|ICOT Technical Report: TR-0857

TR-857

cu-Prolog for Constraint-Based Natural

Language Processing

by
H. Tsuda

@ Copyright 1993-11-4 ICOT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F (03)3456-3191 ~5

l[: DT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

cu-Prolog for Constraint-Based Natural Language Processing

Hiroshi TSUDA
Institute for New Generation Computer Technology (ICOT)
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
Tel: 03-3456-3069 E-mail : tsuda@icot.or jp

index terms:
Artificial Intelligence, Natural Language Processing, Logic Programming

Al=stract

This paper miroduces & constraint logic programming (CLP) language cu-Prolog as an
implementation framework for constraint-lased natural lavguage processiug.

Compared to other CLP languages, cu-Prolog has several noique features, Moest CLP
languages take algebraic equations or inequations as constraints. cu-Prolog, on the other
hand, takes Prolog atomic formulas in terms of wser-defined predicates. en-Prolog, thus, can
describe symbolic and combinatorial constraints occurring m the constraint-based grammar
formalisms. As o constraint solver, cu-Prolog uses the unfold ffold transfocmation, which is
well kuown as a program transformation technique, dypamically with some heuristics.

Ta treat the information partiadity described with feature structures, cu-Trolog uses PST
{Partially Specified Term) as ils data structuse,

Seetinn 1 and 2 give an ianbroduclion bo the cosstraint-based grammar formalisms on which
this paper is hased, amd the mebline of cn-Prolog s explaied in section I with implementation
issues deseribed in section 4. Section 5 illustrates iks linguistic application te disjunctive
feature structure (DFS) and parsing constraint-based grammar formalisms such as Japanese
Phrase Structure Grammar (JPSG). [either application, o disnmbiguation process is realized
by transforming constraints, which gives a picture of constraint-based NLP,

1 Introduction

COme of the main classification of contemporary natural language praiminatical theories is whether
their grammar descriptions are rule-based or constraint-based [2, 19]. ' CPSG (Ceneralized Phrasc
Structure Grammar) and LFG (Lexical Functional Graminar) fall into the former categnry. The
latter includes GB {Government and Binding) theory, HPSG (Head-driven PSG)[16, 17|, and JPSG
{Japanese PSG)[5]. By taking a constraint-based approach, more general and richer grammar
formalisms are possible because morphology, syntax, semantics, and pragumtics are all uniformly
treated as constraints. Also, declarative grammar description, one of the most important features
of constraints, allows various flows of information during processing,

Consider their implementation environment. For rule-based gruumars, many approaches have
been attempted, such as FUG[13] and PATR-II[18]. As yet, however, no pathfinding work has
hesn done on constraint-hased Er&MMArs.

Our CLP language cu-FProlog [25, 24] aims to provide an implementation framework for constraint-
based grammars. Unlike most CLP languages, cu-Prolog takes the Prolog atomic formulas of
user-defined predicates as constraints,

en-Prolog originated from the technique of constrained unification (or conditiened unification
[8]) that is the unification of two constrained Prolog patterus. cu-Prolog adds constraints, given
in terms of user-defined Prolog predicates, to Horn clauses {called Constrained Horn Clause). The

I Constraiut-based approaches are alsn ralled information-bosed ur principle-based approaches.

constraint solver of cu-Prolog uses the unfold /fold transformation[21], which is well known as
a program transformation technique, dynamically with some hewristics. To describe imformation
partiality in constraint-based grammars. cu-Prolog also provides PST{Partially Specified Term)[15]

data structure.
This paper illustrates

o the ontline of cu-Trolog.
s the treatment of disjunetive feature structures with constramed PST, and
e the JPSG parser - its most successful application - to illustrates constraint-based natural

langpuage processing.

2 Linguistic Constructions

As an iielrod . ooon o computational lingnistics, this section explains the some linguistic construc-
Lions ocourring in constraint-based grammar formalisms,

2.1 Disjunctive Feature Structure (DFS5)

Unification-based grammars utilize fenture sbructures as basic stiuctures for treating information
partiality. A feature structure consists of a set of label/value pairs. In (1), pos and sc are called

features and their values are nt and a singleton set < [pos p] =

s T (1)
se:{ [posip]|)
Morphological, syntactic, semantic, and pragmatic mformation are all uniformly stored in a feature

stracture.

Natural language descriptions require some framework to enable the handling of ambiguities
such as polysemic words, howonyms, aud so on. Thsjuncisve feature structures (DFS}s are com-
monly used to handle disjunction in featurve structures[13]. DIFSs consist of the following two

structures,

Value disjunction A value disjunction specifies alternative values for a single feature. (2) states
that the value of the pos feature is n or v, and the value of the #c feature is <> [empty sct)
or = [pos:pl >,

pas: n, v}

“:{?[M:PI}}

General disjunction A general disjunction specifies alternative groups of mmltiple features. In
{3), feature sem is common, the rest being two-way ambiguous.

