_ ICOT Technical Report: TR-0856

TR-(850

A Three-Dimensional Animation System

for Protein Folding Simulation

by
M. Akahoshi, K. Onizuka, M. Ishikawa,
& K. Asai (ETL)

@ Copyright 1933-10-18 ICOT, JAPAN ALL RIGHTS RESERVED

Mila Kokusai Bldg, 21F (03)3456-3191 5

“ :D | 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Jupan

Institute for New Generation Computer Technology

A Three-Dimensional Animation System.
for Protein Folding Simulation

MASAYUKL AKAHOSHI

KENTARD ONIZUKA

MASATO ISHIKAWA
Institute for New Generation Computer Technology(ICOT)
1-4-28, Mita, Minato-ku, Tokyo, 108 Japan :
akahoshi@icot.or jp, nmzuka@lmt or.jp, lshlka.m@mut or.]p'
FAX 481-3-3456-1618

KiyosHl Asal
Electrotechnical Laboratory(ETL)
1-1-4, Umezono, Tsukuba Ibaraki, 305 Japan
asail®et] go.jp
FAX 4+81-208-58-5939

Abstract

We have developed a new computer longuage Hht
describes three - dimensional graphical oljects in visual
simuletton, The language, 30-Talk, 15 a powerful tool
for wmsualizing the process of protein folding simula-
tion. 3D-Talk is designed as an object-ortented lan-
mquage, with which wsers con ereate, mampulate, and
erdif grophical objerts using commands with a syntas
simtlar fo that of a natural language.

We developed two novel molecular bology applica-
tions using J0-Talk, The first, ProView, 15 a protein
wvisualization tool. ProView converls PDB{Prolein
Data Bank) data into 3D-Talk statements. The sec-
ond 15 a wsual simulation system for protem folding.
It sunulales the motion of protem folding uany som-
ulated annealing technugues and Hidden Markov Mod-
els,

In short, 30-Tulk serves wy o powerful snomation
tool,

1 Introduction

Visualization systems are pla.yillg all eVer-more im-
portant role in the field of molecular biclogy and drug
design [4]. Such systems help biologists and enginesrs
atudy the three-dimensional structures of biochemi-
cal molecules, However, researchers and engineers in
these fields generally speud more time building the vi-
sualization modules than they do building data anal-

yaiz modules, because the programming of a visual-
ization module is so complex that biologists, who are
not trained in programming, find it overly demanding.
A user-friendly visnalization scheme is, thus, strongly
desired. Such a system would be able to, say, display
a sphere when a user merely types “Draw a sphere.”

The PostScript? language contributed greatly to vi-
sual communications. This is a simple interpretive
programming language with powerful capabilities and
considerable fAexibility. However, since this language
is optimized to enable machines to readily generate the
code, the statements of this language are quite diffi-
cull for users to understand, offsetting its desirable
features.

AR an easy-to-use visnalization environment, we de-
veloped a description language, 3D-Talk, and its inter-
preter, 3DView, JD-Talk was designed as an object-
oriented language with o simple grammar.

Faor example, the statement

Ball is a sphere;
Ball radius is 5;
Ball draw;

represcents a sphere object with a radius of 5. (Fig.1)
We built an interpreter, 3D'View, which creates,
displays, and manipulates graphical objects according -
to their description in 3D-Talk. Since our main pur-
pose in designing this interpreter was to develop a vi-
L oopyright(®)1985,1986.1987,1968,1990 Adobe Sywtems
Incorporated.

Figure 1: Sphere Object

sual folding simulation system, this interpreter would
have to be suitable for animation. In this paper, we
will show how this language and interpreter are suit-
able for the animation of folding simulation. Then,
we will bricly illustrate a protein folding simulation
gystem that uses our graphical system.

The organization of this paper is as follows. In Sec-
tion 2, we discuss the prereguisites for visualization
environments and describe the motivation for our ap-
proach in 3D-Talk. In Section 3, the specifications of
3D-Talk are described in detail. In Section 4, the fea-
tures of the interpreter, 3DView, are explained. In
Section 5, we briefly introduce two applications. The
first ProView, is a protein visualization system, and
the second is a protein folding simulation system. We
show how effectively the features of 3JD-Talk work for
them. In Section 6, the conclusion, we also describe
our future works.

