_1COT Technical Report: TR-0861

TH-E6]

Computing Abduction in Logic Programming

by
N. ITwayama & K. Satoh

© Copyright 1993-11-28 ICOT. JAPAN AlT. RIGHTS RESERVED

Mita Kokusa Bldg, 21F (U313956-3141 ~5

I G OT 4-28 Mita 1-Chome

Minato-ku Tokye 108 lapan

Institute for New Generation Computer Technology

i 3L

Computing Abduction in Logic Programming
Noboru Iwayama

Ken Satoh

Fujitsu Laboratories Ltd., 1015 Kamikodanaka, Kawasaki 211, Japan
Keywords: abduction, logic programming, generalized stable model, integrity con-

straint.

Summary

We present a method to compute abduction discussed in [Eshghi89, Kakas 90a,
Kakas 90b]. We translate an abductive framework into a normal logic program
with integrity constraints and show a correspondence between generalized stable
models defined in [Kakas 90a, Kakas 90b] and stable models for the translation of
the abductive framework. Based on the correspondence, we can find abductive
explanations for an observation from the stable models for the translated program
with a special kind of integrity constraint for the observation.

Then, we show a bottom-up procedure to compute stable models for a pormal
logic program with integrity constraints. The proposed procedure can exclude
the unnecessary construction of stable models on early stages of the procedure
by checking integrity constraints during the construction and deriving some facts
from integrity constrains. In general, a bottom-up procedure has disadvantage of
constructing stable models not related to an observation for computing abductive
explanations. However, our procedure avoids the disadvantage by expecting which
rule should be used for satisfaction of an integrity constraint for the observation
and starting bottom-up computation based on the expectation.

1 Introduction

We present a method of calculating abduction discussed in [Eshghi89, Kakas 90a,
K{akas 90b]. Recent researches have revealed that abduction plays an impor-
tant role in artificial intelligence, as stated in [Eshghi89]. Various researchers
have studied abduction in terms of logic programming frame.\'-'.mk [Eshghig9,
Kakas 90a, Kakas 90b) (called abductive logic programming) and shown rela-
tionships with nonmenotonic reasoning framework such as negation as failure,
assumption-based truth maintenance system and autoepistemic logic.

In this paper, we give a method of computing abduction in logic pro-
gramming. To do that, we first give a translation of an abductive framework
to a normal logic program with integrity constraints and show that a sta-
ble model [Gelfond 88] for the translated logic program coincides with some
generalized stable model for the abductive framework defined in [Kakas 90b)].
Then, we provide a nondeterministic bottom-up procedure which calculates
stable models for a normal logic program with integrity constraints. With
the above translation, our procedure computes abduction.

Kakas and Mancarella [Kakas 90a] have provided an abductive proof
procedure to calculate an explanation for a given observation in abductive
logic programming. They extend Eshghi’s top-down procedure for abduc-
tion [Eshghi89] in order to manipulate arbitrary hypotheses. However, their
procedure inherits a problem of Eshghi's procedure that correctness does
not hold in general for logic programs with recursion as shown in [Eshghi89,
p-251). In contrast to their procedure, our method is correct for any abdue-

tive logic program because of correctness of our procedure.

One may suspect that a bottom-up procedure is not efficient for comput-
ing abductive explanations for an observation. We can compute hypotheses
for an explanation by computing generalized stable models and then taking
out hypotheses from the generalized stable models satisfying the observation.
This is apparently inefficient, because many of generalized stable models not
related to the observation might be constructed.

We can overcome the inefficiency of this naive method as follows. We show
that a set of hypotheses used for explanation defined in abductive framework
coincides with a part of the stable models for the translated logic program
which satisfy a special integrity constraint representing an observation. Ac-
cording to the coincidence, we er}hancc our procedure to use information
given in the observation by top-down expectation for the integrity constraint
added for the observation. The idea of this enhancement is to search a rule
which has the possibility of satisfying the integrity constraint and if such a
rule does not exist, the procedure inunediately fails,

Moreover, we enhance our procedure to save search space as much as
possible by excluding unsatisfiable stable models by checking integrity con-
straints during computing stable models dynamically and deriving some facts
actively from integrity constraints.

The structure of the paper is as follows. In section 2, we show a trans-
lation of an abductive framework to a normal logic program with integrity
constraints. In section 3, we provide a procedure which calculates a stable
model for a normal logic program with integrity constraints. In section 4, we
show examples of computation by the procedure. In the last two sections,

we note related works and conclude the paper. A preliminary version of this

2

paper is presented in [Satoh 91].

2 Translating Abductive Framework to Logic
Program with Integrity Constraints

We follow the definition in [Kakas 90a, Kakas 80b] but restrict ourselves to
considering propositional case. If we consider predicate case, we change it
into a ground logic program by instantiating every variable to an element
of Herbrand universe of considered logic program to obtain a propositional
prograr.