(2}

pos:n |
pos v
vform: vs (3)
ser{ [pos:p])
sem ¢ love| X, Y}

One serious problem in treating DFSs is the computational complexity of their unification,
because essentially NP-complete[12]. Some practical, efficient algorithms have been studied by

(11, 4].

2.2 Structural Principles

Unification-hased prammars are plirase structures whose nodes ave feature structures. Their graw-
wnar descriptions consist of a plrase structure and local constraints called structural principles in a
plirase strueture. Current constraint-based grammars such as HPSG and JPSG have general and
few phrase structure and grammatical information is mainly described with structural principles.

JPSG([3] is a constraint-based grammar designed specifically for application te Japanese. 1t has
been developed by the PSG working group at ICOT. JPSG has only one binary phrase structure.

Mother

Daughter Head

This phrase structure is applicable to both the complementation structure and the adjunction
structure of Japanese® In the complementation structure, Daughter is a complement, aud also
acts as a modifier in the adjunction structure.

Structural principles are defined as constraints [relations) among the features in the local
plirase structure. In the following, we explain some features and their constraints.

head features: Features such as core, which specifies core categories such as pos (part of speech)
and gr (grammatical relation), and sem (semantics) are called head fealures. These conform

to the head feature principle:
The value of a Lead feature of the mother unifies with that of the head.

subeat features: Features se {subcategomization) and adjacent are called subcat features. They
Lake a set of feature structures that specify complement categories and conform to the subcoat
Seature pronciple

In the complementation structure, the value of a subcat feature of the mother
unifies with that of thie head minos left danghter.

Relow is a JPSG-like analysis of the Japanese sentence “Ken-ga arukn {Ken walks).” According
to the subeal feature principle, variable X binds to Len.

core : [pos : v
A L
gent : walk{ken)

eore : [pos v

e [([retree])

sern : kemn sem :walk{X)
Ken-ga aru-ku

*Fpr excample, “Ken-ga aisnm (Ken loves)” is a complementation structure, and “ooki-na yama (big moantain)”
is an adjunction structure.

3 cu-Prolog
3.1 Conventional Approaches

Prolog is often nsed as an implementation language for unification-based grammars[18]. [ts com-
putational rules. however, are fixed and proceduoral, that is. always from left to right for AND
processes. and from Lop to botten for OR processes. Prolog programmers intentionally have to
align goals such that they are solved efficiently. Prolog, therefore, is not well-suited for constraint-
based prammars hecanse it is inpossible to stipulate in advance which type of linguistic constraints

are to be processed, and in what ovder,
Sumie Prolog-like sysiems such as Prologll and CIL[15] employ the bhnd-hook mechanism that

can delay some goals (constrainis) until certain variables bind to ground terms. However, as the
mechanisni can only check frozen constraints only by executing them, it is not always efficient.

Most CLP languages, such as CLP{R)[10], Prologlll, and CAL, take the constraints of the
algebraic domain with equations or inequations. Their constraint solvers are based on algebraic
algorithms such as deriving Gribner bases, solving equations, and so on. Ilowever, for AT ap-
plications and natural language processing systoms especially, symbolic constraints are far morve
desirahle than algebraic ones, cu-Prolog. on the other hand, can process symbolic and combina-
torial constraints because its constraint dowain is the Herbrand nniverse,

3.2 Constrained Horn Clause (CHC)

The basic compenent of cu-Prolog is the Constrained Horn Clause (CHCH 3.

|[Def] 1 (CHC) The Constrained Horn Clanse [CHC) hes the followsng form.

head body comstraint
~— — ~ -~ ~
H :_BL.HE,...,H,,:Cq.Cz Clm.-
i, By and O we atomic formulas. The body ard constraint can be empiy, =]

From the viewpoint of declarative semanties, the above is equivalent to the following Horu
clause.

HEAD - B, . B; ..., Ba O Ch

3.3 Derivation Rule

cu-Prolog expaunds the derivation rule of Prolog by adding a constraint transformation operation

goal pragren sulatiiution conatrainf trans formetiem
i, - &) - "~ - N "~ ~
AR, C. A :=LD f#=mguid 4" C' = mf{CHLD8E)
Lé K, C'.
“_V—"—""'
new goael

A and A" are heads. K and L are bodies, C, D, and € are coustraints. mgu{ A, A’} is the most
general unifier between 4 and A'. mf{Cstr] is a simplified { modular) constraint that is equivalent
to Cstr (see subsections 3.5 and 3.6). As a computational rule, when the transformation of CouD@
fails, the above derivation rule is not applied.

Naote that the body part of CHC is processed procedurally with a fixed computation rule as
Prolog. However, the constraint part is solved by constraint transformation with the henristies as
shown in subsection 3.6 and section 4. It is efficient to realize procedural processes such as parsing
algorithms in the body, and unspecified processes such as linguistic eonstraints in the constraint

part.

30r Constroint Added Horn Clawse [CAHC),

3.4 PST

cu-Prolog adopts a PST[13] data structure that corresponds to the feature structure of unification-
based gramnars.

