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Abstract

Multiple sequence alignment is an important problem in the biosciences. To date, most
multiple alignment systems have emploved a tree-based algorithm, which combines the
results of 2-way dynamic programming in a tree-like order of sequence similarity. The
alignment quality is not, however, high enough when the sequence similarity is low.
Once an error occurs in the alignment process, that error can never be corrected.
Recently, an effective new class of algorithms has been developed. These algorithms
iteratively apply dynamic programming Lo partially aligned sequences to improve their
alignment quality. The iteration corrects any errors that may have occurred in the
alignment process. Such an iterative strategy requires heuristic search methods to
solve practical alignment problems. Incorporating such methods vields various itera-
tive algorithms. This paper reports our comprehensive comparison of iterative algo-
rithms. We proved that performance improves remarkably when using a tree-based
iterative method, which iteratively refines an alignment whenever two sub-alignments
arc merged in a tree-based way. We propose a tree-dependent restricted partitioning

technique to efficiently reduce the execution time of iterative algorithms.

Introduction

‘The similarity analysis of protein/DNA sequences with multiple alignment is an impor-
tant method for predicting function and structure, and for drawing phylogenetic trees
of creatures, Many algorithms have been developed to help biologists align sequences.

Once a similarity value between characters is determined, Dynamic Programming
(DP) (Needleman and Wunsch, 1970) can be used to theoretically solve a multiple
alignment problem. N-way DP aligns V sequences simultaneously and derives the op-
timal alignment of these sequences. Computational time to solve a practical alignment
problem, however, is incredibly long. Computational time with N-way DP is in the
order of the N-th power of sequence length. With increasing computer power, 3-way
DP (Murata, 1985) has become feasible. Search space restriction (Carrillo and Lipman,
1988) is making N-way DP on several similar scquences manageable, but N-way DP
is not still fast enough to solve practical alignment problems.

To keep computational time within manageable limits, most multiple alignment
systems employ 2-way DP as a base and combine the results of 2-way DP in a tree-

like order of sequence similarity (Barton, 1990; Feng and Doolittle, 1988; Taylor 1987;



Higgins et al, 1992). These algorithms, called tree-based algorithms, require small
computational time, but they don’t produce high-quality alignment when sequence
similarity is low. Once an error occurs in the alignment process, the error can never
he corrected.

Alignment algorithms that target high quality alignment, even when sequence sim-
ilarity is low, have also been developed. Hirosawa et al., (1993a) employed 3-way DP
as the basis for an initial alignment, then refined the alignment by simulated annealing
(Ishikawa et al, 1893). Nevertheless, the algorithm still takes longer than tree-based
algorithms.

Recently, Berger and Munson (1991} developed an iterative improving strategy for
multiple alignment algorithms, and Gotoh (1993) focused on linear gap penalty in the
iterative improving algorithim. This algorithm iteratively gencrates a nexl possible
alignment with group-to-group 2-way DP. The groups of sequences are decided by ran-
domly partitioning the whele alignment. When the next possible alignment is better
than the present alignment, the new alignment becomes an input to the next iteration.
The algorithm can remedy errors thal occur in the alignment process. The computa-
Lional time, however, is still too long for the user Lo wait for a prospective high-quality
alignment result.

In our previous study {Ishikawa et al., 1992), we revised the iterative improving
stralegy by introducing a best-first search and a restricled partitioning technique (Fig-
ure 1}. The algorithm iteratively generates candidate alignments, with the best candi-
date selected as an input to the next iteration. The candidate alignments are obtained
from the following heuristic partitioning., As partitioning divides N sequences into k
sequences and N — k sequences, a smaller k& tends to provide a larger improvement
when using group-to-group DP. The restricted partitioning technique preferentially se-
lects partitions that have a small &, such as one or two. Although the algorithm was
originally developed for a parallel computer, performance on a sequential computer is
also good.

In this study, we chose some practical iterative alignment algorithms and compared

their performance with a conventional tree-based algorithm.