Firstly, we define a normal logic program and inlegrity constraints.
Definition 1 Let 4; be propesitional symbols. A normal logic program con-
sists of (possibly countably infinite) rules of the form:

Ag +— Ay, e, A, ol Amgr, e, ot Ag.
We call 4p the head of the rule and A4,,..., A, the body of the rule. Let R
be a rule. We denote the head of R as head(R) and the set of propositions

Ay A in R oas pos(R) and the set of propositions A,pey,..., Ay In K as
neg({R).

Definition 2 Let A; be propositions. A set of integrity constraints consists

of (possibly countably infinite) formulas of the form:

= Ay Am, et Amgry ey Rol Ay,

Let C be an integrity constraint. We denote the head of R as head(C) and
the set of propositions Ay,..., An in C as pos(C) and the set of propositions
Ami1y e An In R as neg(C).

We extend the definition of stable models in [Gelfond 88] for a normal

logic program with integrity constraints as follows.

Definition 3 A pair (I,1) be @ normal logic program with integrity con-
straints, where T' is @ normal logic program and I is a set of integrity con-
straints. A stable model for a normal logic program with integrity constraints

15 a set of propositions M.

L. M 15 equal fo the minimal model of T™ where TY is oblained by the
following operation from T. We say that M is a stable model of T .
(a) Deleting every rule R from T if some n € neg(R) is in M
(b) Deleting every negated atom in the remaining rules.
2. For every C € I, there is some p € pos{C) which is not in M or some

n € neg(C) which is in M. We say that M satisfies or does not violate
C and write this as M E C.

This definition gives a stable model of T which satisfies all integrity con-

straints in [f.

We follow the definition of abductive framework in {Kakas 90a, Kakas 90b).
Definition 4 An abductive framework is a {riple (T, A, I} where

I. A 1s a (possibly countably infinite) set of propesilional symbols called

abducible propositions.

2. T is @ normal logic program where no rule’s head is equal to any element

of A.
3. I is a set of integrily constrainis'.

We follow the definition of generalized stable models and explanation with

respect to (T, A, I) in [Kakas 90a, Kakas 90b].

Definition 5 Let (T, A, I} be an abductive framework and A be a subsel
of A. A generalized stable model M(A) of (T, A, I} is a stable model of
(TUF(A),T) where F(A) = {p ~| p€ A}.

Definition 6 Let (T, A, I) be an abductive framework, and g be a proposition
called abservation, and A be a subset of A. g has an abductive explanation
with a set of hypotheses A if and only if there exists a generalized stable model

M(A) such that g € M(A).

At first sight, an abductive [ramework seems Lo extend logic programming
by introducing abducibles, but it turns out that we can embed an abductive
framework into a logic program with integrity constraints. We translate an

abductive framework as follows.

Translation of abductive framework

Let (T, 4,1} be an abductive framework.

1. For each abducible p in A, we introduce a new propesition § which is

not used in (T, A,).

YT be precise, we only comsider a special form of integrity constraints whereas
n []Calmg G0a, Kakas QI{III}] they allow any form of mtegrity constraints. However, those

constraints can be translated into our form of integrily constraints,

2. We add the following pair of rules in T for each abducible p in A:
p+— notfand § +— not p.
We denote the set of added rules as I'(4), that is:

T(A)={p—notflpe A} U {F — not p|p € A}

4. We obtain a normal logic program with integrity comstraints (T' U

I'(A), 1) as the translation of the abductive framework {T', A4, I).

The above pair of rules expresses that p and § are mutually exclusive.
So, i intuitively means that p is not believed. The first rule“p «— not " is
used to assume p and the second rule “F « not p” is used not to assume p.
Especially, if we get a cuntradictif.:-n by assuming p, the latter rule is used to
prevent the former rule from being used to assume p.

Then we have the following correspondence between abductive framework

and its translation.

Theorem 1 Let (T, A, 1) be an abductive framework and (TUT(A),) be its
translation and A be a subset of A. M{A) is o generalized stable model of
(T, A, I} if and only if there exists a stable model M for (T U T'(A), T} such
that M' = M(A)UV where V = {flp € (A - A)).

Proof: See Appendix.
Example 1 Generalized stable models [Kakas 90b, p.587]

Consider the following logic program 1":

peb (1)

‘e (@)
with abducibles A = {g,b} and the following set of integrity constraints I:

—qb (3)

+— notg,nol b (4)
From the above abductive framework (T, 4, 1), we can get M;(4,) = {b,p}
where A, = {b} and M3(A,) = {a, g} where b2 = {a} as generalized stable

models.

Tr;.n:slﬂtion from this abductive framework is as follows. We will add the

following rules, I'(4) to the above logic program.

a+— noeld (3)
g+ nota (6)
b not b {7}
b+ not b (8)

We can see that the following two sets of propositions are actually stable

models of (T UT(A),I}:
M = My{8,) UV, = {bp}U {a} = {b,p,&} and
M} = My(A) UV, = {a,q} U (b} = {a,q,0}. O

We have another correspondence with respect to hypotheses used for expla-

nation.

Theorem 2 Let (T, A, I} be an abductive framework and (T U T(A), I} be
ils translation and g be an observation and I' be I U {+— notg}. ¢ has an

explanation with a sef of hypotheses A if and only if there is a stable model

M’ for (TUT(A),I') such that A = M' N A.
Proof: S5ee Appendix.

