ICOT Technical Report: TR-0874

TR-08T74

Bottom-Up Modal Theorem Provers based
on Modal Clause Transformation

by
J. Akahani (NTT), K. Inoue (Toyohashi Univ.)
& R. Hasegawa

April, 1994

© Copyright 1994-4-19 1COT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F ((3)3456-3191—~5

IC DT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Bottom-Up Modal Theorem Provers based on
Modal Clause Transformation

Jun-ichi Akahani
NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
+81 T749-5-1828
akahani@cslab kecl.ntt.jp

Katsumi Inoue
Department of Information and Computer Sciences
Toyohashi University of Technology
Tempaku-cho, Toyohashi 441, Japan
+81 532-47-0111 (ext. 525}
inoue@tutics.tut.ac.jp

Ryuzo Hasegawa
ICOT
Mita Kokusai Bldg., 21F
1-4-28 Mita, Minato-ku, Tokyeo 108, Japan
+81 3-3456-4365
hasegawa@icol.or)p

Abstract

This paper prosents o technigue to implement efficient modal the-
orem provers that transforms modal formulae into input clauses of the
mode] generation theorem prover MGTP. The technique, called the
modal clouse transformation method, is based on partial evaluation of
the rewriting rules for the modal tablean method. We first proposc
a transformation method in which close eondition testing is replaced
with pattern matching in the antecedents of transformed clanses. This
method avoids the generation of redundant branches that can easily be
checked to be closed. Then, the method is extended by making use of
goal information and by simulating top-down reasoning to reduce the
search space. The cost of modal clause transformation is shown to be
linear with respect to the length of the input modal formula. Finally,
the results of experiments illustrate the usefulness of the method.

1 Introduction

Modal logics have been gaining popularity in various domains of Computer
Science. For example, in the logics of programs [Kro87], in the analyses
of distributed systems [HM80], and in the logics of knowledge, belief and
intention [Kon86, Sha8l]. For such applications, modal logics require fast
and efficient theorem provers. Many modal theorem provers have been pro-
posed, but only a few quantitative evaluation results have been reported.
These resulis [Catdl, KH91| are restricted to simple theorems only, More-
over, in practical applications, we have to deal with a large set of axioms
in the domain which may contain many axioms irrelevant to proofs for the
given thearems. In this paper, we present an efficient modal theorem prover
capable of handling such practical problems.

Current proof methods for modal logics can be classified into two cat-
egories: the direct approach and the translation approach. In the direct
approach, existing proof methods for classical logic are extended for use in
modal logics. Typical examples are modal tablean methods [Fit88] and
modal resolution methods [AMB6, Far86]. In the translation approach,
on the other hand, modal formulae are translated into classical formulae
|OLl88]. The translation approach has been proven to be useful because
it can be applied to various modal systems. Many proof methods have re-
cently been proposed for this approach [Non93, CD93|, which focus only on
implermenting accessibility relations to be applied to various modal systems.

The trapslation approach has another merit in that it can employ many
control strategies developed for theorem proving in classical logic. Unfortu-
nately, the previous proposed methods do not address the issue of controlling
inference to reduce the search space,

In this paper, to take advantage of the above meril, we propose a version
of the translation method, called the modal clavse fransformation method.
‘This method translates propositional modal formulae into input clanses of
the model generation theorem prover MGTP [FH91]. The MGTP is a par-
allel theorem prover that geperates models of input clauses in a bottom-up
manner. Our method is based on work by Koshimura and Hasegawa [KH91]
who proposed a modal propositional tableau prover on MGTP using mela-
programming techniques. Their prover implements the rewriting rules for the
tablean method as schemata encoded as MGTP input clanses, and simulates
the modal tableau method on MGTP, Thus, their system can be classified as
the direct approach. We realize the modal elanse transformation method on
MGTP by applying a partial evaluation technique to the meta-programming
method.

In general, modal tableau methods have a problem that they may create
too many branches, To suppress the generation of redundant branches that
can’ easily be checked to be closed, we translate modal formulae so that
close condition lesting is replaced with pattern matching in the antecedents

of translated clauses, instead of generating such branches. We call this
translation method the basic modal clause transformation method.

Furthermore, to avoid the generation of branches irrelevant to the proof,
we adapt the Non-Horn Magic Set (NHM) [HOI93] method that transforms
input clauses so as to simulate top-down reasoning. We analyze input modal
formulae to incorporate control information specific to a given input modal
formula into its translated formula. The integrated translation method is
called the NHM modal clause transformation methed.

In both transformation methods, every transformed clause is range-
resiricled [MB88], that is, every variable in the clause appears in the an-
tecedent. Since matching is sufficient instead of full unification for range-
restricted clauses, efficient theorem proving is possible for transformed clanses.

In this paper, since we are interested in the transformation process of
modal formulae, we will focus on the modal system K in which the accessi-
bility relation has no special property.

