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Abstract

One popular approach to improving the performance of fine-grain concurrent languages is
to partition programs into threads. This requires static analysis to determine dependencies
between tasks, to avoid placing a cyecle within a thresd, In the context of concurrent logic
programuming (CLP) languages, dependency analysis requires mode analysis. Simple argument
modes are insufficient because dependencies can be hidden within complex ternis.

This paper describes and compares four compile-time analysis algorithms, based on seminal
wark hy Ueda and Maorita, for deriving the path maodes of concurrent logic programs. A path
describes a subterm of a procedure argument. The analyses are based on constraint propagation
over graphs, path partitioning, and model generation theorem proving. All four analyses were
implemented in KL1 to allow eritical comparisons. We discuss the issnes of completeness and
comjplexity, and present empirical performance measurements for a benchmark suite, to deter-
mine utility. We show that the time and space requirements of the analysis is comparable to
compilation, and that completeness is not problem for the programs studied.

1 Introduction

Modes in logic programs are a restricted form of types that specify whether a logic variable (or some
subterm thereof) is produced or consumed by a procedure. For example, in a pure logic program

with backtracking, a well-known feature of the list concatenation procedure are its two permissible

*contact author: 503-346-4436, tick@es.uoregon.edu



modes: either two input lists are consumed, producing their concatenation, or a concatenated
list is consumed, producing pairs of output lists (that if concatenated equal the input list). For
such nondeterminate logic programs, there are numerous methods for statically determining modes
1, 3, 4, 12, 15| and several optimizations afforded by the mode information, noteably converting
backtracking programs into functional programs, and specializing unification operators into matches
and assignments, and thereby making them execute faster.

Mode information has also been shown to be quite useful in the efficient compilation of inde-
terminate logic programming languages, i.e., “concurrent” (or “committed choice” ) logic programs
with no backtracking. However, few if any static analysis techniques have been demonstrated to
derive mode information. The problem is more difficult for these languages because there is no
fixed control flow driving the data flow analysis. This paper reports on mode analyzers based on
the seminal work by Ueda and Morita [23].

In concurrent logic programs, the logic variable is overloaded to perform synchronization. Mode
information can thus be used to optimize code generated for argument matching, to avoid suspen-
sions [22]. Pure demand-driven execution, also enabled by mode information, can lead to better
resource allocation and minimal work expended {10}, Another optimization that can be driven
by mode information is static partitioning of a concurrent logic program inte threads of higher
granularity, for more efficient multiprocessor execution [6, 9]. Mode information is useful not only
for compiler optimization but also for static bug detection. In the latter, the analyzer warns the
programmer that variable usage disobeys conventions (discussed in Section 2) and is thus likely to
be erroneous.

This paper explores methods of automatic mode analysis' for indeterminate logic programs and
not nondeterminate logic programs. Thus we need to clarify what is meant by a “mode,” which
differs in context. For logic programs, input mode usually means that the corresponding variable is
fully ground upon arrival at a procedure invocation. However, concurrent logic programs usually
bind data structures incrementally (because there is no underlying sequential control flow), and
thus attempting to derive useful instances of such a strict definition of input mode would fail.
Instead, we informally define possible variable modes as ‘in’ (meaning that a variable will not be
bound by the current goal) and ‘ouf’ (meaning that a variable will not be bound outside of the
current goal). There are slightly alternative definitions (7, 23], but ours suffice for the purposes of
this paper.

1.1 Review of Concurrent Logic Programs

We are interested in concurrent logic programs in the FCP(:, | ) language family [14] that includes
ask (passive unification for input matching) and tell (active unification for exporting bindings)
guards. This represents a broad class of flat committed-choice programs. Before we continue the
discussion of mode analysis and the goals of our research, it is best to review this language family.

'For completeness we are rompelled to mention that another option is user mode declarations [2, 16], although
we consider these either incomplete or too much burden on the programmer.
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Figure 1: Quicksort FCP(:, | ) Program: Normalized Form (Clauses 1-5}

Figure 1 shows a quicksort program used throughout the paper to illustrate the analysis techniques
discussed herein. A sample query would be: 7- g([2,1,3], v, [ ]), returning y = [3,2,1].

A committed-choice logic program in this family is a set of guarded Horn clauses of the form:
“Hi=A, ...,An:Th...,Ta | B1, ..., By" where m,n,p = 0. H is the clause head, A; is an Ask
guard goal, T; is a Tell guard goal, and B, is a body goal. The *:" operator separates the guard
types, and the commit operator ‘|’ divides the clause between the guards and body. If p = 0 the
clause is called a unit clause. A procedure is comprised of a set of clauses with the same principle
functor and arity for H. The guards are “flat” when they are system-defined builtins.

Tnformally, a procedure invocation commits to a clause by matching the head arguments {passive
unification) and satisfying the guard goals. When a goal can commit to more than one clause in
a procedure, it commits to one of them nondeterministically (the others candidates are thrown
away). Structures appearing in the head and guard of a clause cause suspension of execution if the
corresponding argument of the goal is not sufficiently instantiated. A suspended invocation may
be resumed later when the variable associated with the suspended invocation becomes sufficiently
instantiated.

The satisfaction of the ask guards requires matching whereas the satisfaction of the tell guards
requires full unification. There are basically two types of tell unification: atomic and eventual. For
practical reasons [19, 14] we consider only eventual tell, where in effect the unifications are executed
after commit. This corresponds to languages such as Strand and FGHC. Throughout this paper
we show only normalized programs that explicitly list tell guards to avoid any confusion.

A program successfully terminates when, starting from an initial user guery (a conjunct of
atoms), after some number of reduction steps, no goals remain to be executed, nor are suspended.
Alternatively, the program deadlocks if only suspended goals remain. A third result is program
failure, which in a flat language is an exceptional occurrence that signals program error.



1.2 Motivation and Goals

Ueda and Morita [23| proposed a mode analysis scheme for such programs, based on the represen-
tation of procedure paths and their relationships as rooted graphs {“rational trees”). Unification
over rational trees combines the mode information obtainable from the various procedures. For
example, in a procedure that manipulates a list data stream, we might know that the mode of the
car of the list {that is the current message) is the same mode as the cadr (second message), caddr
{third message), etc. This potentially infinite set of “paths” is represented as a concise graph.
Furthermore, a caller of this procedure may constrain the car to be input mode. By unifying the
caller and callee path graphs, modes can be propagated. The analysis is restricted to “moded™ flat
committed-choice logic programs. These are programs in which the mode of each path in a program
is constant, rather than a function of the occurrences of the path, Furthermore such programs can
have only a single producer of any variable {but multiple consumers are allowable). These are not
regarded as major restrictions, since most non-moded flat committed-choice logic programs may
be transformed (by the programmer) to moded form in a straightforward fashion {23].

The quicksort program is moded and in fact is fully moded, Le., the modes of all paths are known.
Quicksort can be used to illustrate the power of mode analysis. Quicksort can be entirely sequen-
tinlized (i.e., partitioned into a single thread), in the body goal order shown, by using the modes to
derive goal dependencies. A sequential implementation can outperform a parallel implementation
by better utilizing the underlying architecture by reduced procedure invocation overheads, better
register allocation, and other benefits. We wrote an experimental FGHC-to-C compiler in another
research project |9] to do this sequentialization, with the resuit that our compiler-generated C
program sorted a list of 500 integers in 2.2 sec. compared to 10.5 sec. on Monaco, a fast parallel
FGHC system 20| (on Sequent Symmetry). A handwritten C quicksort program (using the same
list-based algorithm) ran in 1.5 sec., only 50% faster than the transiated code.

We chose this example to motivate the point that significant performance improvements over
traditional systems (Monaco is the fastest multiprocessor implementation of FGHC that we know
of ) can be achieved with this technique, and the speeds are getting closer to optimized C. Although
more sophisticated partitioning, based on granularity estimation [6] or profiling [13], is needed
to retain multiple threads for parallelism, mode analysis (vr some equivalent) is still required for
safety, i.e., to keep cyclic dependencies out of a single thread.

This article presents a detailed description and empirical performance evaluation of four alter-
native algorithms for implementing this basic mode analysis concept. The most significant results
of this work are: 1) The analyzers presented are Lhe first implementations of the underlying theory;
2) The first empirical performance measurements of such analyses are presented; 3) The analyzers
proved to be competitive with compilation in terms of execution time and memory use require-
ments, and 4) It was found that the superior analysis technigques are based on graph unification
implemented by process networks, and model generation theorem proving (MGTP) implemented
by meta-compilation. These analyzers are either fastest or use the least memory, and proved to be
complete for the benchmarks studied. We have already started to incorporate the most promising



of these prototypes within a full compiler to enable some of the optimizations previously discussed.
This article is organized as follows. Section 2 reviews the notions of paths, modes, and Ueda and
Morita’s original concept of mode analysis. The [ollowing four sections describe specific algorithms
and implementations performing mode analysis: constraint propagation over a static graph (Section
3), conmstraint propagation over a dynamic (process network) graph (Section 4), partitioning a
finite-domain (Section 5), and model generation theorem proving (Section 6). The algorithms are
empirically evaluated and compared in Section 7 and conclusions are summarized in Section 8.