Example 2 Erplanation

Consider the abductive framework in Example 1. Suppose an observation g is
given. This observation has the unique explanation with a set of hypotheses
{a}. Let I' be JU{+ not ¢} and consider (TUT(A),I"). Then, M} = {a, q,b}
is the unique stable model for {TUT(A), I} and we can see that MjNA = {a}

15 equal to the set of hypotheses. O

3 Computing Stable Models for Logic Pro-
gram with Integrity Constraints

In this section, we give a nondeterministic bottom-up procedure to compute
stable models for a logic program with integrity constraints. To combine the
previous translation and the following procedure, we can calculate abduction.

From the definition of stable models, one might think that it is sufficient to
use the procedure of [Sacca 90, Fages90] and remove every stable model which
does not satisfy some integrity constraints in order to obtain all stable models.
However, we can save search space if we can check integrity constraints during
the process of constructing stable models. The following procedure performs
not only such dynamic checking of integrity constraints but also active use
of integrity constraints to derive some facts. Moreover, we can use integrity
constraints introduced for a given observation actively to find hypotheses

used in explanation for the chservation.

8

At first, in the figure 1 we give a skeleton of the procedure to show how

the procedure works. In the next subsections, we will show the procedure in

detail.

In the procedure, M; expresses a set of propositions which is decided to
be in the belief set after selecting ¢ rules by select_rule. M; expresses a set
of propositions which is decided to be out of the belief set. If there is con-
flict between Af; and M; then M; is not a possible candidate for a stable
model. The procedure has non-deterministic choice points in the subproce-

dure select_rule, therefore fail in the procedure expresses returning to the

most recent choice point.

In the following subsections, we provide details of subprocedures se-

lect.rule and propagate.

3.1 The Subprocedure of Propagation
The subprocedure propagate in figure 2 performs following jobs:
1. bottom-up construction of the model (by case 1)
2. dynamic checking of the integrity constraint (by cases 3 and 5)

3. active use of the integrity constraints which derive that =g is true from

the integrity constraint +— q. (by cases 2 and 4)

The sets A; and M; are equivalent to M; and M, in the procedure of
[Sacch 90, p.215] except that in our procedure, we check integrity constraints

dynamically (the conflict checking in while loop and cases of 3 and 5 in the

Figure 1

Figure 2

subprocedure of propagate) and E might increase by cases of 2 and 4 in the

subprocedure of propagate.

3.2 The Subprocedure of Rule Selection

Now, we consider how to select a rule in order to start bottom-up construe-
tion of the model. In some cases there are reasons why we had better select a
specific rule if we want to exclude unrelated models to the formula to be sat-
isfied. For the integrity constraint, «— not p, for example, which is introduced
to find the hypotheses in abductive explanation in the previous section, we
know p must be in the models. Suppose p is not in any stable model, this
means that there is no stable model satisfying the integrity constraint. So
first of all, we had better select a rule which directly derives p, If such a
rule does not exist, we had better select a rule which has a possibility of
deriving p. Therefore, it is important to consider the integrity constraint of
the form of « not p at early stage of the procedure, especially for computing
an abductive explanation for an observation.

To explain the possibility of deriving p, we consider the following example.

B g,r,nots [1}
q +«— nott (2)
o= not u (3)

Given the integrity constraint, «— notp, p must be in the models of the
above example. Because only rule (1) has p as its head, rule (1) must be

used to derive p. In order for p to be in the models, ¢ and r must be in by

10

rule (1). We can derive g from rule (2) if we can assume that { is not in the
models, so rule (2) has a possibility of deriving p. In a similar way, we find
that rule (3) also has a possibility of deriving p. In this way, we can find a
rule with a pessibility of deriving p in a top-down manner from an integrity
constraint of the form « nol p.

To check whether there is a selectable rule and to decide which rule
should be selected, the procedure calls the subprocedure select rule (fig-
ure 3). selectrule calls the subprocedure topdown_check (figure 4), which

perforns top-down expectation. We show these subprocedures as follows.

Initially selectrule checks whether there is an integrity constraint for which
top-down expectation is performed. More precisely, top-down expectation
can be also performed for rules whose heads are alveady in M. Neg expresses
a set of the negated propositions in such an integrity constraint. If thereis no
Neg, that is Negs = 0, top-down expectation is nol performed and we must
select a rule with no clue. Otherwise, we perform top-down expectation.

In topdown_check, by M, and fﬁg, a rule is selected which is consistent in
the rules previously selected during top-down expectation. Moreover M, is
used to exclude eyelic derivations.

Our procedure computes mainly in a bottom-up manner. Top-down ex-
pectation is only 'expectation’, since the procedure topdown._check doesn’t
construct a model but returns some clue in order to begin computation of
the procedure propagate.

We can show that the procedure returns every stable model by an ap-

propriate selection of rules, and it is complete for the finite propositional

11

Figure 3
Figure 4

case.
Theorem 3 Let (T, I) be a normal logic program with integrity constraints.
1. If the procedure outputs M, then M is a stable model for (T, I).