This paper is organized as follows: Section 2 provides an overview of
the modal tablean prover on MGTP. Section 3 presents the basic modal
transformation method. We incorporate the NHM approach and describe
the NHM modal transformation method in Section 4. In Section 5, we
present both theoretical and cxperimental evaluation results. We discuss
the extensions for other modal systems and future work in Section 6.

2 Modal Tableaux on MGTP

This section gives an overview of modal logics, MGTP, and the modal propo-
sitional tableau prover on MGTP.

2.1 Propositional Modal Logic

The syntax and semantics of propositional modal logics are outlined below.
Formulae are constructed from a non-empty set & of propositional sym-
bols, logical connectives — and v, and the modal operator 0. We add the
connectives A and O, and the modal operator <, their meanings being as
uenal,

We use a standard possible world semantics [Che80]. A Kripke model M
is a triple < W, R,V >, where W is a non-empty set of worlds, R is a binary
accessibility relation on W, and V' : & — 2W is a function that assigus, to
each propositional symbel p € @, a subset V(p) of W.

We write M,w |= ¢ for “a formula ¢ is true at a world w in a model M”
defined as follows:

1. M,wk=p (for pe &) iff we V(p).
2 Myw - iff M,w .

I MvEepvyif MfufpFgo Mwl .
4. M,w | Og iff M,v' | for all w' such that wRw'.

We say that ¢ is valid if M,w = [or every w € W and every model
M. i is said to be satisfinble if M, w = ¢ for some w € W and some M,
i is said to be unsafisfiable otherwise. It is easy to check that is valid iff
=iz iz unsatisfiable.

WVarious modal systems can be defined according to the properties asso-
ciated with accessibility relations. This paper, however, focuses on the most
fundamental modal system, known as K, in which the accessibility relation
has no special property.

2.2 MGTP

The MGTP [FH91] is a parallel theorem prover that generates models of
input clauses in a bottom-up manner. Each clause is expressed in the form:

Ah' ”!-Au = 1"Sl.h' o :-Cl.hl" : |U1'rhi?“ : ?C:""J"IT

where n,m = 0,0; > {7 = 1,---,m), and A;{i = 1,---,n) and Cjz(7 =
ly---ymik = 1,---,{;) are atoms. All variables are assumed to be univer-
sally gquantified at the front of the clause. The clause shown above represents
the formula A; A-- A4, D (O ACLL IV - V(Cpa A+ -AC,,y, }in the
standard notation of first-urder logic. The left-hand side of — is called the
anfecedent of the clause, while the right-hand side is called the consegquent,

When n = 0, we write trae — Oy, 0 | o0 | Cmgter s Ot
and the clause is called a positive clauwse. Similarly, if m = 0, we write
Ay, Ap — false, and the clause is called a negative clause. Otherwise,

the clause is called a mized clause.
The MGTP applies the following operations to a set of atoms called a
model candidate. An empty set is given as an initial model candidate.

o Muodel candidale extension: If there is o non-negative cluuse
Al! | -A'n = Cl.'h" : rcl.hl ntT |Cm.11 e rcrn.l'm

and a substitution &, snch that all atoms Aye, .- -, Age are satisfied
by a model candidate M and that for all 7 = 1,---,m, some Cjpo(l <
k < I;) is not satisfied by M, then expand M in m ways by adding a
set {C_;‘J(Tp"'!":“.‘i"ﬂ.ig} to M for every j=1,++,m.

s Model candidate rejection: If there is a negative clause
Ay, Ay — false
and a substitution o, such that all atoms Ao, -+ -, Apo are satished
by a model candidate M, then discard M.

4

If no operation can be applied to any model candidate, then MGTP
returns the model candidate sets as models of the input clauses. If every
model candidate is rejected, then the set of input clauses is unsatisfiable.

The process of abtaining a substitution ¢ is called *conjunctive matching
of the antecedent against elements in M™. The conjunctive matching process
does not require full unification if every clause is range-restricted [MB&S],
that is, if every variable in the clause appears in the antecedent. In this case,
since every model candidate constructed by MGTP contains only ground
atoms, it is sufficient to consider matching instead of full unification.

2.3 Modal Propositional Tableaux on MGTP

The modal tableau method [Fit88] is a refutation proof method which rewrites
signed formulae, that is, formulae prefixed with either t or f, intuitively de-
noting whether the following formula is true or false. A signed formula
t{p, w) indicates that a formula ¢ is true in world w, and f(yp, w) indicates
that ¢ is false in w.

Koshimura and Hasegawa [KH91] described a modal propositional tableau
prover on MCTP using meta-programming techniques. The prover imple-
ments the rewriting rules of the tableau method as schemata encoded as
MGTP input clauses, and simulates the modal tableau method on MGTP.
In this paper, we refer to this method as the mela-programming method.

