TH-865

Logic Programming FGCS (DRAFT)

Kazuhiro Fuchi
Faculty of Engineering, University of Tokyo

1 Introduction

Although logie programming appearcd in the 1970s, for a while it was scarcely
considered in Japan, and it was treated as a minor topic in the international research
community. Ferhaps, this is because the idea germinated in (a corner of) Europe and
it ran counter to notions held by the majority, which was then led by the rescarch
community in America. In those days (and now), it was American researchers who
were leading the research in this area.

In the "80s, logic programming gradually came to gain some acceptance. As a resull,
the scientific journal " Jouwrual of Logic Programming” was published and an interna-
tional academic conference for logic programming rescarch was founded. Even though
still in the minority, some researchers had established a research domain. It had be-
come an attractive area of inquiry for younger researchers in Japan, in spite of the
older researchers’ (unreasonable) rejection.

[think the necessity for logic programming has stimulated this research area. In addi-
tion, a big (coincident) event, the start up of the "Fifth Generation Computer Systems
Project” (FGCS) in Japan, gave impetus to this area of investigation. (The FGCS
project has played a role in contributing to this research ficld iu its own way.)

2 Encounter with Logic Programming

First experience: [remember | first encountered something like logic programming
around 1960. What 1 read was probably a paper in a journal published by ACM, in
which the author spoke of trying to translate logical formula {axioms and inference
rules) into a programming language.

[was interested in that paper and tried to implement the language. But the attempt
resulted in complete failure. Ounly a partial implementation was needed to prove that
the execution speed was too slow for practical use.

The primary reason might have been my poor skill in programming. But, certainly,
the second canse had to be the computer | used. It was a machine with 2,000 words of

storage, a cpu rate of 0.005 Mips, and a paper tape device for external storage. I had
designed, hard-wired, and adjusted the thing, myself.

| soon recognized that our computer technology itscll needed advancing, and we would
have to wait until we could obtain advanced computers before conducting researches
on interesting subjects.

2.1 Around 1970

Situations seem to change in 10 year eyeles. The major computer technology re-
scarch entities shifted from research institutes and nniversities to industry. After decid-
ing to remain working at a research institute, | became keenly absorbed in the guestion
of what kind of research themes our (national) research institutes should consider in
the fields ol computer technology and information processing.

Conditions at my research institute had gradually improved to the point where it had
become possible to afford Lhe purchase of a large gencral purpose computer. Although
my mind did not scem particularly suited for a philosophy-oriented or theory-oriented
research approach, [began to feel it was the time for o [orward thinking rescarch
project to be "experimentally” conducted, making nse of a compuler in a practical
way. What 's more, T felt it was time for us Lo Lake positive steps in that direclion.
Ior this reason, T began surveying the current stale of research on information PrOCEss-
ing in the "advanced” countries, and began a review of their work. 1 found the state
of technology to be further advanced than I had expected.

Research on artificial intelligence conducted at MIL, as well as Stanford University,
SRI, and the University of Edinburgh had already given birth to Al-oriented program-
ming languages and natural language understanding systems resulting in prototypes of
artificial robots.

On the other hand, new programming methodologics had been proposed and math-
ematical theories offcred for programs. Software engineering had been proposed and
database rescarch had come to be papular, bolstered by the proposition of relational
dalabase models.

2.2 Inference Mechanism Laboratory

A new research laboratory with the curions name (at that time} "Inference Mech-
anism Laboratory” was established at the research institute where T was waorking.
Although it was a small laboratory, it became the base for research in this field.

The first task for the Tnference Mechanism Laboratory was lo implement a Lisp pro-
cessor, since [believed this would be neccssary as the infrastructure for new research.
Dr. Toshiaki Kurokawa had already implemented one of the world's most advanced
Lisp processors al Lhe time, corresponding to MacLisp.

Dr. Hozumi Tanaka immediately began rescarch on Japanesc language understand-
ing system for the processor. The starting poinl was converting NDr. Pratt’s grammar

2

pracessor, Lingol, into a Japanese version. Lingol, ilself an interesting system, skillfully
nses the characteristics of Lisp and matches the syntax tree with Lhe function tree,
One of the original purposes for implementing ETL-Lisp was to "re-examine” an Al-
oriented language which had first been proposed al MIT. I was intcerested in this lan-
guage and introduced it to Japau, referring to it as the "inference” programming lag-
guage,

Research on "theorem proving” was very popnlar in the latter half of 1960s. However,
there was also "eriticism to logic” as a reaction to the fact that research results turned
out Lo he contrary to expectation. Partly because of the philosophical background, the
criticism pointed oul that the logical [ramework, which in this case was the first order
predicate logic, was too generic and ineflicient.