System and Methods

The programs described in this paper are written in C language. They were tested on
a SUN Sparcstation-10/model-30 (CPU: 36MHz). All programs are available from the

authors upon request.

Algorithms

Tree-based algorithm

Various tree-based algorithms of multiple sequence alignment have been devised. From
among them, we choose a typical algorithm to evaluate the performance of tree-bascd
algorithms. A tree-based algorithm uses 2-way dynamic programming (DP) in a group-
to-group manner (Barton, 1990) to align two sub-alignments.

In this algorithm, sunilarity between each pair of sequences is first estimated with
its pairwise alignment score obtained by DP. Using a malrix of the similarity scores,
UPGMA method (Sncarth and Sokal, 1973) constructs a guided tree. Sequences are
merged to form a multiple alignment based on the bottom-up branching order of the
guided tree. Each node of the tree shows two bunches of sequences to which group-to-
group DFP is applied.

The group-to-group DP optimizes the alignment between groups. The score to he
optimized is the sumnation of all pairwise alignment scores between the groups. The
pairwise alignment score is derived [rom a similarity value hetween amino acids and
a linear relation of gap penalty: a + bk where k is the length of gap and a and b are
the opening and cxtending gap cost. The optimizing operation in 1JI” is the same as
Algorithm C, explained in detail by Gotoh {1993). In the other algorithms described

below, the same type of DP is used to align two sub-alipnments.

Round-rebin iterative algorithm

Barton and Sternberg (1987) proposed the simplesl iterative improvement concept for
achieving refinement against a resulting alignment obtained by a tree-based algorithm.
In the method, group-to-group DP realigns each sequence against the whole alignment,
except for the current sequence. This process is repeated in a round-robin manner.

A round-robin iteralive algorithm applies the refinement method to an initial arbi-

trary state of multiple alignment: normally there are no gaps in the sequences to he



aligned. Accordingly, sequence 57 is aligned with the alignment of sequences S:...5,
(having first removed any gaps that are common to 55...5,). S is then realigned with
the alignment of 5, 53...5,. This process is repeated until 5, has been realigned with

Sy, 82...80-1. The complete cycle is repeated until no change occurs.

Random iterative algorithm

The ariginal iterative improvement algorithm starting from a no-gap alignment was
found by Berger and Munson (1891). Handom numbers play the following important
role in the iterative algorithm.

First, an initial N sequence alignment is input into an iteration cyele. The sequences
are divided by random numbers into two groups: a k sequence alignment and an N — k
sequence alignment. The two partial alignments are then recombined by group-to-
group DP. Since the score of the resulting alignment is always better than or equal to
the previous one, the new alignment is set at the starting point of the next iteration
cycle. Tn this way, application of the iteration cycle gradually improves the whole
alignment. The iteration terminates when a spocific number of continuous cycles give
no improvement. The quality of the final result depends mainly on how effective
partitions have been tested in the iteration eyeles.

The random iterative algorithm requires a huge number of iteration cycles to solve a
practical problem. N-sequence alignment has 2V" — 1 ways of partitioning: more than
2,000,000 partitions when N — 22, To be practicable, a heuristic technique is needed
to significantly restrict search space and reduce execution time, We studied three
restricted partitioning technigues: single-type partitioning, double-type partitioning,

and tree-dependent partitioning.

single-type partitioning: The number of sequences in the smaller sub-alignment of
partitioning is restricted to one, while the other sub-alignment has N — 1 sequences
when the number of aligned sequences is N. Since the number of possible parti-
tions is NV, the order of partitioning complexity is reduced from 2 to N with this

partitioning technique.

double-type partitioning: The number of sequences in the smaller sub-alignment of
partitioning is restricted to one or two, while the other sub-alignment has N — 1
or N — 2 sequences. Possible partitions are N{N +1)/2. The order of partitioning
complexity N? is bigger than that of single-type partitioning.



tree-dependent partitioning: Partitioning is restricted to the ways indicated by
branches of a guided tree (Figure 2). Branch separations are 2N — 3 when the
number of sequences is N (Allison et al., 1992). Construction of the guided tree
is based on a current multiple alighment at the beginning of each iteration cycle.
This technique adequately considers the similanity of aligned sequences. Although
this partitioning technique requires overhead for constructing the guided trees,

the order of partitioning complexity is the same N as that of the single-type

partitioning,.