Figure | shows MGTP input clauses that represent tableau rules. Sym-
bols starting with a capital letter denote variables in MGTP. Predicate
path(W, V) denotes that world V is accessible from world W, and {new_ world(V')}
is a call for the built-in predicate new_world{ V), which creates a new symbhol
corresponding to world V. Note that all of the clauses are range-restricted.

It is possible to extend the prover for many modal systems other than K
by adding clauses that represent the corresponding properties of accessibility
relations. In fact, a prover for PTL [Kro87] was implemented with the meta-
programming method [KH91]. Tt is also possible to extend the prover for
multi-modal systems by providing an extra argument indicating a modal
operator for the path predicate.

Given madal formula ¢, the prover generates a set Z(ip) of MGTP input
clauses that consists of clause

true — fip, wo),

and the clauses shown in Figure 1. As the method is a direct implementation
of the modal tableau method, we have:

Lemma 1 A formula ¢ is valid iff MGTP relurns the resulf unsatisfiable
for the set E{p) of input clauses.

* o rules.
HPAQ W) — (P, W)LHQ,W).
f(PVQ,W)— f(PW), f(Q W)
fIP2Q W) t(PW)fIQ W)
t(-P,W) — f(P,W)
F=F,W) = t(P,W).

s 3 rules,
HPVQ,W)—t(P,W)|t{QW).
fFIPAQW) = F(P,W)| f(Q.W).
P >Q, W)= f(PW)|HQ,W).

close condition.

fIP,W),t{P,W) — false.

* T rule.

FIOP,W) = {new_world(V)}, path(W, V), f(P, V).

* v rile.
t(OP, W), path(W,V) — t(P, V).

Figure 1: MGTP clauses used to implement the Modal Tableau Method

3 Modal Clause Transformation Method

This section presents a basic algorithm for the modal clause transforma-
tion method. Since the method described in the previous section simulates
tableau method on MGTP, the prover tends to create too many branches.
We therefore apply a partial evaluation technique to the meta-programming
method, thereby suppressing the generation of branches which can easily be
checked to be closed.

3.1 Modal Clause

In the following, we will represent modal formulae as modal clauses. For-
mally, the syntax of modal clauses is defined as follows,

L. Hpe ¥, pis a modal alom, called a propositional atom.

2. If Pl P Y1yt Uiy aTE modal atoms, -V 'V"ﬁﬂn\f‘lﬁl"v"‘ ' 'V‘ﬁbﬂ!
is a modal clause, where n,m > 0.

3. If p is a modal clause, Oy is a modal atom.

Rule 2 implies that modal atoms are modal clauses. We sometimes write
the formula shown in Rule 2 as ¢y A~ Ap, D ¢ V- Vi, The left-hand

L

side @1 A --+ A e of D is called the antecedent, and the right-hand side
Wy Ve« W P is called the consequent. For example, let p,q,7 € @, then
O{Op O g} is 2 modal atom, and Op A O(Op 2 g) D Og v O0r is a modal
clause.

The definition of modal clauses is similar to that of Enjalbert and Farinas
del Cerro [EF89]. They do not allow negations in the clause except in
the front of propositional atoms but allow ¢ followed by a conjunction of
clauses, while we do not allow < but allow negations in front of the madal
operatars. For example, the above modal clause can be written in the form
Sop C’l:ljp M —lq} W Og v OO0y,

We represent the conjunction of modal clauses as a set of modal clauses.
Any modal formula can be represented as a sel of modal clauses. This can
be proved by induction vn the structure of madal formulae.

3.2 Basic Transformation

The basic idea of the modal clause transformation method is to apply partial
evaluation to the meta-programming method. Specifically, given a set of
modal clauses, the translator first tries to apply the o rules or 3 rules to
the modal clause set. The result consists of signed modal atoms, that is,
MGTP atoms in the form of either (g, w) or f{p, w) where ¢ is a modal
atom. If there is a signed modal atom to which the 7 rule (or the v rule)
ean be applied, an MGTP clause that is a specialization of the 7 rule (or
the v rule) is generated.

For example, given a modal clause @) A -+ Ay ¥ V- V iy, the
meta-programming method would generate an MGTFE clause of the form

true — flor Ao Mg DLV oo Vi,).

The a rules can be applied to the above clause; the result of this application
would be:

true — !{‘Pljwﬂ}h e J{'if:‘m 1'-1"'|J:|'.~ ftﬂl’h le}?“ . :.ﬁwmrwﬂ‘}!

where each i; and ¥; are modal atoms, i.e. either propositional atoms or
modal formulae of the form Og. In the latter case, the m rule or » rule can
be applied to the modal atom.

Now, imagine there is a signed modal atom f(O(y1 A= Aga D V
co W 4, X). Then, the « rule can be applied, and the result would be

FlOlpy A Agn DLV - V), W)
— {newworld(V)}, path(W, V), flpr A Agn D Voo Vb, V).