2, IfT and I are finite, then the procedure outputs all stable models by an

exhaustive search.

Proof: See Appendix.

4 Examples

We compare our procedure with the procedure of [Sacca 90] with integrity

constraint check afterwards. The following example shows the difference.
Example 3 Difference of Two Procedures

Consider the following program:

P+q (1)
T nolq !:2)
g+~ notr (3)

and the integrity constraint:
—p (4)

The procedure of [Sacca 90] produces stable models {p,g} and {r} for a

logic program of (1), (2) and (3). So, this process has a nondeterminism of

producing two stable models. Then, we discard {p,q} because this model

does not satisfy the integrity constraint (4).

On the other hand, the execution of our procedure is as follows:

0. My = {r}, 3o = {p,q},
because from (4), p must be in M, by case 4 in propagate,
and from (1), ¢ must be in M, by case 2 in propagate,

and from (2), r must be in My by case 1 in propagate.

1. Since select_rule returns nil_rule, My 1s returned.

Therefore, in this example, we can calculate a stable moadel deterministically
in our procecure, Note that, in this execution, the integrity constraint (4) is

used to derive that pis out of belief and the rule (1) is used to derive that ¢ 1s
out of beliel, 5o, this example shows an aclive usage of integrity constraints

and a top-down propagation of a disbelieved atom in vur procedure. 0

Now, we can calculate abduction by combining the translation from an
abductive framework into a logic program with integrity constraints and the
above procedure to compute stable models for the translated logic program

with integrity constraints.
Example 4 Combination of Translation and Hotlom-up Procedure

We calculate abductive explanation for (1)~(8) in Example 1 and the ob-
servation in Dxample 2. The execution of our procedure for the program as

follows:

0. My =0 My, =0,

I3

1. Negs = {{q,b},{g}} in select rule because of integrity constraints (4)
and (9). Since Neg can be an arbitrary set in Negs, in this case Neg =
{q} by heuristics®. Select rule (2) and (3) in topdown_check(My, My, q).
Then, rule (3} is returned by topdown_check because rule (53) has no

positive proposition. So, by propagete, M, = {a,q,b}, M, = {&,b}.
2. Since select_rule returns nil_rule, M| is returned.

So, we get an abductive explanation M; N A = {a} by the correspondence
proved in Section 2,

If we did not consider the top-down expeclation, then we would have
six alternatives for selecting a rule. Among the six alternatives, there is
an exactly same rule selection as above. However, four of other alternatives
cannot provide the explanation for the observation g because the alternatives
do not select rule (5} which is necessary to derive g. The last alternative
results in the same model as the above computation but first selects the
irrelevant rule to g. This example makes clear that we can reduce the amount

of backtracking thanks to top-down expectation of integrity constraints.

5 Related Work

There are many works to show the methods computing stable models. Among

the previous works, in [Fages90, Sacci 80] a well-founded bottom-up proce-

*Even if the iutegrity (4) is satislied only by b, the integrity constraint for the ohser-
vation, — nof g, muslt be salished. Therefore, we had better search the possibility of

deriving q by topdown_check,

14

dure for calculating stable models forlogic programs without integrity con-
straints is provided. Our procedure can be regarded as an extension of the
bottom-up procedure provided in [Fages90, Sacca 90). The point of the ex-
tension is that our procedure deals with integrity constraints and utilizes
the integrity constraints to reduce search spaces, especially for abduction by
top-down expectation.

Eshghi [Eshghi90] has given an algorithm using ATMS and a filtering
mechanism to generate stable models from labels in ATMS. However, he
considers only logic programs without integrity constraints.

Giordano and Martelli [Giordano 90] have given a translation of a set of
TMSE justifications with integrity constraints to another set of justifications
without integrity constraints to p-ruduce all stable models including stable
models obtained by dependency-directed backtracking(DDB). Although this
worls is important in its own right to give a semantics for DDB of Doyle's
TMS, this semantics conflicts with the original usage of integrity constraints
in deductive databases, that is, checking violated updates. The problem
is that even if an update is violated by the current integrity constraints, we
might get other consistent states by performing DDB and therefore, we might
not be able to detect a violation of the updates.

From the view point of computing abductive logic programming, there are
related works to the proposed method. Kakas and Mancarella [Kakas 90a]
have extended Eshghi’s top-down procedure [Eshghi89] for abduction so that
arbitrary abducibles can be used. Although their procedure is limited for a
certain class of logic programs in order to guarantee correctness, they show

that their procedure is suitable for a truth maintenance mechanism to ma-

15

nipulate consistent explanations for a series of observations which can be

regarded as a non-monotonic extension of ATMS.

6 Conclusion

In this paper, we present a method of calculating abduction by translating
an abductive [ramework into a logic program with integrity constraints and
computing stable models for the program.

We have proposed a query evaluation method for an abductive framework
in [Satoh 92]. The procedure in [Satoh 92] can be regarded as an extension
of the procedure of [{akas and Mancarella by adding forward (or bottom-
up) evaluation of rules and consistency check for implicit deletion. In the
future, we should investigate and compare the computational complexity of
our procedures in this paper and [Satoh 92).