The three techniques were incorporated in a random iterative algorithm. In the
iteration cycle, random numhbers are used to select each possible partition at the same
probability. These techniques allow the iterative algarithm to solve a practical multiple

alignment problem.

Besl-first iterative algorithm

The random iterative algorithm selecls a partition randomly, whereas the best-first
iterative algorithm tests all possible partitions and selects the best alignment, (Figure 1).
The iteration terminales when all possible partitions give no improvement. Restricted

partitioning techniques are also required in the algorithm to solve practical problems.

Tree-based iterative algorithm

The tree-based iterative algorithm consists of the iterative improvement strategy and
the tree-based algorithm. Each alignment is refined by an iterative algorithm, just after
the two sub-alignments are merged in a tree-based way (Subbiah and Harrison, 1959).
The search schemes, such as random and best-first, bring variety to the tree-based

iterative algorithm. Restricted partitioning technigues can reduce execution time.

Experimental results

Alignment score

Experimental results are compared under the same scoring system of multiple sequence
alignment. The N-sequence alignment score is the summation of N{N — 1)/2 pairwise
alignment scores. Each score is the summation of every similarity value between aligned

amino acids and of every penalty of gap inserted in the sequence pair. The similarity



values are from table PAM250 {Dayhoff 1978). The gap penalty is defined as a linear
relation a + bk, where the opening and extending gap costs are a = —7 and b = —1.
An out-gap penalty is defined without the opening gap cost as bk, where the extending

out-gap cost is b = 0.

Test sequence sets

We gathered thirty sequences of different protein kinase as mother sequences. We
then cut cighty amino acids, starting from the ATP-binding site, out of each mother
sequence.  Then we obtained thirty test sequences; each had a sequence length of
eighty. Twenty-two randomly selected test sequences formed the test set of sequences.
Repeating the random selection thirty times gave us thirty different test sets whose
homologous ratios were 27 to 20 percent. Each experiment was exccuted on the thirty
sets. Figure 3 shows a typical aligninent of the test sets. The alignment was gener-
ated by the tree-based iterative algorithm with best-first search and tree-dependent

partitioning. The alignment score was 14,545,

Ferformance comparison

Figure 4 shows performance of the algorithms. Each algorithm was executed on the
thirty test sets to optimize the alignment score. In RIAS, RIAD and RIAT, the average
of three trials with distinct randem numbers is displayed. The trials started from the

no-gap alignment and terminated when no improvement occurred over 300 iteration

cycles.
TA Tree-based algorithm
RRIA HRound-robin iterative algorithm
TA+RRIA Algorithm refined with RRIA after alignment by TA
RIAS Randormn iterative algorithm with single-Lype partitioning

RIAD Random iterative algorithm with double-type partitioning

RIAT Random iterative algorithm with tree-dependent partitioning

BIAS Best-first iterative algorithm with single-type partitioning

BIAD Best-first iterative algorithm with double-type partitioning

BIAT Rest-first iterative algorithm with tree-dependent partitioning
TRRIA  Tree-based round-robin iterative algorithm

TBIAS  Tree-based best-first iterative algorithm with single-type partitioning



TBIAD  Tree-based best-first iterative algorithm with double-type partitioning
TBIAT  Tree-based best-first iterative algorithm with tree-dependent partitioning

The resulting alignment scores are compared in the upper part of Figure 4. The
scores obtained from the same test sct are connected by dotted lines. Each score is
normalized by all connected scores; the difference from the average of thirteen scores
15 divided by the average itsell. Bold lines connect the average scores of the thirty test
sets. Avecrage execution time of the thirty test sets is also shown in the lower part.

The comparison yielded the following information.

(i) Although the tree-based algorithm (TA) is the fastest, its average score is the

worst.