The a rules are applicable to the consequent. We therefore have
I{D(':F'l-""""'hlpﬂ D Ve Vi), W)
— {new_world(V}}, path(W, V),
t['F}li v}s Ty i{‘Ffu v}r .r{"iblt l';}:»- B | f{"i‘t’m- V}

1. For each modal atom w; in the antecedent, generate the following
clause,

true — i, wy).

For each modal atom 4 in the consequent, generate the following
clanse.

true — f(;, wg).

2. If the consequent of a generated clause contains atoms of the form

f{Op, X) or t{Ug, X), repeat the following.

{a) If the atom is of the form fiD{wi A---Apn 240 V- - Vi), X),
generate the following clause (specialization of the m rule).
FBlpr Ao Agpn Dby Ve V), W)
— {new_world(V)}, path(W, V),
't'{':plll I('}i- T “:';pn!l II"J':]:l .Hﬂ"h V}: ' f':*l!}m: V.:I'

(b} If the atom is of the form ${0{0w; A-- ADge Am A App D
W v -V ¥y), X}, where each p; is a propositional atom, then
generate the following clause (specialization of the v rule).

OOy A AQpu Apr A= Ape Dty V"‘V'b'-"-rn}-w}:
WI!"‘{“}!‘ VL t{Plle! Tty t{Pi‘! V}
* _ﬂ:l:"iﬁ'l, V] | e | f{Dﬁﬁ‘n,F] | !fﬁhv} | e | t{il'l;"m.'lv]'

3. Generate the following clause that denotes the close condition.

t{(P,W), f(P,W) — false.

Figure 2: Algorithm for the Basic Modal Clause Transformation Method

1. For each modal atom in the antecedent and the consequent, generate

2-h.

the following clauses.

true — t{0{p A g AD=r 2 sV r),up).
true — t{Op, wp).

true — t(00(q O), wp).

true — t[0O-s, wy).

true — f{O(0g A g D r), uy).

For atoms of the form f{DOg, X) in the consequent of & generated
clause, generate the following clause,
f(O(Og A g o), W)
= {new_ world(V]}, path(W,V),t(Dq, V), t(g, V), f(r, V).

For atoms of the form (0, X} in the consequent of a generated
clanse, generate the following clauses.
t(O(p A gA O D sV r), W), path(W, Vit(p, V), (g, V)
— f(O=r, V) | t{s, V)| tir, V).
{(Op, W), path(W, V) — (3, V).
HOO(g O r), W), path{ W, V) — £(0(g 2), V).
HOa, W), path(W, V), 85, V) — false.

2'. Repeat Step 2.

F(O-r), W) = {new world(V)}, path(W, V), f(r, V).
t(Og, W), path{W, V) — t{gq, V).
tH(O(g O r), W), path(W, V), t(g, V) — t(r, V).

3. Generate the clause denoting the close condition.

t(P, W), f(P,W) — false.

Figure 3: Example of Basic Modal Clause Transformation

It is similar when a signed modal atom #(O{A- - -Agn D V- Vi, X)
appears. Applying the v rule to the modal atom and then applying the 3
riles to the consequent of the resulting clause, gives

f{D{ipl Mo Py 2 iy W "u"i;’rm:J, Wj,path[W,V]l
-+ f{‘ﬂhvj |- | f{‘pm V} | t{yy, V) | ot V).

This MGTP clause generates too many branches. For example, 2 model
candidate containing ¢{0(p A g A Or 2 s), w1} and path(w,, wy) is expanded
in four ways corresponding to f(p,ws), f(g,m2), f(Or,ws), and (s, ws),
even if the model candidate contains t(p, we) or t(q,ws). If we check the
satisfiability of #(p, ws) and t(g,w;) before model extension, we can avoid
generating branches corresponding to f(p,ws) and f(q,ws). We therefore
transform the clause to

t{O(p A g A Or D s), W), path(W, V), t(p, V), t(g, V) = f(Or, V) | t(s, V).

Note that we cannot move f(Or, V) to the antecedent because the atom
may invoke the « rule. 1t can be proven that this transformation preserves
the satisfiability.

Now, the specialization of the v rule is defined as follows. If ¢{0(0; A
e A D@y A Aee Ape O W Ve Vi), X) appears, we generate the
following clause.

:{D(D‘ﬂl A ADp, Apr A ---APL DY Ve Vﬂ’-r:}rw}u
W‘h{“": V}!t{,pll Er:':l”'rt[.pk.-i'r}
= fliqu:‘]_,i-;:' I tee | _fl:l:llip‘-‘ﬂ_l V}I i t{wlsv:l I e | ﬁilbmrv}-

The algorithm for the basic modal transformation method is shown in
Figure 2. For the sake of simplicity, we assume that a modal clause p; A
<o Aipn D PV Vil to be proven is given in Figure 2. Figure 3 shows the
transformed clauses for modal clause O(pA gAO—r D sVr)AOpADOD(g D
rlAO=s 2 0O(0gAq D 7).