Do Hewitt's "Planner” was said to translale logic to procedures. The language under-
standing system of Dr. Winograd, which utilized n-Planner, had gained attention, and
"procedural semantics” was advecated. Together, these were recognized as realizing
the ideology of the "criticism to logic” of MI'1"s AJ Zronp.

Although I remember having a reservation or two, I felt I had better follow the prede-
cessors’ direction, However, to my surprise, the forerunner whom [intended to follow
with respect suddenly lost his way.

Planner was also too slow, Then, based on this eriticism, Dr, Sussman proposed * Clon-
niver”, staling that incomplete anti-logicization” had caused the probicm. However,
it was also Loo slow. And. the majority of the Al group had returned to Lisp.

2.3 Encounter with Prolog

I had heard much criticism te logic from the MIT group. However, I fell that I need
ot consent to their ideology. Althongh 1 had no intention of soliciting agreemont from
others, T personally favored inference-sovereignty, like (IPierce). (My taste was clearly
reflected in the name of the laboratory.)

I took first notice of the concept of logic programiming in a paper by Dr. Kowalski
(1974). The idea intercsted me greatly. And though a thorough explanation of his
idea is unwarranted here, essentially, it interprets Torn logic, a subset of first order
predicate logic, as a procedure, and regards the node set as a "program”,

[thought that it was useful for the hasic form of program translation. So, I tried to
change the parsing algorithms of Drs. Pratt and Early 1o a logic form.

I was quite impressed with the result. Tt could cxplicitly represent the filter function
and the structure which were essential to the algorithms. (I was laler surprised to learn
that the same function was developed in the database field and given the fancy name,
“magic set”.)

In spite of my experience, I didn’t think the idea could be directly converted into an
implementation. Even though it might have been implemented, 1 felt it would be too
slow to work.

At that time, Dr. Koichi Furukawa had returned from a period of overseas study with

a copy of the listing of Prolog, something SRI had once tried to implement. However,
SRI had failed with the implementation and had moved away from it several years
earlier.

Because of Dr. Furukawa’s view that it was an interesting system, I decided we would
try to implement it, though with little expectation for success. Alter several weeks of
hard work, it began to work, and it surprised us with its fast cxecution speed. It was
very fast provided that it was an interpreter written in Fortran. Actually, it was twice
as [ust as [expected it to be. A further analysis of the details of its program revealed
that the Lechnigues used for implementation were rather skiliful.

Since I was originally interested in the idea of logic programming, the implementation
of an efficient processor completely changed my view. Tt was commonly believed that
a logic based system was very slow. And, although it was biased, | also agrecd with
that view. (Many American researchers have agreed with this bias since then.)

On the other hand, young researchers, not burdened by useless remembrance, also
thought that Prolog was rather slow compared with Lisp. Since the implementation
techmique for Prolog was largely common to that for Lisp, T thought that it might be
possible to directly implement Prolog. (Original listing was only ten pages long.} |
expected that the divectly implemented Prolog wonld be as fast as Lisp.

Back then, Dr. Warren had constructed o similar type of Prolog implementation on
NEC-10 in Englaid. His system was efficicnt cnough for practical use, and well-
prepared as a total processing system. This system was a milestone, sparking an
increase in the numbers of Prolog users around the world, as well as around me.

3 The Fifth Generation Computer Systems Project and Logic
Programming

3.1 Computer Science and Logic

The 1970s was the period in which computer science established its roots. It was the
period in which a logical approach had resulted in establishing a foundation, allhough
there were criticisms about the logic. Tn place of the teri, "logic”, we can speak of a
mathematical foundation as liaving been set. Anyway, it inevitably resulted in the use
of a mathematical and logical [ramework.