2 Motivation and Policies

We have been studying how a protein folde into
& three-dimensional structure. We needed a graphi-
cal system that can visualize a protein structure to
see this folding process. Although there are several
commercial tools for molecular visualization, none are
suitable for our purposes, because of the following rea-
sOns.

1. It is impossible for users to add new functions to
such tools, because these tools are provided as

binary compiled code, with no source code.

2. The descriptions of graphical objeects are inter-
nally processed and the results stored as binary
data. This makes these tools less fiexible,

3. The protein structure database “PDB {Protein
Data Bank)” is revised frequently, where the de-
scription format is changing with each revision.

We overcame these problems by developing & new
visnalization scheme. Lileally, a visnalization environ-
ment should display the objects that a user wishes
to visualize. Also, the system should be able to ac-
cept new PDB formats or descriptions after only mi-
nor modification by the user. Here, we consider the
following criteria regarding the realization of such an
enviromment:

1. Which kind of system is hetter, an interpreter or
a compiler ¥

2. How should graplical objects be represented 7

3. What kind of grammar is preferable for the de
scription language T

4. How flexible is the systom for network communi-
cation 7

5. What kind of extended features are needed ?

The first criterion concerns the flexibility of the vi-
sualization environment. Graphical objects should be
represented and manipulated by specific deseription.
Graphical libraries, such as GL and PHIGS [1] can
display and manipulate objects quickly because the
deacription is compiled into machine-readable binary
code. But, the compiled code i almost impossible to
modify and requires the use of many control parame-
ters.

Um the other hand, interpreters such as PostScript
have considerable fexibility. Any Postscript descrip-
tion is written, transmitted, and interpreted as ASCIT
characters. Therefore the description can always be
printed and read. This feature is guite convenient for
users to read, edit, and write descriptions in this lan-
guage. This is also useful for storing descriptions into
files, and for transferring files hetween different kinds
of machines using different operating systems. This
enhances machine independence. Thus, we decided
to build a system which interprets the description be-
cause we consider flexibility to be of the highest im-
portance.

The second criterion concerns the representation of
graphical objects, (e.g., sphere, pillar, and box [5]).

Each graphical object should have sufficient parame-
ters to determine its properties, such as shape, color,
size, position and ovientation. Each graphical ohject
ghould be able to chauge its state, such as visible, in-
visible, wired. solid. or not solid. acconling to com-
wids input by the nser.

In this case, exploiting the concept of object-
orientation allows us to deal with these properties
systematically. The set of parameters represcuting a
graphical object is separated nto two parts. One is
the common part while the other is the private part,
as shown below:

COITERILERY I rlri"-'?.t.l:]

| :JI}JH:L Ly pe
linge: color, waguily,
pipe move, location,
draw. hude

widlth, style
radius

Graphical objects are hierarchivally classified, in
our systenl, into several classes, according to the prop-
erties of each object. The common part is inherited
from the class above. The private part defines its own
properties. In this case, the size of the statement is
greatly redueed by the concept of inhentanee in 30-
Talk.

The third criterion concerns the prammar of a de-
seripltion language. It s difficolt for nsers to learn
a language if they are unfamiliar with its gransoar.
Since PostScript programs are normally generated by
applhcations rather than the vser, PostScript’s gram-
mar is not necessarily easy for users to master, An-
other reason why PostSeript grammar is presents dif-
ficulties to the user is that its grammar is optimized
for the interpreter to parse. When large amounts of
graphical data are handled, this approach achieves
high performance.

However, we believe a simple grammar to he bet-
ter than a complicated one, becanse the purpase of our
system is to provide an ensy visuahization enviromment
where nsers can easily read, edit and write descrip-
tion language statements. We designed an English-
like language . or a kind of Pidgin English. The
Pidgin English-like sentences are immediately under-
standable, ever to inexperienced nsers.