Acknowledgments: We thank Katsumi Inoue from ICOT and Vladimir
Lifschitz from Stanford University and University of Texas at Austin for
helpful discussions. This work was done while authors were in Institute for

New Generation Computer Technology (ICOT).

References

[Doyle 79] Doyle, J., A Truth Maintenance System, Artificial Intelligence,
12, pp. 231 - 272 (1979).
[Elkan 90] Elkan, C., A Rational Reconstruction of Nonmonotonic Truth

Maintenance Systems, Arlificial [ntelligence, 43, pp. 219 - 234 (1990).

16

[Eshghisg] Eshghi, I{., Kowalski, R. A., Abduction Compared with Negation
by Failure, Prec. of ICLP'89, pp. 234 - 254 (1989).

[Eshghi90] Eshghi, K., Computing Stable Models by Using the ATMS Proc.
of AAAL'S0, pp. 272 = 277 (1990).

|[Fages90] Fages, F., A New Fixpoint Semantics for General Logic Programs
Compared with the Well-Founded and the Stable Model Semantics,
Froc. of ICLP’00, pp. 442 - 458 (1990).

[Gelfond 88] Gelfond, M., Lifschitz, V., The Stable Model Semantics for
Logic Programming, Proc. of LP°38, pp. 1070 — 1080 (1988).

[Giordano 90] Giordano, L., Martelli, A., Generalized Stable Models, Truth
Maintenance and Conflict Resolution Proc. of JOLP'90, pp. 427 - 441
(1990).

[Kakas 90a] Kakas, A. C., Mancarella, P., On the Relation between Truth
Maintenance and Abduction, Proc. of PRICAI'90, pp. 438 — 443 (1990).

[Kakas 90b] Kakas, A. C., Mancarella, P., Generalized Stable Models: A
Semantics for Abduction, Proc. of ECAI'90, pp. 385 - 391 (1990).

[Saceh 90] Sacch, D., Zaniclo, C., Stable Models and Non-Determinism in
Logic Programs with Negation, Prec. of PODS'90, pp. 205 — 217 (1990).

[Satoh 91] Sateh, K., Iwayama, N., Computing Abduction by Using TMS,
Proc. of ICLP91, (1991).

[Satoh 92] Satoh, K., Iwayama, N., A Query Evaluation Method for Abduc-
tive Logic Programming, Proe. of JICSLFP'92, (1992).

I7

Appendix

Proof of Theorem 1:

We first prove the following lemma.

Lemma 1 Let (T, A4, I} be an abductive framework and T' = TUT(A) and
A be a subset of A. Let M({A) be a subset of propositions used in (T, A, T)
such that M{AYn A=A, Let M' be M(A)UV. Then,

min(T™') = min((T U F(ANMEYUT
where min(T) means the minimal model of a logic program T.
Proof:
min{T"M")

= min((TU (A"
= minI:T‘”J UF[A)M']

Since T contains only symbols in M(A), TM = TM(&),
And since ['(4) contains only symbols in A UV, I'(4)M = 1‘[;&}’3‘“?
For every abducible p € 4 and for every pair of rules in ['(A),
if p € A then {p « not p, +~— not 3:!}"3""'1E ={p+e}
else il p & A, that is, 5 € V then {p +~ not §,§ « not p}ﬁ"’a = {p ~}.
Therefore, T(A)YY = F(A) U F(T) where F(V) = {j « |5 € V).
Thus,
min(TM U TN
= min(THA) U F(A) U F(V))

158

= min((T U F(A))M®) U F(V)) since F(A) = (F(A)M)
= min((T UF(A)MO)UT
since no conunon symbols in TU F(A) and V.0

MNow we prove Theorem 1.
(1) Assume M (A) = min((TUF(A)MA)) and M(A) satisfies all of integrity
constraints in T,

min(T"™")

= min((T U F(A)MA)UT by Lemma 1,

= M(A)UV by the assumption,

=M
This means that A’ is a stahle model of Y. Since M(A) € M, M’ also
satisfies all of integrity constraints in I.

(2) Assume A/ = min(T"™') and M’ satisfies all of integrity constraints in

I. Let A be Af'N A and M(A) be M' = V.

By Lemma 1, min(T"™') = min((T U F(A))MEY U T,

And since M{&) =M —F, M'= M{A)UV.

Therefore, by the assumption, min((T U F(A))MA U V=M(A)UV.

Since (min((T U F(ANMBEY AT) = 0 and (M(A) I"Iﬁ:l = 0, mmn((T U
F(A)MEN) = Af(A).

This means that Af{A) is a stable model of 7' U F(A). Since every integrity
constraint in [uses only propositions in T and A which receive the same in-
terpretation in Af" and M(A), Af(A) also satisfics all of integrity constraints

in f. 0O

19

Proof of Theorem 2:

Suppose M(A) is 2 generalized stable model for (T, A,I) and ¢ € M(A).
This means M(A) | (+ notg). Therefore, M(A) is also a generalized
stable model for (T, 4, I"). From Theorem 1, there exists a stable model M*
for (TWT(A), I'} such that M' = M(A)U V. Thus, M'N A= A.