2 Background: Paths and Modes

Ueda and Morita's notion of “path” is adopted as follows: a path p “derives” a subterm s within
a term ¢ {written p(t) I s) iff for some predicate f and some functors a, b, ... the subterm denoted
by descending into { along the sequence {< f,i > < a,7 >,< b,k >,...} (where < f,i > is the it
argument of the functor f}is s. A path thus corresponds to a descent through the structure of some
object being passed as an argument to a function call. f is referred to as the “principal functor” of
p. A program is “moded” if the modes of all possible paths in the program are consistent, where

vach path may have one of two modes: in or eut. The following definitions are from Ueda and

Morita [23].

Definttion: Pasom 15 a set of paths which begin with predicate symbols. Pygpp, is a set
of paths which begin with function symbals. a

Ezample: Considering the quicksort example, < ¢/3,1><./2,2 ><./2,1> € Pyom,
<. J2,2>< . /2,1> € Proem o

Definition:  We define the set of modes M = Py — {in, out}. This means that a
mode assigns either in or eul to every possible path of every possible instance of every
possible goal. O

Frample: Considering the quicksort example, the cadr of the first argument of proce-
dure g/3 has an input mode specified as: m{{< ¢/3,1>, <./2,2>, <./2,1>}) = .
O

Definition: For a mode m € M and a path p € Pytom, & submode of m, denoted m/p,
is a function from Py, to {in,out}, such that ¥q € Prem((m/p)(g) = mipg))- o

Ezample: Considering the quicksort example, when p = < ¢/3,1 >< ./2,2 >, m/p
represents a function from a set of the paths from the cdr of the first argument of
procedure g/3 to {in, cut}. a

All analyses presented in this paper exploit the rules outlined by Ueda and Morita. Their
axioms are restated (in a slightly different form) in Figure 2.



§1.

§2.

§3.

G4,

For some path p in a clause, m(p) = in, if either

1. p leads to a non-variable in the head or body, or

2. p leads to a variable which oceurs more than once in the head, or

3. pleads to a variable which also occuts in the guard at path p, and mip;) = in
Two arguments of a tell unification have opposite modes, for all possible g, or more formally:
mi <=2 1% # mf <=/2,2> iLe, Vpm{{<=/2.12} p) # m{{<=/2,2>}.p)
If there are exactly two “occurrences,” we have two possibilities:

1. If both eccurrences are in the body, the modes of their paths are inverted.

2. If there iz one {or more} occurrence in the head and one in the body, the modes of their

paths are the same.

If there are more than two “ocourrences” of a shared variable (e, at least two occurrences in

the body). the situation is even more complex:

1. If the body contains more than two occurrences of the shared variable and the head has
no occnrrences, then one of the modes 2 out, and the othems ave . This means that
one of the occurrences is designated as the producer of this variable.

2. If the head contains one (or more) ocenrrences of the shared variable (so the hody has
two or more oceurrences ), then the modes are as follows:

(a} I the mode of the head occurrence is in, the modes of all body occurrences are in
as well,

[bjl If the mode of the head occurrence i out, then ene of the hnﬂy ocourrenoes s oul,
and the other body occurrences are in.

Figure 2: Ueda and Morita’s Mode Derivation Axioms (for Moded FGHC)

3 Constraint Propagation Algorithm

In the constraint propagation algorithm [21], a graph is constructed representing the entire pro-
gram.? hierarchically, we compute and combine graphs at three levels: modules, procedures, and
clanses. Top-down, we envision first constructing such a graph for each module of the program,
and then connecting the graphs via imported fexported procedures. Within a module, we utilize
this same strategy of first constructing procedure graphs [“local” analysis) and then combining
graphs via inter-procedure call sites. Within a procedure, we first construct clause graphs, and

then combine them via the heads.

*To simplify the description of all the nlporithms we disenss the analysis of o gingle progrum, rather than a
collection of program modules. Currently all the implementations globally analysis a single program at one time.
However, proper software engineering of these prototypes can easily produce incremental tools that can analyze single

modules in isolation (given mode nformation stored away from previous analyses of other modules).
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Figure 3: Tnitial Graph of Procedure ¢/3 (Clause 2), After Phases I-I1

Graph combination is formally unification, as described in section 3.3. The methodology is
guaranteed to terminate because graph unification can only reduce the structural complexity. Ter-
mination occurs when no further reduction is possible. However, the scheme is not guaranteed to
terminate in the minimum number of graph reductions. In the future we intend to experiment with

heuristics to guide graph rednction to quicker termination (see Section 3.3).

3.1 Data Structures

A program graph is a directed, multi-rooted, (possibly) cyclic graph composed of two types of
nodes. To clearly illustrate the following definitions, Figure 3 presents a portion of the quicksort
program graph. This portion corresponds to the initial graph for procednre q/3 (clause 2).

Definition: A structure node (drawn as a square) represents a functor with zero or more
exit-ports corresponding to the functor’s arity. If the node corresponds to a procedure
name (for clanse heads and bady goals), there are no associated entry-ports (i.e., it is
a root). If the node corresponds to a data structure, there is a single entry-port linked
to a varighle node unified with that term. A structure node containg the following
information: a unigue identifier, functor, and arity. r

Erample: Consider node 8 in Figure 3 holding the list functor of arity two. The entry-
port connects to variable node 6 (u;) and the two exit-ports connect to variable nodes
9 and 15 (z; and vs; respectively). a

Definition: A variable node (drawn as a circle) represents a subset s of (unified)
variables in a clause. Intuitively we think of these variables as aliases, and upon initial
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construction of the graph, s is a singleton (i.e., each unique variable in the clause has its
own variable node initially}. A node contains k > 1 entry-ports and 7 > 0 exit-ports,
upon which directed edges are incident. A unique entry-port corresponds to each clause
instance of each variable in 5. An exit-port corresponds to a possible unification of the
variable(s) to a term (exit-ports connect to structure nodes).?

A variable node contains the following information: a unique identifier and a modc set m.
An element of m is a vector of length k containing self-consistent modes for the variable
instances of 5. To facilitate the implementation, each entry-port has a name the
identifier and exit-port number of its source node. Elements of m are alfernative mode
interpretations of the program. Initially m is computed by Ueda and Morita’s rules.!
intuitively, graph reduction results in removing elements from m as more constraints
are applied by local and global unifications. A fully-reduced graph, for a fully-moded
program, has a singleton m in each variable node. o

Erample: Consider node 15 in Figure 3 with entry-ports named (8/2,4/2). node 15
holds variable vs; with mode set {{in,out),(out,in}}. this set derives from rule §3.1 in
Figure 2. O

In general, initial graphs, like that in Figure 3, will be multi-rooted directed acyclic graphs.
The initial roots correspond to clause head functors, body goal functors, and unification vperators.
In addition to the program graph, a partitioned node sef is kept. Initially, each node is a singleton
member of its own partition (disjoint set).

The mode analysis consists of three phases: i) creating a normalized form and initial graph;
ii) removing unification operators from the graph, and iii) reducing the graph to a minimal form.

These are described in the fullowing sections,

3.2 Graph Creation

Phase I converts a flat committed-choice program into normalized form, an example of which is
shown in Figure 1. Normalized form ensures that all variables are renamed apart among clauses
within the same procedure and that each clause is flattened, i.e., all head structures and body goal
structures are moved into ask and tell guards, respectively. An initial program graph is created
from the normalized form, including mode sets for each variable node. The normalization implies
a graph invariant that structure nodes cannot point to structure nodes {and variable nodes cannot
point to variable nodes): the graph is a “layered network” (with cycles).

There is a minor trick required to deal with certain unification operators in phase L. Naively, a
goal = = f(y) would result in a structure node (=/2) pointing to another structure node (f/1). To

*An invariant preserved by unification is that no two child (structure) nodes of the same parcnt (vanable) nede

can have the same functor/arity (sec discussion in Section 3.3).
“The size of m increases with the complexity of the rules, e.g., rule §4 (figure 2) can produce several vectors. By

explicitly enumerating all possible modes initially, we simplify the analysis immeasurably.

]



guarantee the invariant of a layered network, a dummy variable node is place as an intermediary
between these two structure nodes. This is effectively a nameless placeholder.