3.1.1 Programming

In addition to logic programming, which was a direct example of the use of logic,
"semautics” was explared in the field of programming. Semantics {Denotational Se-
mantics = Model Theory) was a direct advance of the logical framework. Scott’s theory
of lambda computstion was associated with advances in the sct Lheory of the day.
Hoare's axiomnalic semantics was one of the atlempts an the Prool Theory for proce
dural languages, and evolved into one kind of modal logie, so-called dynamic logic.

1

Both functional programming and object-oriented programming can be regarded as
kinds of logic programming, which have firm common bases as well as unique charac-
teristics and subjects.

3.1.2 Datahase

In the field of soltware, database has the same importance as programuming. The
relational data model proposed by Dr. Codd in 1970 and based on a subset of first
order predicate logic (and Horu logic) had great hearing on this field.

Furthermore, the "subset”™ was more than simply a part of the total set. [t had a
mechanical significance since it could be used Lo elaborate advanced logic based on the
{specilic) characteristics of each field.

In the field of database, logic had been a more dircet theme of investigation than in
the fickd of programming. The theme of "logic and database” had often been disenssed
and experiinents were done with deductive databases.

3.1.3 The Harmonic Association of Both

lissentially, the ficlds of programming and database are not two mutually exclusive
fields. They should be regarded as nothing more than two aspects of the same world.
Up to the present, there have beeu continuous attempts to connect independently de-
veloped systems by force. But, I think these attempts are unnatural.
It is necessary to develop subsystems for botk fields within an integrated framework,
while mechanically taking advantage of each one's specific natures, The same thing
can be said [or programming paradigms.
We thought that "logic” could form the common basis, and it was the main reason
why we had adopted logic programming as the basis for the Fifth Generation Com-
puter Systems project,

3.2 Work Hypothesis for Semantics

There was another more specific reason why | adopted logic programuing as the
hasis of the Fifth Gencration Computer Systems project.

3.2.1 Semantics = Program

The "procedural semantics” of r. Winograd tried to comprehend the semantics
of terms as "programs”. Here, a conceptual word corresponds with a program module.
Modules are associated with each other Lo compose a program which corresponds with
a sentence. The program runs to perform the function which the original scntence
unplies. This framework was momentous for its implementation of a natural language

[|

understanding syslem.

The programming language, u-Tlanner, was intended to be used for this purpose. But,
as mentioned caclicr, Lhe language was not implemented in reality. Is there any alter-
native language 7 (An allernative approach was to abandon the framework itself, as

Dr. Winograd did.)

4.2.2 Semantics = Logical Formula

In those days, Montague theory had gained the attention of a specific group studying
philosophy. This theory had a great impact on philology. And though the achievements
of the work had nol been intended far computer technology, I was deeply interested in
the framewaorls.

With the framework, the semantics of a word corresponds with a "logical formnla.”
Composing words resulls in a logical formula corresponding to the original sentence.
I understood this had long been a goal of {some) philosophers. It was indeed epoch
making that this framework was implemented for a natural language, instead of for
only part of a natural language.

The cowposilion of the logical formula was based on the framework of lambda con-
version, using a kind ol high order modal logic called intentional logic. The logic was
given denotational semantics. In addition to the {philosophical) nolation, what kind of
computation did the logical formula represent 7 The similarity between the framework
and Lingol was also an interesting discovery for me.

3.2.3 Logical Formula = Program

As mentioned earlier, logic programumning tried Lo interpret a kind of logical formula
as a program. In this context, a very atiractive three terms relationship was recog-
nized. | was aware that logic programming was the missing link which bridged the
three entities,

Lhe above consideration, lacking evidence, conld not be discussed in an academic pa-
per. Indeed, there were countless gaps in the rescarch design, which should have been
investigated as "research themes.” [knew investigations on these themes were ol sim-
ple tasks.

On the other hand, 1 thought logic programming could be used as a hasic framework
or a working hypothesis for advancing a research project.

3.3 A Working Hypothesis for Parallel Inference
3.3.1 Advancement of Semi-conductor Technology and Parallel Inference

The continuons, exponential advancement in semiconductor technology hegan in
the 70s and is expected to last into the 21th century. Based on this expectation, few

people opposed the view that parallel computers could be realized in terms of their
hardware,

However, difficulties were expected in the software area for parallel computers. Tn par-
ticular, many of the researchers who had cxperienced failure in the development of a
parallel computer in the '60s were quite skeptical.