Suppose M’ is a stable model for (T UT(A),I'). Let & be M'N A and
M(A) be M' = V. From Theorem 1, M(A) is a generalized stable model for
(T, A, ') and therefore, g € M(A) O

Proof of Theorem 3:
Consider the simple procedure in figure 5 to compute a stable model.

We denote our procedure in Section 3 as prec((Q) and denote the above
simple procedure as proe(S). We show that outputs of proe(O) and proc(S)
are equal (Lemma 2} and outputs of proc(S) are actually all stable models

of a given logic program with integrity constraints (Lemma 4).

Firstly, we show the following lemma. We say that proc(S) outputs M
with a sequence of rules Ry, .., R, if Rg,..., Ae are selecled in this order
in Step I of proc(S), and proc(S) outputs M after selecting these rules.
Similarly, we say that proc(O) oulputs M with g sequence of rules Ry, ..., Ry
if I, ..., Ity are selected in this order in Step 1 in the main procedure of
proc(0) and case 1 in propagate, and proc(O) outputs M alter selecting
these rules.

Lemma 2

1. If proc(Q) outputs M with a sequence of rules then prpc(S'_] oulputs M

with the same sequence of rules.

20

Figure 5

2, Let T and I be finite. If proc(S) outputs M with a sequence of rules

then there erists a sequence of rules with which proc(O) outpuls M.

Proof of Lemma 2:

1. We can show that the sequence of rules by proe(O) can be selected along
iterations of proc(5) to output M.

2. Let (T, I} be a finite normal logic program with finite integrity constraints.
Suppose proc(S) outputs M with a sequence Ry, ..., H.. We show by induc-

tion on the numbers of 1 of iterations of the main procedure in proc{0) and

k of iterations of propagate in proc(Q) that the following conditions hold:
Condition 1: There are two sequences Smodifies and Spe such that
1-(a) proc(S) outputs M with 8n.0ified 5:es Where - is a concatenation
of two sequences, and

1-(b) we can select rules along 55,04 5e In proc{O) up to : and k.
Condition 2: (A/fn) =0

Note that a set of propositions constructed in proc(S) up 10 Spmpdified is equal
to a set constructed in proc{O)} up to Smaaisi.s by Condition 1 and so, the set

constructed in proe(0) is a subset of M.

Hi=0and k=0, let smodifiea = {) (null sequence) and s,.a = (Ha, ..., Fa)
(the ariginal sequence).

Then, Condition 1 clearly holds. And since M* = 8, Condition 2 holds.

Suppose up to 7 and k, the above conditions held. We enter an iteration of

propagate. We show the above conditions hold for ¢ and L+ 1.

21

Condition 1-(a): This condition should be checked if there is a rule which
satisfles case 1 of propagate. Suppose there is such a rule R, that is,
pos(R) C M and neg(R) € MF. Then, pos(R) € M and (neg(R) N
M) = © since M is equal to a set of propesitions constructed by
Smodified 10 proc(S) and (M* n M) = 0 by the inductive hypothesis.
Therefore, R can be selected after this point by proc(S) until head(R)
is added. Since head(R) is included in M, there must be a rule R' in
Sreqe such that head(R') = head(R). We delete B from s,.,, and add
R to the tail of 5,,4i1.4 to obtain new s,., and new Smodified for 1 and
k1.

Now, it is sufficient to show that proc(5) outputs M with Smodified Srest-
Suppose proc(S) does not output M with smd,-_;,-,g-; S,¢4. LThere are two

possibilities for this situation.

1. There is some R” in s,.,, which contains head(R) in neg(R").

2. There is some R" in $,., whose head is contained in neg().
The first case is impossible since if such R" is equal to R' or appears
before ' in the previous s,..., f' can not be selected in the previous
Sresty and if such R appears after /¢ in the previous s,.,, R" can not
he selected in the previous s..,,. The second case is also impossible
since (A7¥ N M) = @ by the inductive hypothesis and head(R"} € M
and neg(R) C ff!f

Thus, Condition 1-(a) holds for ¢ and &k + 1.

Condition 1-(b): As shown above, if there is a rule which satisfies case 1

22

of propagate, we can choose the rule along Smadigied by proc(0).

However, we should also check if there is a rule satislying case 3 or
there is an integrity constraint satisfying case 5 since if there is such a

rule or such an integrity constraint, proc(0) will fail.

Suppose there is a rule R satisfying case 3. Then, R must be eventually
selected by proc(S) since (M¥N M) = 0 by the inductive hypothesis or
head(R) will be added by some other rule. In either case, head{ R} must
be included in M and this leads to contradiction because head(R) €

AME, and {.ﬁlj‘f-'l M) = 0. Therefore, there 15 no rule satisfying case 3.

Suppose there is an integrity constraint ' satisfying case 5. Then, since
fﬂ.—"ﬂ;‘lf} = @, M does not satisfy ¢ and so, proc(5) will fail at the end
of the execution. Therefore, there is no integrity constraint satisfying

case 5.

Thus, Condition 1-(b) helds for 1 and & + 1.

Condition 2: This condition should be checked if there is a proposition

added to ﬂ-""’l by case 2 or case 4.