The fourth criterion concerns the transmission of
data. The performance of an application nsing net-
work communication depends largely on the data
transfer speed of the network. Sinee the data trans-
fer sperd is determined by the havdware and protocel
of the network system, the application eannot control
the speed. Thus, to bnild a high-performance appli-

cation, we have to minimize the amount of data heing
handled by the network.

The amount of data required to animate graphical
objects is guite larpe. becanse the visualization sys-
tem needs graphical data for each frame of the motion.
3D-Tulk solves the problem of large amonnts of data,
ADView lhas an internal state that stores the states
of all created graphical objects. This means that the
3D-Talk interpreter does not have to receive all the
graphical data, instead only having to receive the dif-
ferences in state from the previous Frame to display
the next state.

The fifth criterion concerns Lhe number of complex
features. Users usually prefer an environment with
many complex features, becaunse they believe that this
would make it easy to visualize what they wish 1o do.
But, in reality, the statements reguired to realize such
an enviroument are too complicated to learn. We de-
cided that the features of a user-friendly environnent
wotld be compact and easy to nnderstand. In design-
ing an application, nsers should make np more com-
plex features only as needed.

3 Specifications of 3D-Talk

Ubjects in 3D-"lalk are classified into two types,
These are graphical ohjects and non-graphical objects.
Graphical objects are those that can be displayed npon
the input of "draw’. Noo-graphical objects are those
that define the eonfignrations and envirowment of the
graphical ohjects,

This lunguage supports the following classes of ob-

JEEHER

graphical dot, hine, sphere, eylinder, box,
character, pillar, pipe, pyramd,
polygon, cone, reclangle, group
characters, character strings,
numbers, locations, lists,

materials liEht.

non-graphical

Figure 2: All class name

Message ‘s’ or ‘an’ is sent to the so-called back-
grovimed ohject with the argument apecifying the class
of object to be created. The background object cre-
ates the ohject according to the message. The created
object showld be referenced by an identifier. The mes-
sage ‘is’ binds the identifiers and the created abjects,
as helow:

{A) BOX (B) PYRAMID (C) COMNE

Figure 3: Graphical Object Samples

Ball ias a sphere;
Pole is a pipel;
Case is a box;

where *Ball’ is an identifier indicating the created ob-
ject by the message “a sphere’.

We often need to gronp several objects W manip-
ulate them together as a single complex object, The
object class “gronp’ is introduced for this purpose. Fig,
4 shows a statement representing a group ohject. The
sixty-line statement defines a group object of Glycine
residne which consists of four atoms and three bonds.
(Hydrogen atoms are not included. since PDD ignores
tlirn.)

A group object usually consists of several subgroup
ohjects. The statement, shown ou the left in Fig. 5.
defines the hierarchical relationship indicated on the
right.,

The syntax of this langnage is ronghly represented
by the BN form helow,

<atatement> = Lexpresaien> M;"
| <message> ;"
1= <expression® <message>r
| <object> <message>
“objact® membar_selectaor
<article> clase_name
variable
lateral

|

|

I
CATTicle> ;.= Ma"

I

I

<expression>

<pbject>

"an”
massage_salactor
megsage_salactor <ATgumant>
ti= "(" axpreasion "}"

| <eesrdinate>

| <list>

| wariable

| literal

<coordinate®::= "{"number "," number "," nusber"}*
€lise> = U[" gaygument> [“," <argument] "]"

<message> ::

<argument>

member | radius depth top hottom height division
selector | string fout size width style points color
message | s draw deawall hide hideal]l wire wireall
selector | transform moves location rotate rotation

from to alpha append bind cdr car

magnify antialiases into up push pop
smooths nurhs shines colors epeculer
ingert element value delete guit syne

“variable” should be a character string that iz not
reserved by the system. Fig.2 describes “class name”,
“number” is a nmumerical valne,

A “message’ here can be thonght of as correspond-
ing to a verb in a natural language, and it sometimes
requires an argmment. corresponding to the object of
the verb. Some messages to certain classes of objects
return a value, after which the returned value ean act
a3 an argument for another message.