In phase II we remove all root nodes corresponding to builtin predicates. Intuitively, these
predicates have fixed modes and thus their reduction acts as the boundary conditions anchoring
subsequent constraint propagation by unification, After phase II, the resulting graph contains roots
named only by clanse heads and user-defined body goals. We list the reduction methods below.

e Passive unify operator in the ask guard (all head unifications have been normalized into the
guard). The structure node corresponding to the operator has two exit-ports indicating the

operands of the unification. The two variable nodes attached to these exit-ports can be merged
as follows. A cross-product of two mode sets is taken, resulting in a set of vector pairs. We
retain those pairs that have in mode for both entry-ports arriving from the unification node,
and discard all other pairs. The two vectors in each remaining pair are concatenated, forming
a new mode set. The two variable nodes are fused into one node containing the new mode set
just computed. The entry-ports and modes corresponding to the unify operator are removed.

e Active (tell) unification goal. A similar merging operation is performed, keeping only those
vector pairs that have opposite modes at the positions corresponding to the entry-ports ar-

riving from the unification node (rule §2 in Figure 2).

o Other bujltins. The modes of the variables in builtin goals are assigned by definition. For
example, arithmetic assigns all HHS variables to in and the LHS variable to oul. Vector
builtins are assigned assuming that vectors remain fully ground throughout their lifetimes —
this assumption is usually correct, but of course can lead to incorrect analysis. Unfortunately,
given the aliasing problem, there iz no way we know of to gnarantee correct mode assignment

io vector elements.

3.3 Abstract Unification

Phase 111 of the analysis is to reduce the graph to a minimal form by successive node unifications.
We perform “local” reduction first by collapsing recursive call sites (by abstract unification) with
associated clause heads. Next we perform “global” reduction by unifying root nodes from different
procedures. The abstract unification algorithm is the same, however, for any two (node) arguments,
local or global.

Figure 6 gives the gemeral graph unification algorithm (a particular feature of the algorithm
has been purposely removed to simplify the exposition: this is discussed in the next section). We
use the notation that a variable node v has the fields: v.in (vector of entry-ports, each of the form
id/indez, where id is the parent’s node identifier and index is the parent’s exit-port index), v.out
(set of exit-ports), and v.modes (set of mode vectors). a structure node s has the fields: s.out
(vector of exit-ports), and s.fun (functor farity).

Unification is invoked as unify(a,b) of two nodes & and b (necessarily root structure nodes).
The result is either failure, or success and a new graph (including the node partitioning) that

10



unify{a, b) {
Wa,b clear mark({a,b}) {1)

sunify(a, &)

}
sunify(a, b) {
if a.fun # b.fun
return(failure)
if mark({a,b}} clear then {
set mark({a,b}) ()

Wk € L arity(a)] {
if vunify(a/k, a.out[k], b/k, bout[k]) failure then
return(failure)

returnisuccess)

bk

vanify(i, ay, 7, by} {
a = findset{a,}
b = find set(b,)
if mark{{a.b}) clear then |
set jark({ab})
¢ = unionjab) (3}
— compute the compatible mode set
define u s.t. ainjul =1
vat binfy =7
p = a.maodes % bomodes
p=1{ls.t) €p | sfu] =t} (4)
if (p empty) then
return(failure}
comodes = { 3 || (Mg, Mz, e, Mo, Megr, oo g |
{s,8) € p', = (M, g, My, o) | (5)
— compnte the entry-port identifiers
let {py, Pos ooy Py o i) = blin
CRUEER R “ [pl'imr'“! \'-—irpv-i-h*-'imli} {ﬁ}
— compute the exit-ports identifiers
u=a.out U bout
s = |afun | & € a.out}
fo=lafun | &€ bout}
i={s| fune fo N fy, s.funeu}
coout = a.out U 4 (7)
— unify children with the same functor/arity
Yz, y) | ©€ a.outy€ bout {

Sf I.‘ﬁll’l = y’fﬂ-ﬂ
if sunify(z, y) failure then (8)
return( failure)
return(suecess

}

Figure 6: One-Pass Rational-Tree Unification Algorithm
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represents the most general unification (mgu) of the two operands. implied data structures used
by the algorithm include the graph, the disjoint sets (i.e., node partitioning), and a mark table
associated with pairs of nodes.”

Procedures sunify (structure node unification) and wvunify (variable node unification) follow
recursive descents. Initially all marks are cleared (1). Circular structures that represent infinite
paths are handled properly by marking node pairs at first visit (2). If a given node pair has been
previously marked, revieiting them immediately sncceeds. Note that we mark pairs instead of
individual nodes to handle the case of unifying cyclic terms of unequal periodicity.

Two important operations for the disjoint sets data structure are union(z,y) and find_sei(z).
Function union{z,y) unites two disjoint sets, where = belongs to the first disjoint set and y belongs
to the second disjoint set. Procedure union returns the canonical name of the partition (3), 1.e.,
the least identifier of the nodes. This facilitates reusing graph nodes while rebuilding the graph.®
function find_set{z) returns the canonical name of the disjoint set containing z.

The major complexity in the algorithm is in procedure vunify, where the abstract unification
must merge the modes of the two argument nodes. First, mode vectors that are contradictory are
discarded (4). If all mode vectors are contradictory then a mode error has occurred and unification
fails. Otherwise redundant modes are removed and the two mode vectors are concatenated (5).
Next we create the entry-port identifiers associated with the new mode vector (6). Lastly, children
of the argument nodes that share equal functor /arity must be recursively unified (8) The exit-port
identifiers consist of a single exit-port for each pair of children unified, included with exit-ports
for all children for which unification does not take place (7). Intuitively, a variable node forms
or-branches with its children, whereas a structure node forms and-branches with its children. In
other words, the least-upper-bound (lub) of the abstract unification semantics at a variable node
is a union of the structures that potentially concretely unify with the variable node.

Local analysis continues with unification of roots among clauses composing a single procedure
definition. Local analysis terminates when no two roots have the same functor and arity within a
procedure graph. This is perhaps not a time-optimal strategy, but was selected, in our prototype,
for its simplicity. Analyzing non-recursive clauses first, and then unifying these clause-head roots
with recursive call sites in other clauses, is expected to terminate faster. The rationale is similar to
quickly reaching a fix point in abstract interpretation by approximating recursive calls with their
corresponding non-recursive clause input/output relationships.

After local analysis we perform global analysis which unifies roots among different procedure
graphs. Global analysis terminates when each root in the entire program is unique.

*MNote that the new graph returned by unify has the same number of nodes as the original graph. However, for
practical purposes either of the input roots can be discarded, turning unneeded nodes into garbape. The key point is
that the graph muost always be traversed according to the node partitions, so as the partitions grow larger, effectively
the graph shrinks. To ensure that the graph shrinks in practice, unneeded nodes must be explicitly removed from

the graph, an operation that we do not detail here.
“Optionally, the canonical name can be defined to be & new identifier, avoiding node reuse, This might facilitate
searching for the modes of top-level variables, e.g., for data-dependency analysis.
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Ezample:  Reconsider the quicksort program {Figure 1) to illustrate the unification
algorithm. First, we consider the second clause of ¢/3 and construct the graph in
Figure 3. Each node of the graph is assigned a unique identifier, Then entry-ports,
exit-ports, and modes are shown.

We start the local analysis for this graph by unifying the node 1 with node 3. The
result of this unification is shown in Figure 4.7 that is we unify all three corresponding
argument positions of both nodes. The first pair of arguments unified is node 5 (entry-
port 1) with node 13 (entry-port 2). Initially these nodes belong to their own partitions,
so find_sef returns 5 and 13. The union returns the canonical name 5, the minimum of
the two. Thus node 5 is overwritten with the new (fused) variable node.

For example, all possible modes of node 5 entry-ports are {(in)} and the mode set of
node 13 is {(in,out),(out,in)}. the cross-product set is {{in)} x {(in,out),(outyin)} =
{(in,in,0ul), (in,out,in)}. Element {(in,in,oul}} is discarded because the first and the
third positions (instances, or entry-ports, of the unified argument) do not match. Thus,
the legal cross-product set is {(in,out,in)}. This is reduced to the mode set {(in,out}}
and entry-port vector (1/1,2/3), removing redundancies. Note that by fusing the entry-
port vectors, the edge from node 2 to node 13 has effectively been rerouted to fused
node 3.

Exit-ports need to be traversed in a recursive descent. In this case, the exit-port of
node 5 is simply inherited by the new node since node 13 has no children. Then the
second and third arguments of nodes 1 and 3 are unified, resulting in Figure 4. Node 1
and node 4 arc then unified {not shown). This is the final local unification possible for
clause 2 since all rools now have unique functors. We then do inter-clause analysis of
g/3, unifying the roots of the two clauses of /3 (not shown). This represents the most
information that cau be derived from q/3 alone. The s/4 modes are similarly derived
locally, and then global analysis is performed, unifying the s/4 graph with node 2 of the
/3 graph. We show only the final resultant graph with all mode ambiguities removed
in Figure 5.