If a set of modal clauses {C;,---,Cn} i1s given, we first generate the
following clause

true — ¢y | - | &n,

where each ¢; corresponds to modal clause C;. Then, for each modal clause
C;, we apply the transformation obtained by replacing true with c; in Step
1 of Figure 2. These clauses are actually obtained by applying the § rules
to the MGTPF clause true — f{Cy A--+ A Gy, un).

The next theorem assures the correctness of the basic modal transfor-
mation method.

Theorem 1 The basic moedal transformation method 15 a sound end com-
plete proof methed for modal system K.

10

4 NHM Modal Clause Transformation Method

[n practical applications, formulae usnally contain many subformulae irrel-
evant to the proof. For example, consider formula O(p Da v bve) A O(p O
q) A Op D Og. The first element in the antecedent contributes nothing to
the proof, but irrelevant model candidates {Oa}, {Ob}, and {Oc} might be
generated from a model candidate containing Op. Thus, the control of proof
processes is required to prove theorems efficiently, especially in bottom-up
proof methods such as the tablean method and MGTF.

To overcome the drawback of bottom-up provers, the notion of the Non-
Horn Magic Set (NHM) [HOI93] was proposed. The NHM method trans-
forms input clanses so as to simulate top-down reasoning. Specifically, clause

-411"';1'1:i =% Cl | to icm
is transformed into clauses:
goal{(),- -+ goal{Cy) — goal(Ay),-- -, goal(A;),

goal(Ch),---goal(Ch), Ay, Ag = C1 | -+ | O,

where the first clause is not generated if n = 0. The atom goel{ A} denotes
that atom A should be proven. Thus, the first clause intuitively means that
if the consequent of the original clause has to be proven then the antecedent
must be proven first. The intuitive meaning of the second clause is that the
original clause shall be invoked only when its consequent has to be proven.

We can regard label f as goal to incorporate the NHM method into the
basic modal transformation method. However, replacing [with goal would
cause Lhe close condition to be

t P, W), goal(P,W) — false

which contradicts with the second clause generated by the NHM method.
Hence, we have to eliminate the close condition

To eliminate the close condition, we have to reexamine the specialization
of the = rule. Recall that the 7 rule has two roles. One is the propagation
of goal information: if Op has to be proven in world W then we must create
a world V accessible from W and then prove ¢ in V. The other is the
propagation of negative information: if —Og holds in W then —y holds in
each V accessible from W, Regarding label f as goal for the specialization
of the 7 rule in Figure 2, we have the following clause.

goal(O{pr A - Agn D¥L V-V by), W)
— {nm_wmfd'[v:l },Pﬂ-fh{ W., V:] ! t{'if-?l 1 VL T !ﬂi’m V]l
FMI{#}M V:l., e :FMf[;&m: V:l*

11

1. For each modal atom ¢; in the antecedent, generate the following
clause.

goal(p;, wy) — i, wn).

For each modal atom ; in the consequent, generate the following
clauses.

true — goal(;, wy).
45, wo) — false.

2, If the consequent of a generated clause contains atoms of the form

goal(Oy, X) or ¢{0y, X}, then repeat the following.

(a) If the atom is of the form goal{O{ A< Apn D Ve Vi), X)),
generate the following m + 1 clauses, where y = 1,---,m.
goal(Q{ipy A~ - Apu DU V-V i), W)
- {ﬂm‘wm-fd{v}}'l Pﬂth{m V:I'r t’{ﬁﬂllv]: T t{‘p'ﬂ-: VJT
ﬂnﬂi{'l"'jl'r V]J "t 'rgnﬂ"ihibm'r V}
t{y;, V), path(W, V) — t{0(@1 Ao Agn D Ve V), W)
(b) If the atom is of the form ¢(D{wy A+ Agn D %1 V-V im), X),
i. If m =0, that is, the atom is ¢(0(ey V-« V —4gn), X), then
generate the following 3 clanses.
path(W,V) — goal(D(~py V -V ~ga), W).
path(W, V), t(0(—g1 V- V —ia), W)
— goal(ey, V), -+, goal{ps, V).
palh{W, V), ‘{n[""lﬂl Ve oW), WL Hgr, V}, " I{Wﬂrv]
— false.
ii. If m > 0, generate the following 2 clauses,
Pﬂ'tﬁ“'“ VLFN:{?[’II V}'r P lM[#‘I‘I‘H V]
— goal{O{pyr A---Agn D1 V-V b}, W),
goal(y1, V), -, goal(n, V).
Pﬂtﬁlwt V]! gmt(ﬂ'h V}:— e !.'?'ﬂd("ﬁ'mt V]r
t{D(‘Fl-""'- "'ﬁ?njﬁ'lv"‘vﬁmjtw}t
t{‘pll FJH Frry t{"&lﬂm F}r""‘ {4y, l"'r] | e F H:'!bml V]'

Figure 4: Algorithm for the NHM Modal Clause Transformation Method

12

1.