[Def] 2 (Partially Specified Term {PST)) PST 15 a sef of label/value patrs, having the fol-

lowing form:

{hitiafta. .}

{;, colied Babiel, o on alows and 3 £ 58 5}, called value, 15 a0 term, o
A infinite PST structare sach as X = {I/X] is not allowed in cu-Prolog,

[Def] 3 (Unification between PSTs) Let XY, and Z be PSTs. Z is the unification between
X and ¥ when

s Wilfze X I/ ¢Y —ljzelZ
e I gX yc¥ —ifyeZ
o A ifre X AfyeY = Junify(e,y) € Z

For example, {1/a,m/X} and {m/b.n/e} unify to give {1/a,n/b,n/c}.

[Def] 4 (constrained PST) in the constooind part of CHC, o PST is introduced in an equaliunify)
constrammt, sometimes with other relevant constraints such as:

X =PST, ¢q (X}, en(X), ..., en{X).

We call the above lind of deseription constrained PST. a

Mole that X=PST corresponds to the nneonditional conjunct of [11] and <4 (X), ep(X), ..., cnlX) the
conditional conjunets.

3.5 Modular: simmplified form of constraint

A& constraint in CHC lLas a simplified form called modular(8). Modular is checked syntacti-
cally and used in the constraint translormer (3.6). Intuitively, a constraint is modular when
all the arguments are different variables. For example, member (X, Y), member{U, V) is modular, and
mamber{X, ¥}, member{Y Z) or append{X ¥, |EL1 b, c, d]'_i are not madular. Modular constraints are
satisfiable if each atomic formula is satistiable *. In this subsection, we extend the notion of
madicler for constrained PST.

[Def] 5 (component) The compouent of an argument of a predicate is a set of labels in PSTs
to which the arqument can bind. Here, an atem or o comples tevm 5 regarded as a PST of the

label []. |

Coplp,n} represents the component of the nth argument of & predicate p. Cap(T) represents
a set of labels of & PST T. In & coustraint of the form X=t, variable X is regarded as being in the
argument position whose component is Cmp(t).

Components can be computed by static analysis of the program [23], repeating the following
procedure untbil there are no changes. The process always stops because the length of every
component does not exceed the number of PST labels.

1. If there is a non-variable term T in the nth argument of predicate p in a head, add Cop(T)
to Cmp(p,nl.

2. If there is & variable occurring both in the nth argument of predicate p in a head and mth
argument of g in the hody of the clanse, add Copig,m} to Cmp(p,n).

*MHote that a modolar constraint ie nat the eanonical form of constrainta

Inn the following exanple program. non-gmply components ace Cepilel, 1)={f g h} Cmple2,]_)z{f .]-_-.}1
and Cmp(cd,2)=Cap(el,2)={[1}.

cO{{f/ b}k, K, ¥ -1 (Y, %) .
c0(X, b, _d:-X={gfel, c2(K).
el (X, X},

el (X, [X1.3).

c2{{hsfa}}.

c2{{f/ck).

[Def] 6 (dependency) A scquemce of wtomic formnlos hos dependency when
I. @ vartable occurs o twe distinct places where their components have common lnbels,

2. n wartable soours i bwo distinet ploces where one component contains [1 and another does

nat confain [1, or
3. the bindding of an wegument whese component 5 not ¢, O

|Def] T (modular) A seyuence of atornee formulas 15 modunlar when it containg no dependency.
O

[Def] L] {nmdu[arl}r ﬂi!ﬁuurl} A }Jr'ﬂ.rﬁ::t:h: s el ulardy defined when every body of 1ls {If_ﬁﬂ.‘l:ﬁﬂﬂ

has no dependency. |

User-defined predicates in a constraint part of CHC must be medulady defined. For example,
member /2, append/3, or finite predicates are modularly defined, 5

3.6 Constraint Transformation

The constraint solver (mf{Cstr)) transforins non-modular constraints into modular omes by defin-
ing new predicates. In the following, we refer to this solver as the constraint transformer. The con-
straint trausfonner dynamically wtilizes unfold ffold transformation that prescrves equivalence[21].

Section 4 explains implementation issues, including the henristics of the constraint transformer.

A.6.1 Mechanism of constraint transformation

Unfold ffold transformation[21] is a well known program transformation technigue. By applying

the lnr.lmiquu. we consider the transformation of a constraint £ = i:'1 e C,‘.
Let T be a set of program Horn clanses®, z,,... 2w be variables in I, and p be a new m-ary
predicate. Let P; and D, be sequences of sets of clanses that are initially defined as:

Ty = {plzy,....;00n)=Ch, o Cac}
Py = TUly.
The constraint transformer mf{B) returns plzy, - o3y), iF and only if there exisls a sequence
Py, ..., Py such that every clanse in Py is modular. Py, and T4y are derived from P; and D; by
one of the following three types of transformations (1 =0...1),

1. un_fnhﬁng

p,;:{H:"A-H}UP:, {A‘,':'BJ;}C'P.. AJHJ:A.EJ- (f=1...m)
Pipr = P UL, (HE; :- B8, RE;} Diyy =Dy

Here, A is a selected atowic formula, Ay are atomic formulas |, and R and B; are sequences
of atomic formulas,
#[20] relaxes this definition as ; a predicate is M-solvable when at least one of the body of its definition has no

dependency.
5T dnes not contain CHCs.