Note that proper interpretation of the path modes requires the nse of Ueda and Morita's
“polarity rule” [23]. Thus if the path from a root passes through an odd number of oui
modes (each attached to some variable node in the path), then the final mode is the
apposite of that listed. For example, {<¢/3,2>, <./2,2>} passes throngh mode out
at node 6 (Figure 5) and terminates at mode in at node 6. Thus its correct mode is
out. O

"By convention we temove nodes 3, 12, and 13 from the illustration to clarify that they represent redundant
information. In the implementation, these nodes might be kept in the graph if space was not a critical resource.
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g — true: true | f{_2), W{E). (1)
FIX\Y) = ¥V =B(X) : true | fIX,). (2)
R{b(a(W))) - true: W=a | true (3)

Figure 7: A Program with a Mode Contradition

3.4 On Completeness

Unification as previously specified is not complete in degenerate situations of the type illustrated in
Figure 7. In this case, variahle X within procedure f/2 must not produce output for the program
to he moded. If it did produce output, it would be sent out through the head and into the self-
recursive call: a contradiction. Note that procedure /1 induces X to produce output a. However,
our previous unification algorithm will not detect the mode conflict. The heart of the problem lies

within f/2 which does not explicitly mention structure s/1. If 5/1 were introduced into this clause:
fIX,Y) — X=s(1), ¥ =bX) : true | f{X,.)

the contradiction would become apparent to our analyzer. In general, however, it is impossible to
determine which structures are relevant to a given clause.

The key point is: whenever a shared variable is passed, perhaps indirectly, to both a procedure
head and a corresponding self call, we must not lose sight of rule §4 in Figure 2. This is a degenerate
form of the rule because the occurrences within the head and self call must have identical modes.

To ensure that this constraint is enforced, in the complete algorithm variable nodes potentially
go throngh three states: normal, multiway, and shared. Initially, a variable node is marked multiway
if it is moded by rule §4, otherwise it is normal. If during graph reduction a multiway node is unified
with itself, its status changes to shared. Unification of normal and multiway variable nodes proceed
as previously described. However, unification of a shared variable node with another variable node
(of any type) is treated specially. This is precisely the case that captures X in the example above.

First, the unification of the variable nodes themselves is performed as usual. However, the
recursive descent is modified. If all mode vectors within the fused variable are in on the unification
path, then this particular variable occurrence (represented by the entry port) is a consumer in all
possible scenarios. In fact, all variables within terms bound to that variable must be consumers also
because any producers would cause contractions as illustrated in the previous example,

During the unification’s descent from the fused node, recursive unifications of child pairs proceed
normally ({8) in Figure 6). However, singleton children for which unification does not take place
are ne longer inherited (cf. (7) in Figure 6). These children are not safe: they may erroneously be
producers. Thus we descend each such child, removing all mode vectors with ouf along our path.
This removes all contradiclory scenarios, potentially resulting in an empty mode for some node,

i.e., unification failure.
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4 Process Network Analyzer

The previous constraint propagation algorithm was alternatively implemented by a process network
wherein each node of the graph was an active, concurrent process. Nodes communicated by message
passing over streams to accomplish reduction. The motivations for moving the graph from a static
data structure to an active process network are: 1) concurrency is increased because updating the
graph no longer bottlenecks the computation; 2) unification of graph nodes corresponds to merging
node processes, thus resource requirements made by the analyzer decrease as execution proceeds,
and 3) an active process network is an elegant paradigm for this problem. This is an implementation
alternative for the previous algorithm: it inherits completeness from that algorithm.

Translating the previous algorithm (Figure 6) requires the specification of how recursive uni-
fication can proceed via message passing, how the distributed unification can terminate (both
successfully and by failure}, and how the final mode information can be read from the reduced

graph. These issues are described in detail in the following sections.

4.1 Distributed Unification

A node process is defined to manage a graph node (either a variable or structure node). The node
process contains state holding a unique integer identifier, a symbol {functor farity for structure
nodes and the atom *$VAR’ for variable nodes), mode information, and a flag indicating if the node
is from a clause head. Mode information consists of a set of mode vectors and a vector of entry
ports, as described in Section 3.1. In addition, a node has an input stream, a list of output streams
to children, and a global termination flag.

A node process acts on the following messages:

e unify(+Id,+50,-51,+Parents,+Ans,+Done): receipt of this message indicates that this
node is requested to initiate a unification with node Id on input stream 50. Parents are
the two parent nodes who made this unification request. The results of the unification are
51 which is the tail of the strcam to node Id and Ans, a short-circuit chain for unification
termination. Done is the short-circuit chain for message termination.

» who(-Info,-In,-Out,+Done): receipt of this message indicates that this node is to be unified
with another node, and therefore this node is to be terminated. Before termination, the state
of the node is passed back to the initiator node via back-messages: Info, In, and Out. Done
is the short-circuit chain for message termination.

e echo(+Path,+Done,+Parent ,+Polarity,-Out): Path is a list of steps representing path
from the root, the outpmt Dut is produced by joining this path with the mode of this node.
The mode at this node is dependent on inputs parent and Polarity. The parent is needed to
select the proper element of the mode vector(s): if all vectors agree in mode, the node’s mode
is in or out. if the polarity is odd, the mode toggles. Otherwise, if any two vectors disagree,
the mode is dk (dou't know). Done is the short-circuit chain for message termination.



® kill: terminate this node process after sending kill messages to all children. This message
only appears during destruction of the entire graph after algorithm completion.

s [1: if the inpul stream is closed, this node closes all of its child streams. Closing streams
simply shuts down mergers associated with this node but does not terminate the children, cf.
kill.

The implementation shared phases I and IT with the previous algorithm, and then spawns a
node process network from the static graph definition. The root list is grouped into pairs which are
unified, then these resulting trees are unified and so on, forming a logarithmic tree of unifications.
There is no attempt to sort the unifications to reduce the necessary work.

A node that receives a unify/6 message is the “active” member of a reduction. It sends a
who/4 message to the “passive” member, who returns all its state information on a back message
and terminates itsell. For structure-structure unification, the node symbols are compared and if
matched, the active node sends unify/6 messages to one member of each pair of children. otherwise
[ailure occurs.

For variable-variable unification, first the mode sets must be merged as described in Figure
6. If the merge is suceessful, then only children with matching functors are unified, by sending
unify/6 messages. Non-matching children are simply appended to the output stream list of the

active node. If the mode set merge is a failure, then the unification fails.

4.2 Terminating Unification

There are two levels of termination occurring within the analysis: termination of an individual
{tree) unification and termination of the entire {graph) unification. The former is accomplished
by stringing a short-circuit chain through all nodes involved in a root-to-root unification. The
far left-hand link is bound to 'ves'. Each successful node reduction shorts the chain. An failing
reduction binds the right-hand link to ‘no’ which propagates to the far right-hand link.
Termination of the entire graph reduction is accomplished in two ways. successful termination
must be indicated only after all messages have been processed. We string a short-circuit chain
through every message to handle this. When a message is read, its link is shorted, and when
all messages are read, the far left-hand link and far right-hand link are shorted. Additionally, if
an individual tree unification fails, a global termination variable is set appropriately. All nede
processes share this termination variable and will discard all incoming unify/6 messages once it is

set.

4.3 Accessing the Graph

As described above, the graph can be accessed by echo/B messages. A node must be careful not to
propagate an echo message if it already appears in the path contained in that message. This rather
arbitrary method cuts cycles in the graph immediately. We could elect to dump out cyclic paths of
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any depth, but for the purposes of comparing the algorithms in this paper, all the analyzers were
normalized to produce the same non-cyelic output.

4.4 Comparison with Static Analysis

Both of the previous analyses are complete, and being based on the same underlying algorithm,
deserve qualitative comparison here before we introduce later empirical measurements in Section 7.
The primary difference between the two implementations is that the active graph is fully concurrent.
The static graph is sequentialized by necessity to update the graph consistently, One fix would be
to partition the graph into independent subgraphs (finding the strongly-connected components of
the call-graph), allowing concurrent reduction.

In general, the process network analyzer was more difficult to build than the static graph
analyzer because the active graph confuses debugging. However, compared to other distributed
algorithms, debugging was not overly burdensome because our abstract unifications monotonically
approach the final state.