2-b.

For each modal atom in the antecedent and the consequent, generate
the following clauses.
goal(D{p D avbve),wy) — t{O{p 2 avbVe),w).
goal(Op, wg) — £(Op, wg)-
goal(O(pag Drvae)w) — H{O(pAgDrVs),up)
true — goal(O(g D 1 V 8), un).
t(O(g 2 7V s),wg) — false.

. For atoms of the form geal{Oy, X') in the consequent of & generated

clause, generate the following clauses.
goal(O{g Drvas), W)
— {new.world(V)}, path(W, V), t(q, V), goal(r, V), goal(s, V).
t(r, V), path(W, V) — HO{g o>rvs), W)
t{s, V), path{W,V) = t(O(g > 7 v s), W).

For atoms of the form (O, X) in the consequent of a generated
clause, generate the following clauses.
palh(W, V), goal{a, V'), goal(b, V), goal(e, V')
— goal(O(p D a Vv b¥), W}, goal(p, V).
path{W, V), goal{a, V), goal(b, V'), goal(c, V),
tHO(p Daveve),Whit(p, V) — tle, V) | (b, V}]| t{c, V).
path(W, V), goal(p, V) — goal(Tp, W).
path(W, V), goal({p, V), t{Tp, W) — t{p, V).
path{ W, V), goal(r, V), goal(s, V')
— goal(O(p A q D r vV s), W), goal(p, V), goall(g, V).
puth(W, V), goal{r, V), goal{s, V),
HO(pAgDrvs), W) tlp V),t{q, V)= Hr,V) | t(s, V).

Figure 5: Example of NHM Modal Clause Transformation

13

As the clause only propagates goal information, we have to encode the prop-
agation of negative information.

Since the propagation of negative information can be represented as the
formula

FlO(@r A e Apn D VoV e), W) A path(W, V)

_ t{';F'] y V:l LRRRNL t{"Pﬂ.: V:l A .”1.!’11 V] Mo j{;&'"l'l V}?

we have
f(Olpr A Agn DLV - V), W) A path(W, V) D f(4;,V)

for each j = 1,---,m. We transform the formula to a logically equivalent
clanse of the form

t(y, V), path(W,V) = (D1 A - Apn D Vo Vb), W),

Now that negative information has been eliminated from the translated
clauses, Thus, the close condition becomes unnecessary.

The specialization of the 7 rule has the following meaning: “ If O(@y A
<o Mg Db V-V by,) has to be proven in world W, then we must create
a world V' accessible from W, set each i, true in V, and prove each ; in
V. If any ¢ is proven in V, O A Ay D W V- Vg) is true in world
W.r

Figure 4 shows the algorithm for the NHM modal transformation method.
We assume that modal clause @ A - A D W e Wy, i8 given, as in
Figure 2. The clauses in Step 1 of Figure 4 can be obtained by applying the
NHM method described above to true — t(yp;, wy) and (¥, uy) — false,
respectively. As mentioned before, Step 2(a) is a specialization of the = rule.
Step 2(b)ii is the result of direct application of the NHM method to Step
2(b) of Figure 2. Note that any special treatment for the antecedent is now
unnecessary. Step 2(b)i is a special case of Step 2(b); since the first clause
of Step 2(b)ii generates irrelevant goal information if m = 0, the clause is
divided into two clanses.

Figure 5 shows the result of NHM modal clause transformation for modal
clause O(p D avbve)AOpaD(pag 2 rvs) 2 O(g D rvs). For the clause set,
MGTP first generates a model candidate containing goal{O(g O rV 8), wg),
then creates a new world, say w;, and expands the model candidate by
adding goal{r,u), goal(s, w;). These goals generate a goal goal(O(p A g O
rvs)uy) in wy. Note that ¢{0(p A ¢ 2 r V s), wp) is generated only by the
demands in the world wy. Atom ¢{0O{p = a V bV ¢}, wy) is never generated
becanse it is not in demand. Hence, we can avoid generating branches
irrelevant to the proof,

14

5 Results of Experiments

In this section, we describe both the theoretical and experimental analyses
for the computational cost of the modal clanse transformation.

The cost of the modal clause transformation can be divided into the
cost of analyzing input modal clauses and the cost of generating MGTP
clauses, The former is linear to the length of the input modal clauses since
the analysis is performed by scanning the input modal clauses once only.
It is easy to sec from the transformation algorithm that the latter is linear
to the number of modal operators in the input clanses. Thus, the cost of
the modal clause transformation is linear to the length of the input modal
clanses.

We tested the prover on several modal formulae. Table 1 lists our results
for some examples. In the table, mete, peval, and nhm denote the meta-
programming method described in Section 2, the basic modal transformation
method in Section 3, and the NHM modal transformation method in Section
4, respectively. The number of branches shows the width of the search tree,
and the average proof length shows the depth of the search tree. The CPU
time is given in seconds.