2. folding

P,={H:-C RJUP, (A:-BjcD; Bi=C
Py =PU{H:-A8 R} D=0

Here, C and B ave selected sueli that they Lhave no connoon variables.

3, definition
Let B De a sequence of non-modular atomic formulas containing variables zp,.... x,,, and g

b o mew n-ary predicate.

'D='+| = 1:", u {Q‘{I|... . .I‘,,}l Hid B}
T"i-]-l =P
3.6.2 Example of Constraint Transformation

Thee following exanple demonstrates a transformation of & = member (A, Z) ,append{X,Y L2,
Firstly, by introduecing a new prodicate pt/4 as 01, we have:

T = [11,727T3.T4}
Tl = member{X,[X[Y]].
Ti = member(X.[¥|Z]) : - member{X,]
13 = append([] X.X).
T4 = append{iA[X].Y,[A|Z]) i~ append(X, ¥, Z).
D1 = plia, 1Y, Z) -member(h, Z), append(X, ¥, &),
Dy = {D1}
Py = Tullng

Step 1: By unfolding of the first formula of D1's body (member (&,2)), we get
T3 = pi{h.X.Y,[A|Z)):=-append(X, ¥, [4]Z]).
i pl{a, K. ¥ [B|Z]) : - menber(A,), append(X, ¥, [B|Z]}.
Py = TU(T5T6}

Step 2: By defining new predicates p2/4 and p3/5 as D2 and D3, we get the following clauses.

D2 = p2(X YA Z):-append(X Y, [4]2]).
D3 = p3(4 Z.% Y, B):- member(4, Z), append(X, Y, [B|Z]).

T3 = pi{A XY, [A]Z]) :-p2(X, Y. A,Z).
TG = pi(AXY.[B2]):~p3(A 2, XY, B).
Ty = {D1,02,D3)

P, = TU(TS.T¢, D2 D3}
Step 3 Unfolding D2 gives the following clanses.

T7 p2([].(#]Z]. 8.2)-
T8 p2([B|X], Y, &, Z) : - append(X, Y, Z).
Py = Tu{Ts T6,T7T8, D3}

Step 4: Unfolding the second formula of D3's body (append(X.Y, [BIZ])) gives

T0 = p3(a,Z[],[B|Z].B) :=member({A, Z}.
710 = p3(A,Z [B|X].Y.B) : - member(A, L}, append{X. ¥, Z).
P, = TU{TsT6.T7,T8,719 7110}

Step 5: Foldiug T'L0 by D1 generates T'10" and finally we get the following clauses,

T p3(A. 2. |B[X].Y.B} : = p1{A. X, Y. Z).
Py = TU{5.T6.TT.T8.79, 710
Every clause in Py is modnlar. As a result, menber (A, 2) ,append (X,Y,Z) Las been transformed

into pL(A,X,Y, 2}, preserving enonivalence, and new predicates pl/4, p2/4. and p3/5 have been
defined by T3 .76 T7.T8.T9, and T10".

4 Implementation

This section presents soime nnplententation issues, with particular emphasis on the constraint
transformer,

4.1 Constraint Transformer
4.1.1 Constraint Transformation Strategy
The constraint transformer consists of the following three clause pools.

o DEFINITION stoves the decivation claeses of new predicates,
« NON-MODULAR stores non-modular Horn elawses, and
MODULAR stores modular Horn clanses.

DEFINITION realizes T3, and NON-MODULAR and MODULAR correspond to B;.
The constraint transformer repeats the following procedures uutil DEFINITION and NON-MODULAR

are bath empty,

L. Ii DEFINITION is nol cipty, rewove one clause from DEFINITION and try unfolding.
2. fDEFINITION is erapty but NON-MODULAR is not empty, remove one clause N from NON-¥0DULAR.
If N's head 15 modular, try unfolding. If not, attempt folding or definition on N's body.

Actually, aceording to fixing the transformation strategy, some constraints cannol be trans-
formed into modular ones. although such a situation is rare for actual linguistic constraints[22]
To avoid the situation, there are following choices:

& to adjust heuristics,
s to confine user predicates in finite or linear[22] predicates, or
¢ to relax the definition of modularly-defined such as M-solvable [20].

4.1.2 Heuristics

One of the outstanding features of the constraint transformer is the use of heuristics in the un-

fold,/fold transformation.
An unfolding literal can be selected arbitrarily. The constraint transformer computes the

actiration value £ of each atemic formula for the fivst time, and unfolds the atomic formula of the
highest value.