(ii) On the average, the best-first iterative algorithms (BIAS, BIAD and BIAT) take
more execution time but yield better scores than the random iterative algorithms
(RIAS, RIAD and RIAT).

(iii) Round-robin iterative improvement after TA alignment (TA+RRIA) shows better
performance in both average score and execution time than the randam iterative

algorithms or the best-first iterative algorithms.

(iv) The tree-based iterative algorithms (TRRIA, TBIAS, TBIAD and TBIAT) yield
the best average scores of all algorithms, and their execution times compare fa-

vorably with those of other algorithms.

(v} The tree-based iterative algorithms show no significantly different average scores
in partitioning technique. The tree-based iterative algorithm with round-robin
search (TRRIA) is the fastest.

(vi) Average scores among the random iterative algorithms and among the best-first
iterative algorithms differ significantly in partitioning technique. Tree-dependent
partitioning yields the best performance, although it takes nearly twice as long to

execute as single-type partitioning.

Discussion

Our comprehensive study on iterative algorithms proved that the tree-based iterative

algorithms work better for optimizing the multiple alignment score than the other



iterative algorithms or the conventional tree-based algorithm. Test sequence sets for
random and best-first iterative algorithms did not show better performance than the
algorithm using round-robin iterative improvement afler tree-based aligninent.

Tree-dependent partitioning tends to yield the best performance among the re-
stricted partitioning techniques, which reduce the execution time of iterative algo-
rithms. Performance of the tree-based iterative algorithm did not increase signifi-
cantly, even when tree-dependent partitioning was used. This lack of increase may
have resulted because the sequence similarity in the test sets was not low enough for
tree-dependent partitioning to produce a prominent effect.

The sum-of-pair scoring system was used in our experiments. Other scoring systems,
such as tree and star system { Altschul and Lipman, 1989) could not be incorporated in
the iterative algorithms. Regardless of the scoring system, however, the optimal-score
alignment is not always the most significant result in a biclogical sense. In addition to
optimizing alignments under some scoring system, it is also important to refine them

using biological knowledge (Hirosawa et al., 1993b).

Acknowledgements

The authors would like to thank Dr. Osamu Gotoh of the Saitama Cancer Center for

1113 Vi:ll.ui:i.l.}].l_‘ l.]. i.::'LI LlSHi QIls.



Input

\ Reslricted

Partitioning

T

ERAL--QG--ST l
YHLQ

{MNew) Initial State

HEGI-—QGFLST
ERAL--QG-~5T
H-—-YKLQ---T
DRWVYKIH--5T
ERWLFKIQ==5T

Iteration

WEG-=---IQGFLST
ERR----LOG--5T
| H==—-YELQ-=~~~T
DR-WVYKIH---5T
ER=WLEKIg===8T

pe | |oP| |oP|ees|DP

Optimized by
The Bast Result group-to-group DP

Fig. 1. Scheme of best-first iterative algorithm. A current alignment is separated into
many pairs of sub-alignments. Each pair of sub-alignments is realigned by dynamic
programming. The best score result is regarded as a new current alignment. The

iteration is repeated as long as a current alignment improves.
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Fig. 2. Tree-dependent partitioning. Fach dotted line on a branch indicates a parti-
tioning in a guided tree, which presents similarity distances among sequences. The five
sequences are divided into (51, 55) and (52, 54, $3), (51, 55, 52) and (94, 53), and so

o, Fartitioning for N sequences is 2N — 3.
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contains the cighty-percent consensus sequence.
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Fig. 4. Performance of alignment algorithms compared over thirty test sequence
sets. T'A: tree-based algorithm. RRIA: round-robin iterative algorithm. RIAS, RIAD
and RIAT: random iterative algorithm with single-type partitioning, with double-type
partitioning and with tree-dependent partitioning. BIAS, BIAD and BIAT: best-first
iterative aligorithm with single-type partitioning, with double-type partitioning and
with tree-dependent partitioning. TRRIA: tree-based RRIA, etc.
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