The majority of researchers held the view thal special purpose machines, e.g. those
used for graphic image processing or large scale numerical computation of regular pat-
tern might be constructed. However, (softwarc for) a general purpose parallel computer
containing irregular and complicated advanced symbol processing was highly likely to
appear anyiime soom.

By the late 70s, I agreed with Lhat view.

3.3.2 Dataflow Model

In those days, | had a chance to acquaint myscll with the current state of the re-
scarch on dataflow machines. 1 did not expect much from dataflow machines, since 1
had known of their hasic idea ten vears earlier.

Now, what most impressed me was the dataflow language, At the time, | had been
examining a plan {for the software) often mentioned earlier. | happened to notice that
dataflow language could be viewed as a kind of logical language.

This view had allowed me to enlarge the plan for the range of hardware (architecture)
at each stretch. For me, logic programming was the missing link which bridged the
parallel machine architecture and software.

3.3.3 Parallel Tnference

Basically, logic programs are independent of the method of execution. They can he
interpreted sequentially. Prolog relies on this fact.
On the other haud, Prolog is different from languages which arc originally designed to
run sequentially in that it can run in parallel. As described below, it has abundant
{wasteful) parallclism,
Anyway, T expected that the restriction of scquential processing would be released and
that logic programming would provide the (basis for} organizational principle of the
softwarc [or parallel machines. This idea had been embodied in the keyword "parallel
inference” by the time the project start.

3.4 Starting the Project

In 1982, the project based on the above research plan started. It was nat a tradi-
tional {follow-on) development project but, on the contrary, it was an epoch-making
project which began by creating basic teehnology.

The project was in sync with plans at the Ministry of Tnternational ‘I'rade and Indus-
try (MITT), which had been wanting a project that could establish new patterns of
research. Of course, the expected din of opposition rose, which inevitably accompanies
a large national project.

Serious criticisms and discussions centered around the point of why the project had
employed logic programming as its basis.

3.4.1 Why Prolog and Why Not Lisp

This was a typical first reaction. Prolog was nothing more than a starting point;
what we had really employed was the "idea” of logic programming. However, to our
surprise, this was not truly understood by many researchers.

The first reason for this misunderstanding had to do with the sponsor. Since the project
was sponsored by MITI, both foreign and domestic researchers mistakenly believed the
rescarch was meant to directly aid industry, or creale a standard for future aid, as
traditional national projects were wont to de.

The second reason was it might be regarded as a "rebellion” against Lisp which was
mainstream in the US ol the time. | was told face to face that it was an audacious
selection. Some overseas mass media intecpreted it as a “theological debate” As T men-
tioned carlier it was not an issuc of selecting a language. Furthermore, 1 understoud
the real value of finctional programming which was (he basis of Lisp.

[believed nothing to be more barren than theological debate or ideological debate. |
hate these kinds of debate. And, T have always stated that the employment of logic
programming or other such ideas was nothing more than using *working hypotheses.”
I believe | am a relativist.

Although there were curious reactions al first, our "basic” idea gradually grew to be
undersiood. In particular, younger researchers did not have a strong reaction to logic
programming, while some senior researchers {iny age} resisted it.

3.4.2 Principles in the Project

I basically welcomed free and varied ideas, bul T wasn't going to be a relalivist
without principles.
[intentionally and decidedly selected logic programming, although the selection seemed
to be too simple for some people. After [had examined all choices, my decision hecame
a thoroughly simple one,
I believed that il was better for a single {research) project to have as few principles as
pussible. Tens of provisions or exhaustive exceptions cannot be regarded as a principle.
The larger project should have a swaller number of principles. After all, it is (he first
principle which leads the project to success.
It might seem conirary to the practical wisdom, but T believe that the major factors
which lead a project to failure are a research plan which contains various approaches

B

and a compromise for running the project.

[did not think that cmploying logic programming as the basis for research restricted
new advancements in the research. On the contrary, 1 tried to establish a new fertile
environment for the rescarch. It was nothing more than a hypothesis. However, T
thought that I had to stick to it, since it was a working hypothesis.

4 Achievements of the Fifth Generation Computer Systems
Project

During the first period of the project (three years), we designed theFSDP language
which was an extension of Prolog and we implemented ils prototype. In addition, we
also designed and implemented the workstation PSI corresponding to ESP and having
a (high level] machine language. The operating system Simpos for PSI written only in
FSP was the world's first large scale software written in a logic language.