We used the MGTP system on one processor of the PIM/m parallel in-
ference machine, developed at ICOT. Some examples used in the experiment
are shown below. Ex1 and Ex5 are examples having multi modal operators.

Ex1. The 3 wise men problem
Og{dot{a) v OpO dot(a)) A
OaOp{dot(b} v O.—dot (b)) A
0,00 (dot{a) v dot(b) v dot(e)} A
O, Op-Ocdot{c) A Oy,—Opdot(b) > Oqdot(a).

Ex?. A formula whose antecedent contains many literals
O(prApeA--Apso DgVr)ATp Alpe A--- ADpsgo D O(g V).

Ex3. A formula which produces long inference chains
Opy AO(py 2 p2) AD(p2 D2 pa) A- - AD(paa D pso) AD(pso D g V'r)
> 0(gvr).

Ex4. A formula which may produce irrelevant branches
O(p Do Ve Ve)AD(p D pa Vs Vps) AD(p D pr Vps Vpe) AO(p D
poVen Ve AP D pavVpaVms)AOQ(p D qvr)AOp 2 O(gvr).

Ex5. A formula which may produce irrelevant worlds
Oa(Ea1p A Oagp A Oap A Oggp A Dasp O p) A
Dﬂ(Dagp A Oarp A UEEP A Ogap A Ogiop 2 P} M
Oa(Da11p A Da12p A Darap A Ograp A Darsp O p) A
Oa(Opp D gV r) A D Osp 2 Oglg Vv r:h

15

Table 1: Fvaluation Results

meta | peval | nhm

number of branches 5 5 §

Ex1 | average proof length 3 20 a7
CPU time 0.08 | 0.06 | 0.24

number of branches 51 2 2
Ex2 | average proof length | 184 106 | 208
CPU time 1.11 | 0.89 | 4.04

number of branches 62 2 2
Exd | average proof length | 137 s | 212
CPU time 1.08 | 0.82 | 4.27

number of branches | 607 486 2
Ex4 | average proof length | 40 13 12
CPU time 157 | 092 | 0.05
number of branches | 312 | 468 2
Exi | average proof length | 37 20 15
CPU time 1.80 1.65 | 0.1t
number of branches | 3883 | 486 2
Exf | average proof length | 71 36 48
CPU time 13.78 | 2.39 | 0.45

Ex6. A formula which has antecedents with many literals and which may
produce irrelevant branches
O(p Apade - Apso D eV Ve Ja- - -ADO(p APz A=+ Apso D a5 Vbs Ves)
ADO{py Aps A Apsg D gV r) A Op AOps A+ A Opsg O Ofg v r).

As can be seen from the table, the basic modal transformation method
{peval) is generally superior to the meta-programming method (meta). In
particular, for Ex6, the CPU time of the basic transformation method is
reduced to 1/6 that of the meta-programming method. The reason is that
the meta-programming method generates branches for every 50 atoms in the
antecedents, while the basic transformation method processes conjunctive
matching of the antecedents instead of generating branches.

The merit of the NHM transformation method (nhm) can be seen in the
number of branches it generates. This merit becomes more important as the
program size increases. For Ex4, Exb, and Ex6, the NHM transformation
method is much better than the other two methods since it does not generate
irrelevant branches as shown in the table. In particular, the CPU time
of the NHM transformation method is reduced to 1/30 that of the meta-
programming method for Ex6.

In Ex2 and Ex3, both the basic transformation method and the NHM

16

transformation method generate the same number of branches, say only
9 hranches, while the meta-programming method produces more than 50
branches. This is because these examples do not contain irrelevant subfor-
mulae. For Ex2 and Ex3, however, the NHM transformation method is no
better than the meta-programming method in terms of CPU time. This is
cansed by the overhead of goal information propagation. For Ex2, as the
number of input clauses and that of predicates in the NHM method are dou-
ble those of the basic method, the cost of conjunctive matching increases
linearly. The problem, however, can be overcome by introducing the clause
indexing method which enables efficient conjunctive matching!.

6 Concluding Remarks

We have presented the modal transformation method, that translates propo-
sitional modal formulae into input clauses of the model generation theorem
prover MGTP. The main idea of the modal transformation method is partial
evaluation of modal tableau rewriting rules, in particular, specialization of
the ¥ tule and the v rule.

So far, there have been few reports on efficient strategies for modal theo-
rem proving. Auffray et al. [AEH90] proposed a modal version of resolution
strategies such as input and linear resolution. These strategies, however,
impose restrictions on modal formulae, the so-called modal Horn clauses,
while our method can be applied to any modal formula.

From the viewpoint of the modal clause transformation methed, all pre-
viously proposed translation methods compute the = rule and the v rule
completely. Compared with previously proposed translation methods, the
modal clanse transformation method offers the following advantages.

1. Translated clauses are range-restricted. Hence, efficient theorem prov-
ing is possible, as matching is sufficient instead of full unification.