Each object may have aeveral slots for subobjects,
A slot is referenced by its name and v used as oan
internal variable of the object. If the object is a sphere,
each of its properties such as the rading and color is
stored in a slot of the sphere object. The slot name
is a message name. This means that the suhohject
is referenced by the object name and slot name, as
below,

TheBall is a sphere;
TheBall radius is &5.0;

where ‘radius’ is the slot name of the internal varianbie
whose value represents the radius of the sphere object.

4 3DView: Graphical Description In-
terpreter

The 3DView visnalization module is an interpreter
of 30-Talk that displays graphical objects according
to their description in 3D-Talk, Users can visualize ob=
jects they want to simulate by writing statements in
3D-Talk and sending those statements to the 3DView
module. Users can move, rotate, and scale the dis-
played objects by using the mouse. The control panel
provides optional operations. Frequent visualization
environment configurations can be defined in the ini-
tialization file * ddview’.

Fig.6 shows the main mouse operations supported
by this system. The displayed ohjects are rotated, re-
sized, and moved using these simple mouse operations.

» To move the object, place the cursor on the win-
dow, hold down the left mouse button, then drag
the abject (Fig.G{A)).

fioot is a group; C is a sphare;

pushk Root: ¢ eoloar ia :Carben;

Residue iz a group; ¢ radius is :CarbonRadios;

push Residue; C moves{-1,308000,0.135000,-1.110000};
W ie a sphere; €1 is a piped;

K colar is :Nitrogaen; Cl top ie :BondRadius;

N redius is :NitrogenRadius; C1 bottom is :BondRadius;

N moves{0, 433000,0. TE0000,0.500000}; C1 color is :Carbon;

N2 is a pipel; C1 from{-1.308000,0.135000,-1.110000%;
K2 tep is :BondRadius; Cl tof=0.877T000,0. TOBS00,=0.727500};
N2 bottom is :BondRadius; G2 is a piped;

K2 color is :Nitrogen; C2 top is :BondRadius;

N2 from{0.433000,0.750000,0.500000%; C2 bottom is :BondRadius;

K2 to{=0.106500,1.016000,0,077500F; €2 color is :Carbon;

CA is a sphore; C2 from{-1.308000,0,136000,-1.110000%;
Ck coaler is :Carban; C2 to{-1.521000,0.086000,-1.1215600};
CA radius is :CarbonRadius; 0 is a sphare;

Ch moves{-0.646000,1.282000,-0.345000} ; 0 color is :Dxygen;

Chl is a pipe0; 0 radius is :0xygenRadiua;

CAL top is :BondRadius; 0 moves{-2.534000,0.037000,-1. 133000};
CAl bottom is :BondRadius; 01 is a piped;

C&1 coler is :Carbonm; 01 top is :BondRadius;

CAl from{-0.846000,1.282000,-0.346000}; 01 bottom is :BondRadius;

CA1 to{=0.108500,1.016000,0.077800}; 01 color is :0xygen;

CA2 is & pipel; 01 from{-2.534000,0.037000,-1.133000};
CA2 top 18 :BondRadius; 01 to{=1.921000,0.088000,-1.121500};
CA2 bottom is :BondRadius; Pop;

CA2 coler ia :Carhen; Pop;

CAZ from{-0.546000,1.282000,-0.345000}; Root movead{0.B846000,-1.282000,0.346000};
CA2 to{-0.977000,0.TOREOO 0. T2TEO0}; Boot drawall;

Figure 4: Group Object: Glycine

up (Fig6(C)).

| '% | « To aper the control panel, hold down the right
el i button. pull down the menu., and select “Panel
' Open/Close”.
w W ﬂ The ideas for these mouse operations are borrowed
from the sample programs of SGI GL. These opera-
A} MOVE (B} ROTATE {C) ZOOM IN/OUT tions act on all displayed objects together. It is im-
possible to manipulate each individual objects, The
Figure 6: Mouse Operation control panel shown in Fig.7 is, thus, provided to ma-

nipulate individnal objects. We can select an ohject
to be manipulated and then send a message to that
ahject, either by typing the message into the mes-
sage window or by using the mouse to manipulate the
iconized elevators and handles.