Comst = Numbaer of arguments that bind to constants

Vaum = Total number of variable ocourrences in the formula

Funet = Number of arguments that bind to complex terms
Mee = 1 for recursive predicate aned 0 for finite predicate

Defs = Numnber of definition clauses of the predicale

IU'nits = Number of unit clauses in the predicate definition

Facts = If the predicate 1s defined only by unit clauses then 1, otherwise 0
activation value e = JsConmst + Vnum 4+ 2« Funct — 2« Hec— Defs 4 Units 4+ 3« Facts

Each factor of the activation value is defined so as to include some empirical henristics used in [24].
There may, however. be more effective henvisties with more factors or with a non-linear formulal6].

4.2 cu-Prologlll

cn-Prolog has been implemented in © language of UNTX4.2/3B5D and on the Apple Macintosh(20].
The UNLX version of cu-Prolog {the enrrent version is cu-Prologlll). is registered as ICOT Free
Software. Anonyious FTF from fep. icot.or, jpis available {the file name is kbas-clp/unix/cuprolog. tar.2

5 Linguistic applications

This section demonstrates the linguistic application of cu-Frolog; DFS unification and JPSG

PATSEL.

5.1 Constraint-hased NLP

In cu-Prolog, both DFSs and structural principles are treated as constraints in CHC. Moreover,
constraints ave accumulated to reduce the value range of variables. In other words, a disam-
biguation process is automatically realized by constraint transformation. This gives a picture of

constrainé-based natural language precessing,
Most Lraditional approaches, on the other hand, are procedural aud backtrack-based. "That is, &

parser returns oue answer then backtracks to return the other answer. Alternatively, phonological,
gyntactic, semantic, and pragmatic processes are applied, one by one.

5.2 DFS unification

cu-FProlog requites no special deviee to embody the unification between two DFSs, that is, two con-
glrained PETs, The naification between constrained P51 is done by performing PST unification,
followed by the transformation of the relevant constraints,

Consider the following cxanple [4] of DFS unification between

. b+ b:— a: [bV]
[l [es] e s
. These DFSs are encoded as two constrained PSTs, X={a/U},s(U) and Y={a/{b/V},d/V}, where

a{{bf+,c/-}}. Y definitionm of 8/1
a({b/=,c/+}}.

PST unification between X and ¥ gives
A=Y={a/U,d/V}, U={b/V}, s(U).

There is a dependency in terims of a label b, becanse Cmp(s, 1)={b,c}.
Dy defining a new predicate ¢1/2 as follows, T U={b/V}, s (U} becomes equivalent to U={b/V},c1(U,V).

ci({c/=}.,+}.
cl{fc/+}.-}.

Note that the reselt X=Y={a/U,d/V} U={b/¥},c1(U,V¥) does not have any dependency because
Cmp{ecl,1)={c}.

As mentioned in subsection 3.4, a constrained PST corresponds to Kasper's treatment of
DFS[11]. In [11], DFS unification consists of three procedures: definite component unification,
compatibility checking, and exhaustive consistency checking. PST unification corresponds to the

"By means of the unfold t.ersfa-l.:-mlﬁ.un, c1/2 is defined as c1({b/+,e/-},+}. and ci({b/-.e/+} .-}, Subse
quently, omit b from the componount of the fimt argument of 21

first procedure, and the following constraint transformation corresponds to the second and thind
procedures. In the worst case, the unification requires the exponential time of the number of
disjunctions, but in reality our approach requires polynomial time, as Kasper's does. The cn-
FProlog approach is superior to Kasper's in the fellowing points:

s checking is done by unfolding only dependent PSTs, and

o the unfolding formula is selectel by applying heuristics as shown in Section 4, and

» constrained PST can treat disjunction names [3) which specify the value combination of
different features and disjunction among different feature structures|23].

Figure 1 is an example of DF3 unification in [11] in cu-Prologlll It demonstrates the unification
between

lex : yoll
subj: | person:2 ()
T!HTHEML'T - _il'.l!
anel
rank ; clause vace ;Ju:uaz'{..lc voice © actiue
sl [cuse © o fransitivity « trans -V [« subf >, « actor = (5)
' ' [« subj =, < goal »] o

transitivity : intrans transitivity : trans
actor : [pevson : 3| goal : [person : 3|

[nunmber : sing y number @ pl
i subf : [number : sing] subj : [number - pl] |)

Here, [« subj =, < goal »| indicates that the value of leaiure subj is equal to the value of goal.

P
i)

5.3 Encoding Lexical Ambiguity

Ag oan example of utilizing DTS, consider the lexicons of homonym or polysemic words, If the
lexicon of an ambiguous word ts separated into multiple entries in terms of the difference, the
parsing process may be inefficient in that it sometimes backtracks to consult the lexicon. in
constraint-based NLF, such ambiguity is packed as & constraint in a lexicon.

Below is a sample lexicon of the Japanese anxiliary verb “reru.” “reru” follows a verb whose
inflection type is vs or vel. If the adjacent verh is transitive, “reru” indicates plain passive. If
Lhe werb is intransitive, “reru” indicates affective passive ®. These combinations are represented
by ardding constraints of rern form/1 and reru_sem/4 to one lexical entry.