2. Tt is possible to restrict the invocation of the = rule that creates new
worlds. We can therefore avoid generating branches irrelevant to the
proaof.

In this paper, we have concentrated on the modal system K in which
the accessibility relation has no special property. As the proposed method
can be classified as a translation method, it is obviously possible to make
use of techniques for implementing the accessibility relation described in the
literature [Ohl88, Non93|.

Although MGTTP is a parallel prover, this paper has not addressed the
issue of parallelism. Cur future intentions are to investigate parallel versions

In fact, the NHM transformation method works hetter than the meta-programming
method for Ex2 and Ex3 on the Prolog version of MGTP, which implements a clause

indexing method.

17

of the modal clause transformation method by exploiting the parallelism
inherent in modal theorem proving.

Madal logics have been recognized to be important in Artificial Intel-
ligence, especially in nonmonotonic logics of belief and in accounts of ab-
duction and belief revision based on nonstandard logic. With this regard,
MGTP has been proven to be very useful for computing default negation
{(negation as failure) in logic programming [[KH92] and abduction based on
first-order logic [ITOHN93]. By combining our work with these MGTP-based
approaches, we expect that more general forms of nonmonotonic and abdue-
tive reasoning based on modal logics of belief can be treated on MGTP.

Acknowledgements

We are grateful to Miyuki Koshimura for his help with the experiments and
to Hiroshi Fujita for providing the MGTP compiler in Prolog. We would
also like to thank Seishi Nishikawa, Tsukasa Kawaoka, Ryohei Nakano, and
Shun-ichi Uchida for their support in this work.

References

{AEH20] Y. Auffray, P. Enjalbert, and J-J. Hebrard. Strategies for modal
resolution: Results and problems. J. of Automated Reasoning,
6:1-38, 1990, '

[AMS36] M. Abadi and Z. Manna. Modal theorem proving. In Proc. of the
Bth Int. Conf. on Aulomated Deduction, pages 172-189, 1986.

[Catdl] L. Catach. TABLEAUX: A general theorem prover for modal
logics. J. of Automated Reasoning, T:489-510, 1991.

[CD93] R. Caferra and S. Demri. Cooperation between direct method
and translation method in non classical logics: Some results in
propositional S5. In Proc. of [JCATI'SY, pages T4—T9, 1993,

[CheB0] B. Chellas. Modal Logic: An Introduction. Cambridge University
Press, 1980,

[EF89] P. Enjalbert and L. Farinas del Cerro. Modal resolution in clausal
form. Theoretical Computer Science, 65:1-33, 1989,

[Far8G] L. Farinas del Cerro. Molog, a system that extends Prolog with
modal logic. New Generation Computing, 4:35-50, 1986.

[FH91] H. Fujita and R. Hasegawa. A model generation theorem prover
in k11 using ramified-stack algorithm. In Proe. of ICLP 81, pages
535-548, 1991.

18

[Fit8s]

[HMS0]

[HO193]

[TKH92]

[IOHN93]

[KHY1]

[Kon86)

[Kro87]

[MBSS]

[Non93]
[Ohl8s)

[Sho93]

M. Fitting. First-order modal tableaux. J. of Automated Heason-
ing, 4:191-213, 1988,

1. Y. Halpern and Y. Moses. Knowledge and common knowledge
in a distributed environment. JA4CM, 37:549-587, 1950,

R. Hasegawa, Y. Ohta, and K. Inoue. Non-horn magic sets and
their relation to relevancy testing. Technical Report 834, ICOT,
1993,

K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation
as failure into a model generation theorem prover. In Proc. of the
1ith Int. Conf on Autemated Deduclion, pages 400-415, 1992.

K. Inoue, Y. Ohta, R. Hasegawa, and M. Nakashima. Bottom-
up abduction by model generation. In Proc. of IJCAI'83, pages
102-108, 1993.

M. Koshimnra and . Hasegawa. Modal propositional tableaux
on a model generation theorem prover. In Proc. of LPC'91, pages
43-52, 1991,

Kurt Konolige. A Deduction Model of Belief. Morgan Kaufmann,
1986,

F. Kroger. Temporal logic of programs. In FATCS Monographs
on Theoretical Computer Science, pages 1-148. Spinger-Verlag,
1987.

R. Manthey and F. Bry. SATCHMO: A theorem prover imple-
mented in Prolog. In Pree. af the 9th Int. Conf. on Automated
Deduction, pages 415-434, 1988,

A. Nonnengart. First-order madal logic theorem proving and
functional simulation. In Proc. of IJCATI'3, pages B0—85, 1993.

H. J. Ohlbach. A resolution caleulus for modal logics. In Proe. of
the 9tk Int. Conf. on Automaied Deduction, pages 500-516, 1988.

Y. Shoham. Agent-oriented programming. Artificial ntelligence,
60:51-92, 1993,

19