More than 100 PSI systems were coustructed (including revised versions), and they
provided a basis for later research.

We have concentrated on the research of parallel inference since then. The following
sections describe an overview of the major achievements of the research, locusing on
logic programming.

41 GHC/KL1

The first research theme was the parallel logic langnage. Investigating logic lan-
guage for parallel mackines had been a project subject from the beginning, This theme
was investigated by the tcam led by Dr. Furnkawa. In this field, the proposition of a
langnage (later called Parlog) by Dr. Clark of England, as well as the proposition of
Coneurrent Prolog by Dr. Shapiro preceded our project.

Dr. Furukawa and his colleagues were carefully cxamining these langnages and invited
young and cnergelic researchers from abrowd to join the investigation. After the in-
vestigation was deeply engaged, Ur. Kazunori Ueda proposed a new language model,
G, This was al the end of the first period of the project.

The GHC model had a simple, yet sophisticated structure while inheriting the fune-
tionality of the preceding languages. After a variety of examiuations, we decided to
adopt this model as a basis for succeeding research.

Based on GHC), Tr. Takashi Chikayamu designed a practical programming language,
KLL. And, the hardware group decided to adopt KL as the basis for designing parallel
machines from that time forward. (Lhis decision was Lo result in the development of
parallel inference machine, PIM, during the last period of the praject.)

Dr. Chikayama and his colleagnes had developed the KT/ implementation and the
operating system Pimos for the parallel machine which used the implementation. This
implementation had proved that a parallel logic language could be used in practice.

KL1/GHC was based on Horn logic and emploved "constraints” for controlling paral-
lel actions. This enabled the system to naturally build in functions such as dataflow
synchronization.

While some approved, other researchers claimed (7) that adding constraints had dis-
tanced the system from pure logic. T thought that many researchers strongly believed
that logic indicated nothing more than the "first order predicate logic” illustrated in a
texthook (although the v were not explicitly conscions of the fact). Researchers who
were opposed to logic were usually such purists.

[t was surcly onc of the members in the family of logic languages. I think that it forms
a structure for the kernel of logic programming, even if parallelism is exclnded.

4.2 Quixote

Since GHC/KLI was an attempt to pursue a "low level” structure of thelogic pro-
gramming language, another quesition was how to up grade the structure to a higher
level. “L'his coincided with the direction for which a knowledge representation language
was being sought.

4.2.1 CIL/Situation Semantics

We gained our first achievement at the end of the first period. Tt resulted from the
rescarch on the natural language nnderstanding system of Drs. Kuuiaki Mulai and
Lideki Yasukawa.

In those days, Dr. Barwise and his colleagues proposed "situation semantics” in order
to overcome the limitations in Montague's theory, They also included ” non-standard”
set theory which led to the extension of symbol structures (snch as the rational tree
cxpressions which were later proposed by the Colinerauer, the inventor of Prolog). Dr.
Mukai and his colleaguces invented the programming language, which represented the
model after minutely examining the theory.

JIL also included advanced allempts, such as non-determinate terms and cxtensions
of control structure, which would later lead to the "constraint logic programming.”

4.2.2 Constraint Logic Programming

During the '80s, research on logic programming made rapid progress all over Lhe

world. One of the natable advances was the constraint logic programming proposed by
Drs. Jaller and Lassez. (Dr. Colmerauer was also a forerunner in this arca).
It tricd to comprehend the hehavior of a logic program at the level of ”constraint” which
controlled inference, without reducing all behaviors into a level of hasic inference. 'I'his
mechanism provided the framework to huild in solvers specific 1o each problem domain
(snch as the solvers for equalions or inequalities within the real number domain}. Tt
can be regarded as an cxtension or advancement of control structure.

10

At TCOT, the CAL processing system was implemented and used for rescarch during
the middle period. In the last period, the language, GDCC, and its processiig system,
which was extended to cope with parallelism, were implemented.