%% lexical entry of *‘rerun’’

lex(reru,{ac/S5C, aem/Sem, adjacent/{pos/v, infl /I, sc/V5SC,sem/Sem}});
raru_form{I), % inflection (constraimt}
rere_sem{VSC, Veem,SC,Sem) . % combimation of subcat and sem {conatraint)

TARERY definition eof constraints EEXERE
reru_form{vs). ¥ inflection type of the adjacent warb

refu_foralval).

% constraint for intranmitive (affactive) passive

reru_sem([{form/ga,sen/Sbi}] , Sem, [{form/ga. sem/A}, {form/ni, son/5bi}] atfuctad (A, Sem)) .

% constraint for transitive (normal} passive

reru_senl [{form/ga,sen/50j}, {form/ve, sen/0bj}] , Sen, [{forn/ga, son/Obj}, {form/ni, sem/Sbi}],Sen).

Although the lexicon is ambiguous, however, many kinds of constraints are automatically
accuwmolated for solving during parsing. The disambiguation process in parsing is naturally realized
by the constraint transformation in cu-Prolog,

EFor example, “Ken ga ame ni fu-ra-recn” (Ken is affected by the rain.)

10

5.4 Encoding Structural Principle

As mentioned in Section 2. the stractural principles of JPSG and HPSG are relations amnong
features of thres categories in a local plirase structure. Intuitively, strueture prineiples are encoded
as constraints in a plrase structure rule with CHOC as:

par{ M, DI sp (M. DVH)L L apa M DOH)

Here, par/3 is a pluase stincture mule and each sp,/3 {i = 1...n) indicates structure principles.
In cu-Prolog. these structural principles are evaluated flexibly with hewristics. In Prolog. however.
the above phirase structure rule s representied as;

psriM. D H) :-sp (M, D.H), ..., spo (M. D H).

Eacl principle is always evalnated sequentially. Frolog, therefore, 13 not well-suited to constraint
based granunars becanse it is impossible to stipulate in advance which kind of linguistic constraints

wust be processed, and in what order,
The following example demionstrates the foot feature pranciple of JPSG[5]:

the value of FOOT feature of the mother unifies with the nuion of those of her dauglh-
Leers,

By defining £fp/3 as follows, the principle is represented as coustraint ££p(M,D,H).
fip({foot/MF}, {foot/DF}, {foot/HF}) :- union(DF,HF,MF}.

Figure 2 is an example of the JP3G parser in cn-PrologIll that parses the ambiguous Japanese
gentence “Ken pa ai snen” (Ken loves,) For an ambignons sentence, the parser returns the corre-
sponding feature structure with constraints.

6 Concluding Remarks

‘This paper outlimed en-Prolog. then covered the treatment of DFS and parsing JP'SG to realize
constraint-hased NLI

We would like to stress that every feature mentioned in this paper was nniformly processed
in the same framework as a constraint trapsformation. In comparison with many eonventional
approaches, onr approaches, including Hasida's DP {Dependency Propagation/Dynamic constraint
Processing) [G, 7). provide a far more general and flexible framework for NLP.

DF is an extension framework of the constraint nnification that treats clausal-form logic pro-
grams by constraint transformation. DP adopts concepts of the dynamics; potential energy is
defined to programs and inferences are coutrolled so as to minimize the energy|7]. Compared with
DP, cu-Prolog mixes procedural programumning and constraints by CHC, and can be seen as being
a wore practical approach.

Subzequently, we hope to add constraint lierarchy to cu-FProlog. In the current framework,
every constraint is equally satisfied, such that if the constraint is over-constrained the transfor-
mation fails, However, constraints occurring in a grammar description sometimes contradict each
other and have preferences or hierarchies. Such cases would easily occnr if we were to consider
various heterogeneous linguistic constraints.

Fur example, [14] postulates two coustraints, semantic and syntactic preferences, in WH-

questions such as:

s {Sementic preference); The preference of indirect object (10} taken by the verb “give” is
higher animate{people} > animate > inanimate.
* {Syntactic preference):
- prefer: NEXT-us-10: The noun next to the verb is 10,
= not-prefer: WH-comp-as-I0: The complement of the WH-clause is 10.

11

Cost-based abduction[9] adds numerieal costs and weights to literals to derive the least cost ab-

duction as the best explination.

What is the framework for treating suel constraint relaxation or optimization? A cue in the
field of CLP is a hierarchical constraint logic programming (HCLP) [1] proposed as an extension
of CLF. In HCLF. every coustraint is labeled with its strength (hierarchy), with constraints being
processed from the stronger to the weaker ones. HCLP also provides comparators, that may differ
1 the appheation, to compare the appropriatescss of sclutions.

Acknowledgment

‘The author thanks Hidetosi Sirai of Clukyo University for his cooperation in implementing cu-
Prolog. Thanks are also due to Kazumasa Yokota, Kaiti Hasida, Satoshi Tojo. Hideki Yasukawa,
and other ICOT rescarchers for their valuable comments. For their contributions to JPSG, the
- aunthor thanks Prof. Takao Guuji and other PSG working group wembers.