¢ To rotate the ohject, hold down the middle
mouse button. then drag the object. It contin-
ucs to rotate when you release the monse bution

(Fig.6(B)). This system was developed on a SGI {Silicon
¢ To zoow in on the object, hold down the left and Graphics, I’;c'l IRIS-4D system using Graphics Li-
middle monse buttons, then drag the ohject down bhrary (GL) ©.
(Fig.6(C)). 30-Talk and 3DView have been released as
[COT Free Softwarc entitled ‘Protein-View', For de-
To zoom out from the object, hold down the left ?Silicou Graphics, RIS, 4D and the Gruphics Library are
and middle mouse buttons, then drag the object trademarks of Silicon Graphics, e,

Group is a group;

Group Subgroupl is a group;

Group Subgroupl is a group;

Group Subgroup? is a group;

Group Subgroupd Balld is a sphere;
Group Subgroupl Balll is a sphere;
Group Subgroupl Ball2 is a sphere;

Elevator

Rotate Handle

tails, please access ancnymous FTP, connecting to
ftp.icot.or.jp.

5 Applications

We have developed several novel moleenlar biology
applications using 3D-Talk. Two are introduced be-
low: & protein visualization tool ProView and a fold-
ingr simulation syatem.

5.1 ProView

rPDB (Protem Data Bank) rontaing
thiree-dimensional conformation data for about 1230
proteins, One of the most troublesome problems in
reading PDB files is that they contain large quantities
data in the wrong formnat, and frequently introduce
new ways of representing new kinds of data. ‘This

Figure & A visualization environment using ProView

is chiefly because the PDB format is nol particularly
systematic. Therefore, the system should pay careful
attention to reading PDB files.

ProView visnalizes the conformation of proteins
in PDB by generating 3D-Talk. The features of this
application are as follows.

1. ProView shows secondary structures [3], o-
helices, F-shests, and +y-turns, by using appropri-

J7 g
: pe é

L -

{&] Emlicem {m] Bhaei

Figure 90 Second Struetures Displayed by ProView

ate gruphical objects. An e-helix is represented
by a spital belt, & J-strand is represented by a
belt where a triangle indicates the direction of
the stramd, as in Fig9. The site of each sec-
ondary structure is determined according to the
secondary structure table in a PDB file,

2. ProView displays the residue pnmber aud
residue symbol of each aminoe acid residue.

J. ProView changes the mode of representation.
Pussible modes are solid mode, wire mode, rib-
bon mode, and ¢ wode (Fig10). In solid
mode, atoms are represented by solid spheres,
with ehemical bonds being represented by solid
c¥linders. [n wire mode, atoms and chomienl
bonds are represented by wires. The ribbon mode
represents the topology of a global conformation
as a belt. Fig. 12 shows a Hemoglobin with fone
chains. Each of the chaius is represented by a
different display mode in ProView.

Figure 11: Changing the Diliedral Angle

4. We can change the diliedral angle of & chemical
bond to change the conformation of a malecule.
To do this, we send the message ‘rotate’ with
an argument denoting the dihedral angle to the
object denoting the chemical bond. Fig.11 illus-
trates the process of rotating the dihedral angle
of the chemical bond hetween Alanine's N alom

and C%, This operation 15 done by the statement
bclow.

a bond from N to CA rotate 120

These functions are realized by nsing group chjects.
We ean use these functions by using Protein-Talk, an
operation language that is a specialized version of 3D-

Talk.
5.2 Folding Simulation System

There are several difficulties in developing a visual-
ization system for protein folding [7]. The first is how
Ly display the three-dimensional structure of a protein.
The second is how to represent the folding process.

We overcame these difficulties by exploiting the spe-
cial capabilities of ProView for protein representa-
tion and the innovative functions realized in Protein-
Talk. With ProView and Protein-Talk. the only
statements required for changing the display of pro-
tein conformation are bond rotation angles.

Here, we should briefly explain our fulding stimu-
lation method. We use the simulated annealing [6]
technigue for the folding simulation, The protein con-
formation of each stape is translated into MLD (ie.,
wulti-level deseription [8]). Then, the fitting score of
the conformation is calenlated by HMMs {ie., Hidden
Markov Maodels [2]) as the probability of the primary
sequence of the protein having the MLD.