4.2.3 The Non-regular Relational Nata Modcl

ICOT adopted the relational database model as the basis for Lhe knowledge base
system.
During the project’s middle period, a team led by Dr. Kazumasa Yokota developed
the "non-regular model” by extending the standard relational model, and then imple-
mented it on PSL. The team also developed a prototype of CRL which was a (query)
logic language for deductive databases. {The non-regular database system was ex-
tended iuto a parallel version and implemented during the last period.)
[larmonizing logic with object orientation had been aun outstanding issue from the
project’s inception. Early on, Dr. Yokota and his colleagues proposed DOOD (dedue-
tive object-vriented database) and proceeded in this direction with their work. Their
efforts bore fruit in the last period.

4.2.4 Don's Intention

Actually, throughout the project’s heginning and middle periods, the research con-
ducted by Dr. Yokota's teawn had remained independent of the natural language re-
search that Dr. Mukai’s team was doing. Tlowever, they had each reached some very
similar points, especially with regard to the programming languages.

So, T lorced them to make a combined team in the last period (althongh I was a little
worried that my demand appear unreasonable).

The team then produced more results than | expected. A new langnage was crealed
by haronizing their independent researches, CIL and CRL. It was a very natural
harmonization rather than an unreasonable combination.

The language called, Quixote, organically integrated [actors, such as a concurrent
logic programming language, a situaled programming language, and an object-oriented
database programuning language. It had a flexible term con figuration like the non-
determinant termn, which represented an vbject. The set of terms inherited its -
tributes using the partial order relationship. The overall struclure was a hierarchical
modules strocture,

Quixole has since been used 10 represent the natural langnage semantics, Lhe molecule
biological database, and the legal reasoning systern,

4.3 MGTP

As you know, one of logic programming’s rools ean be found in theorem proving
research (and another in the rescarch of natural langnage processing). IMowever, the

1

theorem proving research root made little progress during that period.

The original experience in the '60s had badly affected the progress of thevrem praving
research. It had historically taken Lhe popnlar view thal first order predicale logic was
too general. From this, logic programming limited its arena to the field of programiming
(or database).

Indeed, although the prover of first vrder predicate logic does not correspond with
theorem proving vn a one-to-one basis, it is difficult to avoid dealing with the issue of
the first order predicale logic prover.

ICOT also dealt with Lhis issue only in the form of a (mathematical) proving "sup-
porl” system. As a result, the system CAP was constructed. However, after using
the system, we reach the opinion that a support system should contain the ability for
proving within itself, even though it was a support system,

[n the '60s, a variety (almost all} of provers had been proposed, and I believed their
mathematical research to be complete.

However, in u sense, (except in Goedel's meaning) research on a prover does not have
a mathematical value by itself. The prover is nothing imore than a tool. This indicates
that it is basically an issue of enginecring, though it requires mathematical support,
L the "80s, many technigues had been accumnlated through logic programming. The
technology for computers also advanced. We had the world’s [astest (parallel) com-
puter for symbol processing. It could not turn mathematical infinity to finiteness, bul
I'thought it was the time to try again.

I still had not abandoned the hope of constructing a theorem prover; Dr. Furukawa
hadn't either. And, at the same time, Dr. Ryuzo Hascgawa announced he intended to
construct the world’s lastest theorem prover.

Fortunately, we were able to make use of Dy, Bry's Satchmo. [L was a model generation
method, but at the first glance it seemed to be nothing more Lthan a derivative of the
Tableau method or Hyper Resolution. But, to our surprise, a program of several Prolog
lines could be executed very fast, One of the keys to the fast execution was limitation
of domains. Many problems could be reduced to the ground level (as databases had
already done).

Examination of Satchino revealed that it could he well adapted to parallel processing.
Dr. Hasegawa and his colleagues construcied an ultra-fast prover on a parallel ma-
chine. They also constructed a non-ground version.

As a result, it could be used to solve some of the outstanding mathematical problems
(inctuding problems of Bennet's quasi-group). In addition to solving mathematical
problems, it was used as the engine for legal reasoning systems. It was also employed
as the base system for the hypothesis inference system and the modal logic system.
The focus of logic programming was being limited to Horn logic. But, al this stage,
herc arose a possibility to go back to the original background as a chance to enhance
the technology.

4.4 Miscellaneous

Mentioned above are whal I think arc some of the typical achievements. Deyond
that, we have too many achievements, which ave valuable as research results, to be
listed here.

Some of these include logic researches, non-monotonic inference, inference by analogy,
partial evaluation, program translation, etc.