References

[L] A Boruing. M. Maher. A. Martindale, and M. Wilson. Counstraint Hierarchies and Logic
Programming In Proc. of 6ith International Conference of Logic Frogramming, pages 149-
LG4, 1989,

B. Carpenter, C. Pallard, and A. Franz. The Specification and Taplementation of Constraint-
Bascd Unification Grammar. In Proc. of 2nd International Workshon on Parsing Technola-
gigs, pages 143-153, Sigparse ACL, February 1991,

2

i3] J. Dérre and A. Eiscle. Feature Logic with Disjunctive Unification. In Proe. af COLING-90
Vol 7, pages 100105, Augusl 1990,

4] A Eisele and J. Dirre. Unification of Digjunctive Featnre Descriptious. In Proe. of 86th ACL
Annuwel Meeting, papes 286-294, June 1988,

(3] T Guuji. Japanese Phrase Structure Grammar. Reidel, Dordrecht, 1986

(6] K. Hasida. Common Ilenvistics for Parsing, Generation, and Whatever. In T. Strzalkowski,
editor, Reversible Grammar in Natural Languuge Processing. Kluwer Academic Publishers,
1991,

{7] K. Hasida, K. Nagao, and T. Miyata. Joint Utterance: Intrasentential Speaker/Hearer Switch
as an Emergent Phenomenon. In Proc. of 1JCAI9S, pages 11931199, Chambery, 1993,

[#] K. Hasida and H. Sirai. Jyokentsuki Tan'itsu-ka (Conditioned Unification). Computer Soft-
ware, 3(4):28-38, 1986. (in Japaness).

[9] J. R. Hobbs, M. Stickel, P. Martin, and D. Edwards. Iuterpretation as Abduction. In Proec,
of the 26th ACL Annual Meeting, pages 95-103, 1988.

(10) J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 1{th ACM POPL
Conference, pages 111-119, Munich, 1987,

[11] R. T. Kasper. A Unification Method for Disjunctive Feature Descriptions. In 25 ACL
Annual Meeting, pages 235-242, July 1087,

[12] R. T. Kasper and W. C. Rounds. A Logical Semantics for Feature Structure. In Proc. of
24th ACL Annual Meeting, pages 257266, 1986,

{13] M. Kay. Parsing in Functional Unification Grammar. In D. R. Dowty, L. Karttunen, and A M.
Zwicky, editors, Natural Language Parsing, chapter 7, pages 251-278. Cambridge university
press, 1985,

12

[14] M. P. Marcus. A Theory of Syntactic Recognition for Nutural Langunge. MIT Press. Cam-

[13]

7]
(18]

19]
[20]

121]
[22]
[23]

(24

bridge: Mass, 1980,

K. Mukai. Partially Specified Term in Logic Programming for Lingunistic Analysis. In Proc. of
the International Conference of Fifth Generation Computer Systems, pages 4T9-458, 1COT,
OHMSHA, Springer-Verlag. 1958

C. Pollared and 1. A, Sag, Mmformation-Bosed Synior and Semantics. Vol ! Fundamentals.
CSLI Lectnre Notes Series No.13. Stanford:CSLI. 1087,

0. Pollard and I A. Sag. Head-Dviven Phrase Structure Grammar. University of Chicago
Mress and CSL1 Publications, 1993, (to appear).

5. M. Shieher. An Introduction to Unifiention-Based Appronch to Grammar, CS5L1 Lecture
Motes Series No.d. Stanford :CSLL 198G,

& M. Shicher, Construnt-Based Grummur Formalisms, MIT Press. A Bradford Book, 1992,

H. Sirai. A Guide to MacCUP. unpublished, 1991, ({available by anonymons FTP from
esli.stanford.edu (pub/MacCup]).

. Tamaki and T. Sato. Unfold /Fold Trassformation of Logic Programs. In Prec. of Znd
International Conference on Logic Pregrammanyg, pages 127-137, 1983,

Y, Tomioka. Computability of Modularization of Constaraints. Computer Software, 9(6):58-
68, 1992, (in Japanese).

H. I'suda, Disjunctive featuze structure in cu-prolog. In 8th Conf. Proc. Japan Soc. Softw.
Se. Jupan,, papes 505-508, 1991, (in Japanese).

H. Tsuda, K. Hasida. and H. Sivai. cu-Prolog and its application to a JPSG parser. In
K. Furukawa, II. Tanaka, and 1. Fujisaki, editors, Logic Progremmang '82, pages 134-143.
Springer-Verlag LMAL 485, 1985,

{25] H. Tsuda, K. Hasida, and H. Sirm. JPSG Parser on Constraint Logic Programming. In Proc.

of Jth ACL Ewropean Chapter, pages 95-102, 1089,

13

%l definition of the unconditional conjuncts {user’s input)
ccl{{voice/passive,trans/trans,subj/X,goal/X}}.
cell{voice/active, subj/¥,actor/%}).

cc2l{trans/intrans, actor/{person/third}}).
cc2{{trans/trans, goal/{persen/third}}).

ced{{numb/sing, subj/{numb/sing}}).

ce3({numb/pl, subj/{numb/pl}}}.