1 From profiling information we determined that the active graph analyzer spends most of its
time checking for self-unification of a node (necessary for circular unifieation) and (to a lesser
degree) manipulating mode vectors. To check for self-unification, we instituted a naming scheme
wherein the identifiers of two nodes to be unified are concatenated to form the identifier of the
new node. Thus node identifiers grow in size during reductions, and although we use difference
lists to concatenate cheaply, the cost of checking membership within an identifier list grows. An
alternative would be to allow both nodes to live {currently we terminate one of them to save
space), and update the state in each to indicate the current minimum identifier of the alias set.
We have not yet experimented with this option (it is very similar to method used in static graph
implementation).

Mode vector manipulation requires finding the indices (within the vectors) of the mode elements
being compared, and concatenation of the two vectors (less the duplicate mode element which is
removed). Time is spent about equally between these main functions. Quickly finding indices
requites a more sophisticated data structure than the current list. Quick concatenation requires
either difference lists or bit vectors. Both are complicated by the removal of duplicate elements. In
fact, the static graph implementation elected to forgo duplicate removal and used difference lists
for mode vectors. This contributes to the increased space requirement for the static graph analysis
(Section 7). The active graph implementation uses standard lists with removal. We need further
experimentation to determine the best solution.

The space complexities of the active graph analyzer lie in spawning a process for each graph
node. This working set churns through memory more quickly than the static graph implementation
(which can exploit local memory reuse in PDSS to keep data copying low). Currently we do not
constrain the number of processes, but this could be accomplished in the manner opposite to
parallelizing the static graph analyzer: first finding groups of strongly-connected components of
the program’s call graph, and then analyzing only one group at a time. For example, a short-circuit
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chain could be used to force synchronization between one group and the next. In a multiprocessor
system, explicit load distribution of the groups would be needed.

5 Finite Domain Analysis

In an effort to avoid circular unification altogether and much of the overheads of maintaining the
graph, either statically or actively, a radically different algorithm was developed [8]. The first stage
of this alternative algorithm generates a finite set of paths whose modes are to be considered. Only
“interesting” paths are generated in the first stage of the algorithm: effectively those paths locally
derived from the syntactic structure of the procedures. There are three classes of interesting paths.
The first class consists of paths that directly derive a named variable in the head, gnard, or body
of some clause. All such paths can be generated by a simple sequential scan of all heads, guards,
and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where a proper
path through the opposite side of a unification with » derives a variable +'. More formally, consider
a unification operator v = f where v is a variable and ¢ is some term other than a variable or
ground term. Let v' be a variable appearing in ¢ at path g, ie., ¢({) F v". Then if p is a path
deriving » (by which condition p is also interesting), then the concatenated path p - g is also an
interesting path. All paths in this second class may be generated by repeated sequential scanning
of all unification goals until no new interesting paths are discovered. The necessity for repeated
scans is illustrated by such clauses as “a(X,Z) - true: V = (X)), & = HV)| true” where the
interesting path {< a/2,2>, <b/1,1>, <efl1,12} given by the first tell unification goal will not
be generated until the interesting path {<a/2,2>, <b/1,1>} in the second tell unification goal is
generated. Such repeated scans should oceur infrequently in practice. Tn any case not more than
a few scans are necessary — no greater number than the syntactic nesting depth of expressions
containing unification operators.

The third class of interesting paths iz generated by noting that if a path starting on the right-
hand side of a tell unification goal (i.e., a path of the form {<=/2,2>} 5} is interesting, then so is
the corresponding path starting on the left-hand side of that unification (i.e., {<=/2,1>}-s).

In general, all interesting paths of a program are generated in a few sequential passes. The 39
interesting paths of quicksort, shown in Table 1, are generated in two passes. Note the correlation
between these paths and the infinite paths represented in Figure 5. A depth-one traversal of
the graph (which we call the “broken” paths in Section 7) produces all the interesting paths,
in addition to two other paths: {<¢/3,2>, <./2,1>} and {<¢/3,2>,<./2,2>}. These two
paths are “hidden” because they cannot be derived from clause 2 of g/3 alone. However, the
set of interesting paths produced is sufficient to mode the program in the sense of assigning an
unambiguous mode to all syntactic variables. An important question is whether a finite set of paths
represents a minimal and complele set of paths for the mode analysis in general. Unfortunately,
this is not the case, as 1s discussed below.
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input output

user builtin user builtin
{<s/4,15] {<'<’f2>} [<a/3.2>} {<=0/2,15}
{< sf/4,2>] {<<'/2,12}) {< 8f4,3>}) {<=1 2,13}
{< a/3,1>} (<'>'/2,2> {< 8/4,4>} (<=2/2,1>]}
{« q/3,3>) j<'z'/2,1>} [<8/4,3>, <. j2,1>} | {<=3/2,1>)
[<q/3,1>, <.j2,1>} | {<=0/2,2>} [< 8/4,3>, <. /2,25) [ {<=4/2.15}
[< /31>, <.f2.22} | {€=1/2.2>) {<8/4,4>, <213} | {<=3/2,1>, <./2,1>}
[ q/3,3>, <. /2 1>} |{<=2/2,2>} {<s/8,4>, < /2.2>} | {<=3/2,1>, <./2,2>)
[<q/3.3>, <. /2,2>} | {<=3/2,25} fa=4/2,1>, <. /2,1>]
[< sfd, 1>, <./2,1>} | {<=4/2,2>}) {c=4/2,1>, <. [/2,2>}
{< s/ 1>, <. [2.25) | {<=3/2,2>, <./2,1>]

{e=3/2,2>, <./2,2>}

[€=4/2,25, <./2,1>}

{<=4/2,2>, <. /2.2>}

‘Table 1: Interesting Paths of Quicksort {23 input, 16 output)

Once we have generated a set of interesting paths, our algorithm proceeds by simply noting
the modes of paths, first directly, and then by examining relationships between paths. There are
essentially four different stages in the algorithm:

1. Assert absolute modes for some paths.
9. Assert that all paths on oppusite sides of a tell unification have opposite modes.

3. Proceed seguentially through the variables derivable from intcresting paths, asserting all
binary relations between paths.

4. Repeatedly consider multiway relations (rule §4 Figure 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential in the number of
variables, but by the time it is actually performed, most alternatives contradict the known modes,
and thus are not explored. We found multiway analysis contributed only 11% on average to the
total analysis exccution time, with one benchmark showing an extreme of 33% (see Section 7.1}

5.1 On Completeness

Some important practical and theoretical issues are raised by this algorithm. Some of these issues
include the consistency, completeness, and safety of the mode analysis. It is not difficult to prove
that the mode analysis algorithm is consistent in the sense that if, at some point in the analysis,
path p is shown to have mode m, and if some subset of the interesting paths implies that p does
not have mode m, then the algorithm will derive and report this contradiction.

The major barrier to the consistency of this algorithm is somewhat subtle: the non-modedness
of & program may not be detectable if the analysis uses the wrong set of paths! This leads directly
to a reasonable definition of a complete set of paths. A set of paths generated for a program is
complete iff the existence of a consistent moding for the set of paths implies that the program is
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fully moded. {Recall that we say a program is “fully moded” if the modes of all paths are known,
and “moded” if the modes of some paths are known).

Thus, the infinite set of all possible paths is a complete set; however, we are interested in finite
complete sets and in particular in a minimal complete set of paths for the program. Our path
generation algerithm is incomplete; because of this incompleteness in path generation, the mode
analysis algorithm we constructed is unsafe. It is a consequence of the incomplete set of generated
paths that even if the program contains information about the mode of a path, that information
may not be derived by the mode analysis algorithm. Thus, the analysis is unsafe in the sense the
compiler may not detect mode contradictions in erroneous (not fully-moded ) programs, and thereby
produce erroneous mode information for programs that should be rejected altogether. Nonetheless,
most generated paths in typical programs are moded by the analysis, and if the program being
analyzed is known to be moded, all modes derived are correct. Thus, the analysis algorithm can
be a practical tool for many compiler optimizatlions.

In the next section we introduce another analysis technique that also loses completeness, but in
a rather different way. Here we map the cyclic constraint graph onto axioms for theorem proving,
which proves to be incomplete when limiting the nesting depth of axiom invocation. The analyzer

is quite interesting and is shown to be “more” complete than the finite domain method.

6 DMode Inference Method

This section describes mode analysis for concurrent logic programs with a Model Generation The-
orem Prover (MGTP) [5]. Made analysis is a kind of fixed-poinl computation what corresponds
to generating a model in MGTP. The generated model includes information which let us know the
variable's mode and the mode consistency of the program. In this section we first describe how
maodel generation theorem proving works and how the problem of mode analysis s mapped onto
the theorem prover. We then discuss the issue of completeness how it relates to the finite domain

analysis.

