1989).

{16] Hirata, K. et al., “Parallel and Distributed Implementation of Concurrent Logic
Programming Language KL1", Froc. Fifth Gener. Comput. Sys. '92, 436-459 {1092).

[17] Nakashima, H. et al. “Architecture and Tmplementation of PIM/m”, Proc. Fifth
Gener. Comput. Sys. 92, 425-435 (1992).

(18] Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt, “A Model of Evolutionary Change
in Proteins”, Atlas of Protein Sequence and Structure 5;3, Nat. Biomed. Res. Found.,
Washington DC, 345-352 (1978).

(19] Hanks, K.S., A.M. Quinn, and T. Hunter, “The Protein Kinase Family”, Science,
241, 42-52 (1988).

[20] Hargrave, P.A., “Seven-helix receptors”, Current Opinion Struc. Biol., 1, 575-581
(1991).

(21] Bairoch, A., “PROSITE: a dictionary of sites and patterns in proteins”, Nucleic
Acids Res., 19, 2241-2245 (1992).

[22] Saitou, N., and M. Nei, “The neighbor-joining method: A new method for recon
structing phylogenetic trees”, Mol. Biol. Evol., 4, 406-425 (1987).