WA Disjunctive Feature Structure wunification (user’s input)
® Us{rank/clause, subj/{case/nom}},cci{U),cc2(U),cca(l},
U={subj/{lex/yall,person/second ,numh/pl}}.

W answer: equivalent constraint
selutien = cO0(U_C, {subj/{case/nom}, rank/clause}, {subj/{person/second, mumb/pl, lex/yalll})

W definitions of a nev predicate (e0)
e0(_pi, _pl, _pl) :- ec2(_pl1), ccl{_pl);
-pt={subj/{person/second, numb/pl, case/nom, lex/yall}, mumb/pl, rank/clause}.

CPU time = 0.150 sec (Constraints Handling = 0.000 sec)

e-c0{X,_,_0. ¥ solve the new comstraint
success, % X is the final answer of the unification.
X = {veice/active, trans/trans, subj/{perssn/second, numb/pl, case/nom, lex/yalll},
goal/{person/third}, acter/{persen/secend, numb/pl, case/nom, lex/yalll,
numb,/pl, rank/clause};

This is a demonstration of DFS unification using the constraint transformer. The first 7 lines define disjunctions
in (5] in terms of user-defined predicates. In cu-Prologlll, a constraint that follows “@" at the top level is
transformed into modular ene. In this case, it specifies the unification between {5} and {4). To this input, the
constraint transfarmer returns equivalent modular constraint and definition clauses of newly defined predicates,
The result of the unification, which is a non-disjunctive FS in this case, is given as the binding of X in the last

3 lines.

Figure 1: DFS unification

14

_:-pllken,ga,ai,surul). % user's input of ‘'Ken ga ai-suru.'’

Wik parse tree
{sem/[love,VT_2030,V6_2029], core/{form/Form_1381, pos/v}, sc/V1_2024,
refl/[1, slash/V3_2026, pal/[], ajn/[], aje/01}-—-[suff pl
|
|-={sem/ [love ,¥T_2030,V6_2028], core/{poa/v}, sc/V0_2023, refl/[],
slash/V2 2025, psl/L). ajn/[]. ajc/[1}---[subcat_p]
| I
| |--{zem/ken, core/{form/ga, pes/pl. =2c/[1, reil/[], sla=h/[],
psl/[1, ajn/[]. aje/[1}---[adjacent_p]
i I |
| | |-={sem/ken, core/{formfn, pes/n}, sc/[], refl/[], slash/[],
psl/[1, ajn/l], aje/[1}---[ken]
[|
| H |__{sem/ken, core/{form/ga, pos/p}, sc/L), refl/[}, slash/[]1,psl/01, ajn/[],
aje/[{sem/ken, core/{pos/n}, se/[1. refl/ReflAC_T0}]}---[gal
I
| __{sem/[Llove, V7 _2030,V6_2029], core/{form/vs2, pos/v}}---[ail

__Asem/ [love V7_2030,Vs_2028] , core/{form/Form_1381, pesfv}, =c¢/[], refl/[],
slash/[1, psl/[], ajn/[], aje/[{eem/[love,V7_2030,V6_2023],
core/{ferm/va2, pos/v}, sc/ll, refl/ReflAC_1403}] }---[suru]

categery~ {sem/[love,V7_2030,V6_2028], core/{form/Ferm_1281, pos/v},
sc/V1_2024, reflsf[], slash/V3_2026, pal/[1, ajn/{], ajc/[1} %category

conastraint= c4Q(VO_2023, Vi_2024, V2_2025, V3_2026, W4 _202T, Vo_2028,
{sem/ken, core/{form/ga, poes/p}. =c/l1, refl/[], slash/[}, psi/[],
ajn/[], aje/[1}, V6_2029, {sem/V6_2028, core/{form/wo, pos/pl}, V7_2030,
{5em/V7_2030, core/{form/ga, pos/pll},
syu_ren{Ferm_1381) Jcomstraint about the categoery
trua.
CPU time = 2,217 sec (Constrainte Handling = 1.850 sec)

_i=cdOd{VL, _, _, V3, _, _._, VB,_ , V7,_}. Ysolve constraint

¥1i =[] v3d = [{sem/V0_4}] V& = ¥0_4 V7 = ken; % solutiom 1

Vi = [{sem/VO_4, core/{form/wo, pos/p}}] V3 =1[1 V6 =V0_4 V7 = ken; ¥ solution 2
ne.
CPU time = D.01V sec (Comstraints Handling = 0.000 sec)

Tha parsing of “Ken ga ai-suru” that has two meanings: “Ken loves {somecne)” or "{someone) whom Ken
loves.” The parser draws a corresponding parse tree and returns the category of the top node with constraints.
In this example, the ambiguity of the sentence is indicated in the two solutions of the constraint c40,

Figure 2: JPS3G parser: disambiguation