6.1 Model Generation
An MGTP clause is represented by an implicational form:
1‘11,142,.._114“ — i Cs Poess g Crm

where 4; {1 <4 < n) and €; (1 < j < m) are atoms (atomic formula) ; the antecedent is a
conjunction of {4;, A;,..., An}; the consequent is a disjunction of {C,Cy,...,Cx}. A clause is
said to be pesitive if its antecedent is {rue (n=0), negafive if its consequent is false (m=0), and

otherwise mized (m #£ 0, n £ 0). The following two rules act on the model generation method:

¢ Model Extension Hule: If there is a clause, A — C, and a substitution & such that Aes
is satisfled in a model candidate M but C'v is not satisfied in M, then extend the model
candidate M by adding Co to M.
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Cy: plX),s(X) — false. @

Ca:  g(X),s(Y) = false. /E‘\
‘3 q(X) = s(f(X). p(a) q(b)
Cot 7(X) = s(X), A o

Cs: p(X) — q(X);r(X).

a sl f(b
C$ o lrue —p ﬂ}; l!}“i'}, q{ :I ﬂ:ﬁ} {.f[ ]]

Cs | o ‘ Cz
(@) s
¢ o
kS B

Figure 8: Sample MGTP Program and its Proof Tree

s Model Rejection Rule: If there is a negative clause whose antecedent Ac is satisfied in a
model candidate M, then reject M.

Model generation attempts to construct a model for a given set of clauses, starting with a null
set as a model candidate. A model candidate M is a model of the given set of clauses if the above
two rules cannot be applied to M. If the clause set is satisfiable, a model should be found. This
method can also be used to prove that the clause set is unsatisfiable, by exploring every possible
model candidate to ensure that no model exists for the clanse set.

Ezample: To illustrate, Figure B shows a proof tree for toy problem, We start with an
empty model candidate, My = ¢. My is first expanded into two cases, M) = {p(a)} and
My = {g(b)}, by applying the model extension rule to Cg. Then M; is expanded by 5
into two cases: My = {pl(a),q(a)} and My = {p(a),v(a)}. Mj is further extended by (3
to Ms = {p(a),q(a),s(f(a))}. Now with My, the model rejection rule is applicable to
(y: thus M is rejected and marked as closed. On the other hand, My is extended by
Cy to Mg = {pla), v(a),s(a)}, which is rejected by ;. Similarly, the remaining model
candidate Ms is extended by C3 to M7 = {q(b), s( f(b}}}, which is rejected by Ca. Now
that there is no way to construct any model candidate, we can conclude that the clause
set is unsatisfiable. O

6.2 Mode Analysis in MGTP

In the mode inference method, formulae representing mode constraints [23] are translated into a set
of MGTP clauses. Mode analysis of the entire source program is reduced to computing a model of
this set of clauses. We outline transformation from mode constraints to a set of clauses for MGTP
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Mode Constiraints

MGTP Clauses

mi<q,1>)=1in

m/<q,2> = m/<q,3>
mj<g l><_,1>= mf<p 2>
mf<g l>< 1> = mf<q,3><. 1>
mi<p,2>= mf<g,3=< 1>
mf<g,1><,2>= m/<p, 1>
mf<g,2>= mf<g,2>
mf<g,3> = mf<q,3>
m/<p,3> = m/<q 1>
m/<p,d>= mf<q,l>
ml<g,3>) =in
m/<q,3><.,2>= mf<q, 2>
ml{<p,1>)=1in

m{<p,3>) = out
ml<p,d>) = oul

mf<p,l><. l>= mf<p,d><. 1>
mi{<p,1><.,1>) =1
m{<p,2>)=1in

mi<p, 1><.,2> = mf<p, 1>
mi<p, 2> = mf<p 22
mi<p,3><.,2> = mi<p,3>
mi<p 4> = mf<p 4>

mi<p,3> = mf<pi>
mi<p4><.,2> = mi<p, 4>

true — m{[g/1],in)
m([9/2| X}, M) < m([g/3| X], M)
m([g/1,./1.X], M)+ m([p/2]| X], M)

m{[g/1,./1|X], M) « m([g/3,./11X], M)

m([p/21X], M) = m({a/3,./1|X], 7)
mfg/1,-/21X], M) — m((p/1]X], M)
eliminated

eliminated

m([p/3|X}, M) «» m(lg/1]X], M)
mlp/4)X], M) e m(g/11X], 5)
true —+ mf[g/3],in)

m{[q/3,./2|X], M) — 'm‘-{[ﬁ'f'?lx]-m
true — mf[p/1],in)

true — mi|p/3], out)

true — m(|p/4|,out)

m{[p/1,./11X], M) < m(lp/3,./11X], M)

true — m{[p/1,./1],in)

true — m{[p/2],in)
m([pf1,./2|X], M} — m([p/1] X], M)
eliminated

mi[p/3,. /2| X|,M) — m([p/3|X],M)
eliminated

eltminated

m{lp/4,.[2|X], M) — m([p/4| X], M)

(1)
(2)
(3)
(4)
(5)
(6)

(7)

(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

(20)

t m{P, M) m(P', M) represents two MGTP clauses:
m(P,M) — m(P, M) and m(P', M) — m({P,M).
1 M is the inverse mode of M ie., in = out and oul = in.

Table 2: Mode Constraint — MGTP Clause Transformation (Quicksort)
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using the quicksort program (Figure 1). The left column of Table 2 lists the mode constraints which
are derived from quicksort. The right column lists the corresponding clauses.

The mode constraints have two forms: m() = in {or m() = out) and m/p = m/q (or m/p =
mi/g).® Roughly speaking, m() = in is translated to a positive clause true — m(} = in, and
m/p = m/q is translated to two mixed clauses m/p — m/q and mfq — mfp. Within MGTP
clauses, mfPath,Mode) is a relation showing that the mode of path Path is Mode. A path is
represented in list notation, e.g., {<¢,1><.,1>} is translated to [¢/1,./1]. Here we refrain from
including avities in order to simplify the exposition (recall that in Section 2, this path would be
noted: {<¢/3,1><./2,1>}). Some MGTP clauses are eliminated becanse their mode constraints
represent the reflexive law." Mode consistency is ensured by the inclusion of a negative clause:
m{P, M), m(P,M) — false which means that the mode is inconsistent when a path I’ has two

modes: in and oul.

Ezumple: For quicksort, we have 7 positive (one literal) clauses and 24 mixed clauses.
We start with an empty model candidate My = @. My is first expanded to M, =
{m(la/1],in), m((a/3], i), m(lp/ A}, in), m{lp/3),in), mi(p/4],in), m([p/1,./1},in),
m([p/2],in)}, by applying the model extension rule to the 7 positive clauses.

Oune direction of rule {2) m([¢/3|X], M) — m([g/2|X], M) is applicable to M; because
m(|g/3], in) (€ M) can be unified with the antecedent m([g/3|.X], M) by substitution
{[]/X,in/M}. So we get the consequent m; = m{[q/2], out). This means that M, is
extended by (2) to My = M; U{m;}. Repeating a similar production of mode infor-
mation, we get the final result: M U {m([q/2],0ut), m([g/1,./1],in), m([g/3,./1],in),
m(jq/2,./1],0ut), m{[p/3,./1], out), m{[p/4,./1],0ut}}. o

Note that straight application of medel generation to mode analysis can cause an infinite gen-
eration. For example, the positive clause (11) true — m{[p/1],in) and the one direction of (17)
m{[p/1|1X], M) — m{[p/1,./2)X], M) causes an infinite generation. We have an infinite sequence
m(lp/1},1n), m([p/1,./2},in), m([p/1,./2,./2],in),... .

To avoid infinite generation, MGTP needs extra information with which it can detect the infinite
loop. In its current implementation, MGTP attaches trace information to each model element.
The trace information is a sequence of applied rules which let us know how to derive the model
element. In the previous example, m([p/1],in) is directly from a positive clause, m([p/1,./2],in) is
derived by applying (17) to m([p/1],in), and so on. Here, extended MGTP derives the sequences
< m(lp/1],in),[ | >, <m([p/1,./2),in), (17) >, <m([p/1,./2,./2],in),[17,17] > where the second
element of the tuple is the trace.

When MGTP derives the last element < m([p/1,./2,./2],in),[17,17] >, MGTP regards the
sequence as infinite and discard not only the last element <m([p/1,./2,./2},in), [17,17] > but also
the previous one < m([p/1,./2],in),[17] >. It does so because m([p/1,./2],in) can be regarded as

*Recall that the definition of m/p is given in Section 2,
*Phey can be also eliminated by the tautology-elimination rule which is a theorem-proving technique.
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FUI1Y = true: true | true (1)
flA|DB])— true: A = a|g{B). (2)
gl []) : true: true | frue (3)
gl b A] )= true: true | f{A). (1)
h{X)= true: X = [AbAbb]| | true (5)

Figure 9: A Program with Failure (Mode Contradition)

{2-1) Irur:—tm{[ffl:.fl].aut:l

(2-2) m([f/1,./2[X], M) — m([g/1]X], M)
(1) mi[g/1,./2|X], M} = m{[f/1]|X], M)
{5-1)  drue = mi[h/1,./2,./2,./2,./2,./1], out)
(Q-1) m([h/1|X], M) — m{[f/1]X], M)

Figure 10: A Subset of MGTP Clauses for Sample Program

the same information as mi{|p/1],in) because both elements indicate the same node of the mode
graph [23].