Suppose that there is a proposition P added to M!*' by case 2, that
is, P & M* and there is a rule R such that head(R) € M* and P €
pos(f) and (pos(R) — {P}) € M} and neg(R) € MF. Then, we
show that Af does not include P. Suppose M iucludes P. R must be
eventually selected by proe(S) since (AT¥ N M) = 0 by the inductive
hypolhesis or head(1) will be included by some other rule. In either

case, head() must be included in M and this leads to contradiction

23

because head(Rt) € M}, and (M* N M) = 0. Therefore, M does not
include P.

Suppose that there is a proposition P added to Mf*! by case 4, that is,
P ¢ M} and there is an integrity constraint € such that P € pos(C)
and (pos(C) — {F}) € MF and neg(C) € MF. Then, we show that M
does not include P. Suppose M includes P. Then, since (M¥ N M) =
0, M does not satisfy C and so, prec(S)} will fail at the end of the

execution. Therefore, M does not include P.

Thus, Condition 2 holds for ¢ and & + 1.

If this iteration (i and £+ 1) is not the last iteration in propagate, we can
also prove that the above conditions hold for a new iteration (i and k 4 2).
Otherwise, we return to the while loop and go to the if sentence. We cannot
fail at the if sentence in the while loop since M}*! C M and (M**'nM) = @,
Therefore, we can go to select_rule in the while loop.

Iu the case that s,.,: = (), we assume there exists a non empty set which
satisfies one of Lhe two conditions of Neg in selectrule. This contradicts
that proc(S) oulpuls an answer with Smodified * Sreste 90 Negs =B if 5., =
{}. Since selectrule returns nil_rule in this case, proc(O) outputs A with
Smiodi fied-

We show that select rule returns some rule, il 5,4, # (). If Negs = D at
select_rule, the then part of select_rule can return the left-most rule in Sreat.

In this case, we delete the left-most rule in 8,0 and add the rule to the tail

of Siodi fied:

Next we consider the other case that Negs # B at select_rule. At first
we show that topdoun_check returns some rule K from ..., which is not
necessarily the left-most rule in s,.5. Since, in the next lemma, we see that
the topdown_check returns a rule in s,.,,, we can confirm that Conditions 1

and 2 hold for 1-+1 and 0 after we delete the returned rule i by topdown _check

and add R to the tail of spodificd-

Lemma 3 topdown_check can return a rule in s5,..,.

Proof: We show the following propositions which are enough to show the

lemma.

1. tapdown_check doesn’t fail and can select [i; from s,.,, at select.

2. I Ry and Rjgy are in Spe, th(R;) > th(fj51). (th{R) = n means R is
the n-th rule in §,.,;, and j is the number of the iteration of the goto

loop in topdown_check }

1. We show by induction on 7. If 7 = 0, that means Pos = {p}, there must
be a rule in ..., whose head i p (the case where there isn't such a rule
contradicts the fact that proc(S5) outputs the answer with s.04ificd © Srest)-
Suppose up to j, topdown_check doesn'l [ail. If pos(R;) — M # 0, every
propusition pr € pos{R;) — M should have a rule R in s,.,, which satisfies
head(R) = pr and the olher three condilions at the if sentence (oltherwise
It; caunol Le selecled in spe by prec(S)). So we can select the rule from

Sreat ab select n lopdown_check,

25

2. By 1 all R; can be in 5., Suppose th(R;) = th(R;;1), which means

e

R; = Rjy,. Then, for some p € pos(H;) — M, head(Rjz,) = p. This

)
contradicts head(fi;) € pos(;).
Suppose th(;) < th{R;41). There exists p € pos(R;)—M s.t. head(R;41)

p. But this contradicts that proc(S) outputs the answer with smadified * Srest-

Finally, if every R; is selected from s..,, tepdown_check eventually termi-

nates, because th(R;) > 0 for all 7 and th(f;) > th(R;4,). So the lemma is

proved. O
Finally, we show the following lemina.
Lemma 4
1. If proc(S) outputs M, then M is a stable model for (T, I).

2. IfT and I are finite, then proc(S) outputs all stable models by ezhaus-

tive scarch,

To show Lemma 4, we need the following definition of a finite grounded

maodel,

Dehinition 7 Let (T, I} be a logic program with integrity constraints. A set
of proposilions M 15 a finite grounded model for (T, 1) if the following are
satisfied.

I. M 13 a model of T

2. M salisfies every C € [.

8. A can be written as a sequence of propositions { Py, Py, ..., P,) such that

each P; has at least one rule H; such that pos(R;) C {F,..., Pi1}
where Py, ..., Pj_1 are the element of the sequence up to 7 — 1 and
(neg(R;) N M) = 0. We say a sequence of such rules for every propo-

sitions in M, (R, Hy, ...R,), is a sequence of supporting rules for M.

We can prove the following lemma by extending [Elkan 90, Theorem 3.8].

Lemuma 5 Let {1, 1) be a legic program with integrity constraints. A set of

propositions M is a finite grounded model for (I, I} if and only if M is @
finite stable model for (T, 1}.