They also include large-scale application problems, the system which generates a plant
control program of some thousands of lines nsing temporal {modal} logic, the natural
language analysis system which works in parallel, the LSI-CAD system for hard-wiring,
disposition and logical simulation, the legal reasoning system which uses past cases and
provisions, the genetic information analysis system, etc.

They were all developed on the basis of logic programming. During the last period of
the praject, almost all of the programs were developed in the parallel logic language
KL1. While they mainly aimed at examining new technologics, rich expericnce was
obtained for lozic programming.

Impressions on the Results: If there had been a research project with the same objec-
tive as the Fifth Generation Computer Systems project, logic programming might not
have been the only selection, having no alternative. Of course, several choices might
have been considered other than [COT s choice, even if logic programming had been
adopted as the basis.

On the other hand, we think Lthe employiment of logic progranuning had proven Lo be
the most effective working hypothesis, given the results.

5 The Future of Logic Programming

5.1 Dissemination of the Research Results

I think the research on logic programming has now reached a turning point, since
a fairly large amount of the results have been oblained.
One of Lhe remaining issues is just how to take full advantage of the research results
in the field of practical information processing.
Certamnly, logic programming leaves a great deal of room for further investigation.
However, since it is maore than a prototype, its "idea”™ will be disseminated in the re-
search society.
[think the future of logic programming is worth noting. Sequential programming fi-
nally resulted in the combined use of a variety of paradigms. What will happen in the
ficld of parallel (concurrent) programming, which has now reached the starting point
for a practical wse?
L'here may be approaches in which concurrent Lisp or [unclional programming are
adopted as their starting point. Practical researchers may rely on the improvement
of C language. 1 am not sure that they will suceeed. 1 believe that concurrent logic
langnages are most hopeful. However, the tendency may be to adopt a somewhat more

13

useless approach in the real world.

From the viewpoint of the user, whal is most important is integrating programuming
paradigms, and also integrating programming and database. Although room is left for
further research, T think the researches of thesc ten years have combined to lay a firm
groundwork for future advancement. It is also necessary that further efforts be made
to make nse of the research results in the practical world.

9.2 Various Logic Systems

Another importaul issue is the enlargement of logic programming’s field of research.
First order predicate logic is not the only logic system. There are also partial logic
systems, intuitive logic systems, and modal logic, as well as other formalizations. Fur-
thermore, mathematical logic suggests there may be an infinite number of logic systems.
However, countless logic systems are organically related to each other, rather than iso-
lated. Standard logic systems are nsnally used for the relationships.

I believe most of the varions AT aitempts up to this point can be rearranged as logic
systems. Rearrangement can clearly poinl out the characteristics of each logic system
and clarify the way to harmonize various logic systems with each other while maintain-
ing each one's merit.

(Sequential Type) Semantics for programs can be rearranged as dynamic logic. The
dynamic asperts of a program can be well-understood as a type of modal logie rather
than flat predicate logic.

I believe modal logic should be examined again from the viewpoint of logic program-
ming rather than sunply using existing systems.

5.3 Deduction, Abduction, Indnetion

Classifying logic infercnce into three category is rather traditional. Ronghly speak-
ing, modern mathematical logic has mathematically defined the inference part of math-
ematical proof. It inevitably includes modeling of “computation.” Logic programming
is mainly concerned with this point.

On the other hand, in many cases, Al research can be seen as altempts to cxtend the
wrea of inference,

Theorem proving is deductive inference. While diagnostic issues have been regarded
as abducting inlerence, hypothesis inference can also be regarded as an extension of
abducling inference. Learning is an issue of inductive reasoning.

Althongh logic programuming is generally regarded as part of deduction, I do not think
it is always true. In my view, symbol logic has clarified the symbolic elemental process,
which Hes in the basis of infercuce, rather than clarifying the structure of deduction.
In my view, overall sirncture is not clarified even for deduction {or proving]. However,
tor example, compared with induction, deduclion is relatively well-defined.

In the history {of philosophy), inductive inference could not have been understood as

14

a set of simple rules or a system of symhol logic. No other logic system exists for
inductive inference.

In ather words, the three kinds of inference mechanisms have common logical elemental
processes as their bases which correspond with logic programming.

The research on the inductive inference system based on logic programming is cxpected
to become an important field. Recent results of Muggleton's research have supported
this expectation.

The future direction for logic programming is finding ways to cope with various types
of inference.