6.3 On Completeness

The mechanism to aveid infinite generation introduces incomplete analysis. Consider the program
listed in Figure 9. [From this program, we translate the MGTP clauses listed'" in Figure 10. The
program invocation * 7— f(X), k{ X )" causes a unification failure between a and b, indicating a
mode contradiction in path {<h,1><.,2><.,25<.,2>< ., 2><, 1>}, MGTP, however, doesn't
detect the possibility of error.

(From (5-1) and (Q-1), an element m{[f/1,./2,./2,./2,./2,./1],in) is derived. And the suc-
cessive applications of (2-2) and (4-1) to the element yield m([f/1,./2,./2,./1],in). One more
application can yield m{[f/1,./1],in), which disagrees with (2-1). The last application, however,
15 prohibited to protect against infinite generation.

This shows that MGTP's ability to aveid infinite generation is incomplete. For this kind of exam-
ple, protection can be relaxed. For example, the right side of m{[g/1,./2|X], M) — m([f /1| X], M)
is simpler than the left side, having fewer symbaols. The application of this kind of clause to an
element generates a simpler element, so the successive applications of these clauses must terminate
at some time. For these clauses, infinite generation is not a problem. We have not yet ensured that
generating a model with relaxation yields enongh mode information. Completeness will be proved
in a future work.

1 This list includes only clauses related to the discussion.
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symbols broken paths
program | proc | clanse | const | vars | total totals avg lengtht
misart 4 11 54 75 120 36f 30 26 1.7
queens i} 14 TP 119 196 T1 0 43 43 1.B
cubes 2] 16 93 159 | 252 224 79 361 2.7
pascal 11| 22 143 | 200 | 343 338 56 147 2.0
mandel 18] 26 170 | 334 | 504 | 408 140 336 24
rucs 16 G 218 390 608 T 46 13 1.6
bestpath 0] 44 279 | 492 | TT1| SOT 20T 492 2.5
waltz 20| 54 333 | Gao| 963 | 329 i 769 22
Waves 20| 45 352 | 690 | 1042 | 623 220 TO7 3.0
triangle 42 & 315 | 1226 | 1541 | 1155 648 1036 2.0

 average path length for graph analyzers.
{ bug in finite domain analyzer prevents calculation.

Table 3: Benchmark Suite Characteristics

7 Performance Comparison

In this section we examine the characteristics of the four algorithms by evaluating the analysis of
a benchmark suite on each implementation. A preliminary investigation of the analyzers built at
the University of Oregon is given in Tick {18]. The benchmark suite is summarized in Table 3.
The programs include simpler, common benchmarks [17], as well as more complex ones: rucs is a
rule check system (written in KL1 by R. Ezaki from the original Prolog by Y. Koseko); bestpath
implements Dijkstra's (sequential) single-source best path algorithm with a heap data structure;
waves (originally written in Strand by I. Foster) builds a multidimensional torus using an iterative
technique; waltz is Waltz’s constraint satisfaction algorithm, and mandel {also from Foster's Strand
original) computes the Mandelbrot function.

The algorithms tend to have complexity related to the number of symbols in the source program,
which we categorize as constants (including functor symbols) and variable instances. Because paths
can be cyelic, to calculate the number of paths, we break the cycle, e.g., the car and cdr of a list
will be counted, but not the cadr or cddr. We list, in order, the number of paths produced by the
graph analyzers (either static or active), the finite-domain analyzer and the theorem prover.

We observe that the average path lengths are not long because the largest hard-wired data
structures within the benchmarks are not long. Path length can be arbitrarily manipulated by such
data structures, e.g., the size of the input graph in bestpath. None of the analysis techniques have
an effective method of dealing with this problem. Methods that heuristically simplify such large
data structures risk loss of completeness. We also observe that whereas finite domain analysis and
MGTP analysis are both incomplete, for the larger benchmarks, the finite domain method generates
significantly fewer paths. This indicates that the finite domain method is more incomplete, 1.,
since fewer paths are derived, there is a greater chance that a mode conflict will be missed.

All the benchmarks are fully moded except for wave, which has a subtle mode conflict. All the
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static|active| finite |theorem
graph | graph |domain| prover

parser TAT 484 484 1,265
reducer| 1,558 752 1.983 268
mise, 442 207 858 635

total 2,787 1,533 3,325 2,168

Table 4: KLL Source Lines of Each Analyzer

analyzers, except the finite domain method, detect the conflict, However, to calibrate the timing
measurements presented in the next section, we continue analyzing the program even when a mode
conflict is detected.

7.1 Execution Measurements

The analysis tools were all implemented in KL1 and run on the PDSS (V2.52.19) compiler-based
gystem, on a Sun Sparcstation 10/30. PDSS is a nonoptimizing compiler-based emulator for KL1,
executing about 34,000 reductions per second for the analyzers described here. Figure 4 gives the
code sizes of the analyzers. The “reducer” size of the theoremn prover is the MGTP kernel prover:
it does not count the meta-program being analyzed. One must excuse the larger sizes of the static
graph and finite domain analyzers: they were written by novices, whereas the other analyzers were
written by ourselves. The output produced by all the analyzers for all the benchmarks was verified
as identical {modulo slight syntactic differences) by shell scripts written in UNIX,

It should be noted that no “early™ termination is detected by any of the analyzers. Such early
termination might be defined when all top-level variable nodes (i.e., variable occurrences appearing
in the source program) have unique modes. Such an approach is problematic because a concurrently
executing unification may contradict the known modes, resulting in global failure. In other words,
our experiments pessimistically evaluate all necessary unifications to guarantee full modedness.

Table 5 shows the breakdown, by phase, of the execution times (msec) of the benchmarks for the
static and active graph analyzers. Also given are the total number of KL1 reductions and abstract
unifications executed. Both analyzers use phase I to parse the program. The static analyzer reduces
tell unification nodes in phase Il (a minor task), and reduces the rest of the graph in phase IIL
The active analyzer reduces the entire graph in one shot during phase II.

The vast difference in the performance of these analyzers is primarily because a novice wrote
one and an expert the other. We believe a “memory leak” in the static analyzer (i.e., incremental
garbage collection cannot be done because of sloppy naming) is causing much of this difference.
Neither analyzer has been tuned for performance, and we expect both can be significantly optimized.
For reasons discussed in Section 4, we expect the active analyzer to achieve better parallel speedup
than the static analyzer, but we have not yet conducted multiprocessor experiments.

Table 6 shows the breakdown, by phase, of the execution times (msec) of the benchmarks for
the finite domain and MGTP analyzers. For finite domain analysis, phase I is path creation and
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Static Graph

Table 5: Performance of Static and Active Graph Analyzers (KL1 on Sun Sparcstation 10/30)

subsequent phases are applications of Ueda’s mode rules (phase IT applies rules 1 and 3; phase III
applies rule 2; phase IV applies rule 4). For MGTP analysis, phase I translates the source program
into & set of MG'TP clanses and further, MGTP's pre-processor converts the MGTP clauses into
a KL1 program with which the MGTP engine generates mode information. Phase Il compiles the
K11 program {using the PDSS cross-compiler written in SICStus Prolog) and links it with the
MGTP engine. Phase 111 performs the MCTP proof and generates the mode information.!!
Curiously compilation takes the lion’s share of 87% of the MGTP execution time. Only 6% of
execution time is attributed to doing the proof, compared to 40% of the finite domain execution
time. If MGTP compilation could be sufficiently sped up, this technique would be faster than the

finite domain method.

The performance of these runs, for all four analyzers, is summarized in Table 7. The table
gives the execution time and memory {data and code) consumption for each input source program.