MLD represents a protein conformation with sov-
cral symbolic sequences of multiple levels of abstrac-
tinn, Fach syiubol in the scquence denotes the class
of abstructed topology of subconformation with the
size specific to the level. Low-level sequences of this
description represent fine atructures with high reso-
lution, while high-level sequences represent abstruct
structures with low resolution.

We train the HMMs to be the predictors of MLD
symbols from the primary sequences. The probabili-
ties of the privary scquences having conformations for
certain MLID aymbals at each level can be caleulated
from the HMMs. "T'his means that for a given protein
eonformation, we can calculate the fitting score from
the primary sequence of the protein.

Our folding simulation system generates a set of
Protein-Talk /3D-Talk code frown MLD symbols in
each iteration and the folding process is displayed by
3DView iuterpreting the 3D-Talk code.

(A) Solid mode

{C) Wire mode

{B) Alpha-Carbon mode

{D) Ribbon mode

Figure 10; ProView Display Maodes

6 Conclusion

We devnlmw#l a new compiiter language, 3D-Talk,
and its interpreter, 3DView. as an easy-to-use vi-
sual simmlation enviromment. Sinee the language is
desipned as an object-oriented langnage and its state-
ments look like English sentences (they appear as a
kind of Pidgin English), users, including inexperienced
programmers and biologists, can easily create, manip-
ulate, and edit graphical objects.

We have developed several 3D-Talk applications.
ProView is a special visualization tool for protein
conformation. Qur protein folding system utilizes
ProView and 3D-Talk to visualize the process of fold-
ing simulation. 3D-Talk enables us to develop innova-
tive graphical application systems,

In the future, we intend to make the interpretation
process faster. The speed of interpretation is critical
in this kind of graphical systemn. Several problems in
patsing 3D-Talk codes should be overcomie to enable

the system to read 3D-Talk code faster. Several new
fanctions should be added to our system to reduce the
amount of code transferred between applications. At
the same tine, we should make the statements used
in AD-Talk look more like natural langnages to enable
biologists to write code without difficulty.

We hope that our novel graphical language amd
its interpreter provide an agreeable environment for
maolecular visualization in the field of biology and drug
design.

Acknowledgment

The authors would like to thank Toshio Tange at
NEC Scientific Information System Development Co.
Ltd. for designing and developing parts of 3D-Talk,
as well as Akihiko Konagayas at NEC Co. Ltd, for
providing frnitful discussion and advice,

Figure 12 Protein Structure: AHHD

References

[}

[2]

(3]

=

S.5. Abi-Ezzi, A.J. Bunshaft 1936. /EEE Com-
puter Graphics & Applcalons, . 12 1286,

K. Asai, 5. Hayamizu and K. Ownizuka 1993
“HMM with Protein Structure Grammer”, Proe.
of 26th Annual Hawaii Int'l Conf. on System Sex-
ennces vol, I: TRI-TYL.

C. Branden and J. Tooze 1991 Inirvduction ta Pro-
fean Structure. Now York: Garland Publishing,
Tuc,

Feldmann, R.J. The design of ecompnting systems
for molecular modeling. Ann. Rev. Biophys, Bio-
eng.. o, 477-210, 19706,

1.D. Faley, A.van Dam, S. Feiner and J.I). Hughes
1990. “Representing Curves aml Surfaces”. Com-
puter Graphics Principles and Practice, Md ed.,
1990

[6]

M. Ishikawa, T. Toya, M. Hoshida, K. Nitta, A
Ogiwara and M. Kanehisa 1993. “Muliiple Se-
quence Alignment by Parallel Simulated Anneal-
ing”. Computer Applications in the Biorciences
Vol 9 No.4

Lila M., Gierasch and Jonathan King 1990 Pro-
tein Folding: Deciphering the Second Half of the
Genetie Code. American Association for the Ad-
vancement of Science 198

K. Ouniguka, K. Asai, M. Ishikawa and 5.T.C.
Wong 1993. “A Multi-Level Description Scheme of
Protein Conformation™. Proc. of 15t fnt'l Conf. on
Intelligent Systems for Moleculur Biology

Animation

Figure 13; Folding Simulation System

10 -