Proof of Lemma 4:

1.

[E%]

If proc(S) outputs M with a finite sequence of selected rules Ry, ..., Ra,
then this sequence actually gives a sequence of supporting rules. We can
show that A1 is a model of T and M satisfies every © € 1. Therefore,

A is a finite grounded model and, so, a finite stable model for (T, I}

by Lemuma 3.

Let {T',I} be a finite logic program with finite integrity constraints.
Suppose Af is a stable model for (T',I}. Since (T,7} is a finite logic
program with finite integrity constraints, M is a finite stable model and
therelove, a finite grounded model by Lemuma 5. Then, there is a finite
sequence of suppeorting rules Ry,...,H,. We can show that proc(S)
outputs A with this sequence of rules. Since all sequences of rules can

be selected by exhaustive search, proc(S) outputs all stable madels. O

Theorem 3 is proved by Lemma 2 and Lemma 4. O

[o¥]
=

5=

Let {(T',J) be a normal logic program with integrity constraints.

1:=10,
Mo, My 1= propagate(d,).
If Myn My # 0 then fail
R = select.rule(Mg, Mp)
while R is not nil_rule
{i:=i+1,
M, AT = propagate(M;_, U head(R), M;_;u neg(R))
If AL; 1 AT, # 0 then fail
It := select_rule(A, M;) }

If there is an integrity constraint O in [s.t. M £ O

then fail else return AL

Figure 1@ A Procedure to Compute a Stable Model (skeleton)

procedure propagate(M;, ﬂij
begin .
k=0, MP = Ay, MP = M.
do
k= k41, M= MEY A = MEY,
For every tule R in T

1. If head(R) ¢ M~ and for every p € pos(R),p € M}~' and for every
n € neg(ft),n € M}, then add head(R) to ME.

2. If head(ft) € MF~" and there exists p € pos(R) s.t. for every p' € pos(R)
except p, p' € M~} for every n € neg(R),n € M*~}, then add p to M,

3. If head(RR) € M}~" and for every p € pos(R),p € M*~! and for every
n € neg(R),n € M*?, then fail.

For every integrity constraint C in [/,

4. I there exists p € pos(C) s.t. for every p' € pos(C) except p, p’ € MF,
and for every n € neg(C),n € M ™", then add p to M},

5. If for every p € pos(C),p € M;k_l and for every n € neg(C),n € .Hf'l,
then fail.

until Mf = AfY and M} = MY,
return M, AT
end

Figure 2: The Subprocedure of propagale

procedure select_rule

Negs := {Neg|Neg is a non empty set of propositions satisfying one of the follow-
ing couditions}

1. there exists a rule R in T satisfying the following conditions
(2) Neg = {n|n € neg(R) and n & M},
(b) head(R) € 3;,
(¢} For every p € pos(R),p € M;,
(d) For every n € neg(R),n & M;.
2. there exists an integrity constraint ¢ in J satisfying the following conditions
{a) Neqg = {nn € ney(C) and n & M;},
(b} Forevery p € pos(C),p € M,
(¢} Forevery n € neg(C),n & Al

If Negs = 0 then

select a rule R in T satisflying the following conditions and return
.

1. head(R) ¢ M;,
2. For every p € pos(IL),p € M;,
3. For every n € neg(R),n § M.
Il such a rule is not found then return nil rule

else

Neg = an arbilrary set in Negs,
select a proposition pr from Neyg,
return topdown_check({M;, M;, pr)

endil

Figure 3: The Subprocedure of selectrule

procedure topdown_check{ M, M, r)

J:=0,

My = M= M, =0,

FPos = {p},

Label:

iffor every proposition pr € Pos, there is a rule R in T which satisfies the following
conditions

1. head{R) = pr,
2. head(Rt) ¢ pos(R), head(R) ¢ neg(R),
3. For every p € pos(R),p& M, p & M, and p & M.,
4. Forevery n€ neg{R),n g M and n @ M,.
then

Py = a arbitrary proposition in Pos

fiset := {R[R in T satisfies the above conditions and head(R) = pr;)}
select a rule R; from Rset,

Pos := pos(it;) - M,

if Pos = @ then return R,

else

My = Ay U pos(iL),
M= Mu neg(R;),
My = A, U head(R;),
Ji=341,

goto Label

else fail
We express {plp € pos(f;) and p ¢ M} as pos(R;) — M.

Figure 4: The Subprocedure of topdown_elieck

Let (T, 1) be a normal logic program with integrity constraints.
i:=0
Step 1:

Select a rule i = A; — L;,Ls,...,Lm in T satisfying the following condi-
tions and go to Step 2.

1. A; & M;,
2. Vor every P € pos(Ii;), F € M;,
3. For every N € neg(#), N § M.
If such a rule is not found and there is an integrity constraint € in I s.t.

M C
then fail else return M.

Step 2:
i=1i41,
M= AM,_4u {.‘l,'._‘]]'
Il there exists (0 < k <€ 1 = 1) such that for some N € neg(Hi), N € M;
thien fail else go to Step 1.

Figure 3: A Simple Procedure to Compute a Stable Model