LMOGTP reductions counta for are for phases [ and 11T only.
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execution time (msec) red red/
benchmark phase I] phase Il phasze TII| total|x1000 | unify | unify
msort 700 (39.5%)] 50 ( 6.6%)| 410 (53.9%)] 760] 3| 60| 550
queens 550 (45.5%)| 10 ( 0.8%)| 650 (53.7%)| 1,210] 54| 75| 720
cubes 620 (35.8%)| 30 ( 1.7%)| 1.080 (62.4%)| 1,730| 82| 138 =04
pascal 800 (36.9%) (210 { B.T%) | 1,310 {54.4%)| 2410 110| 124| 88T
randel 1,480 {39.8%) | 240 { 6.5%)| 2,000 (53.8%)] 3,270 171 222 TV
rucs 1.200 (20.3%) [270 ( 4.2%)| 4,810 (75.5%)| 6,370| 302| 319| 946
bestpath 2080 (18.5%) 180 { 1.6%)| 8960 (79.9%)|11,220 526( 431 1220
waltz 2,290 (19.5%) | 180 { 1.5%)| 9.260 (78.9%)|11,730| 573| 404 1418
waves 3.540 (21.7%) 1510 | 3.1%) (12,270 (75.2%) | 16,320 GO0 559 1250
triangle 6,190 (12.0%)| 60 { 0.19) 45,190 (87.8%)|51,440| 1488| 1163| 1279
arith mean - (28.9%) { 3.5% (67.55%) 884
Active Graph

execution time {msec) red red/

benchmark phase I phase 1I[total | x1000 | unify | unify

msort 320 (65.3%)| 170 (34.7%)| 490 19 60| 317

queens 430 {69.4%) [ 190 (30.6%)| 620 21 75 280

cubes 750 (69.4%) | 330 (30.6%)|1.080| 40| 138| 289

pascal T40 (GA.5Y%) | 340 (31.5%) | 1,080 36)  124F 290

mandel 1,240 {T0.9%) | 510 (29.1%)1 1,750 62 2221 270

rucs 1LGTO (T1.1%) | 680 (28.9%)12,350 T4) 319 232

bestpath 2070 (57.0%) | 1,560 {43.0%) 1 3.630 1421 431 329

waltz 2830 (49.6%) 12,870 {50.4%%) | 5.700 241 404 597

waves 2910 (62.0%) | 1.780 {38.0%) | 4,690 182| 559 326

triangle 4,900 {50.7%) |4,760 {49.3%) | 9,660 370 1163 M8

arith mean 163.47%) {36.67%) 326




Finite Domain

execution time (msec) red
benchmark phase I phase I1 phase II1 phase IV | total | x1000
msort 660 (61.1%) 50 (4.6%) 310 (28.7%) 60 ( 5.6%) | 1,080 34
queens 1,350 {61.6%) 110 {5.0%) 660 (30.1%) 0 32%) | 2190 fid
cubes 1,730 {(57.1%) | 110 {3.6%) 720 (23.8%) | 470 (15.5%) | 3,030 80
pascal 3,120 (66.2%) 170 (3.6%) | 1,230 (26.1%) 190 ([ 4.0%) | 4,710 123
mandel 8,210 (45.6%) 410 (2.3%) | 3430 {19.0%) | 5960 (33.1%) | 18,010 572
rucs 6,410 (80.4%) 440 (5.5%) | 1,020 (12.8%) 00 ( 1.3%) | 7.970 208
bestpath 12,080 (58.2%) | 700 (3.4%) | 6,000 (20.4%) | 1,870 { 9.0%) | 20,740 489
waltz 10,810 (56.1%) | 350 (1.8%) | 4,210 (21.8%) | 3,910 (20.3%) | 19,280 530
waves 22,600 (60.2%) | 1,120 (3.0%) | 12,150 (32.4%) | 1,670 { 9.0%) | 37,540 853
triangle 20,440 (55.6%) 810 {1.5%) | 16,670 (31.5%) | 6,000 (11.3%) | 52,920 1196
arith mean {60.2%) (3.4%) (25.67) (10.87)
Model Generation Theorem Prover
execullon time (msec) red

benchmark phase 1 phase [1 phase 11 total | x1000

msort 600 (6.3%) | 8,790 (93.1%) 50 { 0.5%) | 9,400 28

queens 920 (7.0%) | 12,170 (92.3%) 100 ( 0.8%) | 13,190 45

cubes 1,560 (7.0%) 19,430 (86.8%) 1400 { 6.3%) | 22,300 156

pascal 1,150 (7.4%) | 13,840 (89.2%) 530 { 3.4%) | 15,520 87

mandel 2,700 (7.1%) | 34,410 (90.8%) 800 ( 21%) | 37,910 169

rucs 1410 (8.6%) | 14,770 (90.6%) 130 ( 0.8%) | 16,310 66

bestpath 4,340 (6.3%) | 52,080 (Vo.0%) | 12,140 (17.7%) | GB,560 1029

waltz 3,670 (8.4%) | 38,140 (86.8%) | 2,120 ( 4.8%) | 43,930 303

Waves 4,670 (7.7%) 51,940 (85.2%) 4,330 { 7.1%) 60,940 514

triangle 14,060 (8.4%) | 149,060 (89.3%) | 3.810 { 2.3%) | 166,930 001

arith mean (7.7%) (86.7T%) { 5.6%)

Table 6:

Interestingly, MGTP is most space efficient, comparable with the PDSS compiler.!? It competes
favorably with the active graph analyzer for the reduction phase, but loses overall because of its long
translation time. Although the active graph analyzer does not use memory effectively because of
its pracess network, stream mergers, and numerous messages, it executes most quickly, comparable
to PDSS compilation time. The MTGP analyzer slows down for larger benchmarks because the
translation procedure is more complex with respect to program size than is parsing in the other
analyzers. Clearly the greatest performance improvements lie in reducing compilation time for
MGTP analysis, and reducing memory consumption for active graph analysis. Currently, the large

Performance of Finite Domain and MGTP Analyzers (KL1 on Sun Sparestation 10/30)

memory requirements of the finite domain and static graph analyzers make them less desirable,

"The PDSS compiler is relatively fast considering that is does not do any static analysis. For example, the Monaco
optimizing compiler [20] is considerably slower because it does dats flow analysis. Thus because mode analysis can
compare reasonably well with naive compilation, it has even higher utility with respect to more realistic optimizing

compilation.
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PDSS | static | active finite | theorem
benchmark | compile | graph | graph | domain prover
exection time (msec)

msort 760 760 400 1.080 0,400
queens 1,140 1,210 620 2,190 13,190
cubes 1.570 1,730 1.080 3,030 22,390
pascal 1.660 2,410 1,080 4,710 15,520
mandel 3.340 3,70 1,750 18,010 A7.910
rucs 3010 | 6,370 2,350 T.970 16,310
bestpath 6,160 | 11,220 3,630 20,740 68,560
waltz 4,510 11,730 5,700 10,280 43,930
waves 7060 | 16,320 4,690 37,540 60,940
triangle 11,720 _5-1,44[} 0,660 52.920 166,930

static | active finite | theorem
PDSS | graph | graph | domain prover
memory consumption (kbytes)

msart 158 795 281 381 198
queens 244 1.444 340 692 261
cubes 320 2,070 571 L.0&7 401
pascal 343 3,272 074 1,362 383
mandel 616 561 B0 15.204 Goll
rucs 6949 8224 1.343 1,538 T4
bestpath 922 | 17,208 1,779 §,a01 2,023
waltz 803 | 17,696 | 2,278 6,304 83l
waves 1,204 | 28.371 2,318 9,008 1,323
triangle 1,865 | 51,656 4,437 17,339 1,845
analyzers 273 65 50 44 74

Table 7: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)

8 Summary and Conclusions

This paper described and compared four compile-time analysis algorithms, based on seminal work
by Ueda and Morita [23], for deriving the path modes of concurrent logic programs. The analyses
are based on constraint propagation over graphs, path partitioning, and model generation theorem
proving {MGTP). The former two techniques are complete in the sense that they are guaranteed to
detect a mode contradiction in the source program should one exist. The latter two techniques are
incomplete, although to varying degrees. The MGTP analyzer is more robust than the simplistic
finite domain analyzer because the limitations placed on axiom nesting can be incrementally relaxed.
There is no corresponding fine-tuning for finite domain analysis as we have defined it.

We are currently wu-rl;ing on a completeness proof for the graph analysis algorithm, which is
clearly needed before it can be used in many applications. However, all the analyzers can be used
when complete mode information is not required, for example in the Diadora model [11], a variant
of “lazy task creation” which can break a deadlocking thread inadvertently created by faulty mode
information. Considering that unrestricted use of array referencing will make any mode analysis
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technique incomplete, we may need to address the completeness issue both from restricted language
semantics and novel runtime systems.

Future work is proceeding along several dimensions. We seek to engineer an analyzer that
can pinpoint probable causes of a mode conflict more aceurately than the current systems, for
use in programmer debugging. We seek to design extended mode domains that capture more
subtle nuances of producer—-consumer relationships. Furthermore, the use of vector builtins, which
cause notorious aliasing, and the recovery of partially correct mode information from a nonmoded

program (by propagating “top”) need to be addressed.
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