ICOT Technical Report: TR-0852

TR-0552

Parallel Inference System Research in the
Japanese FGCS Project

by
1. Chikayama & R. Kiyohara (Mitsubishi}

& Copyright 1993-08-31 1COT. JAPAN ALL RIGHTS RESERVED

Mity Kokusw Bllg. 21F (3)3456-3191 -5

ICDT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Inference System Research
in the Japanese FGCS Project

Takashi Chikayama and Ryoao Kiyohara®

Institute for New Generation Computer Technology,
1-4-28 Mita, Minato-ko, Tokyo 108, Japan

Abstract. The Fifth Generation Computer Sysbems (FGOS) project is a national project of
Japan aiming at establishing the basic technology required for high performance knowledge
infurmation processing systems. One of its most important subprojects has been the research
and development of the parallel inference system, aiming at establishing both hardware aoml
suftware technologies for obtaining massive symbolic computation power throngh highly
paralic] processing.

This paper reports an overview of recent rescarch and developonent on the parallel inference
systemn, including hardware, basic software and experimental application software

1 Introduction

The FGOS project is a national project of Japan, aiming &t establishing the basic technology
required for high performance knowledge information processing systems. The research and devel-
opment principle throughout the project has been to adopt logic as the theorctical backbone of
knowledge information processing sud poredlel processing as the key technology for obtaining high
performance, Thus, one of its most important subproject has been the research and development
of the parallel inference system, aiming at establishing both hardware and software technologics
for massive symbolic computation power through highly pacallel processing.

A coneurrent logic language, KL1[UKL], was designed as the kernel language of the system to
give the hasis of both hardware and software technologies. As the hardware system, the parallel
inference machine PIM[TK1| has been developed as a prototype to offer gigantic computation power
to knowledge information processing systems. The language processor for KL has been developed
to run efficiently on PIM. As the basic software system, an operating systemn PIMOS[CT1] has been
developed to provide a comfortable development enviromment for parallel application software in
KL1. PIMOS was also written in KL1. Various experimental application software systems have
been developed upon PLIMOS.

This paper reports an overview of recent research and development on the parallel inference
system, including hardware, basic software and experimental application seftware,

The following sections are organized as follows. Section 2 deseribes the design principles of the
p:;.ru]l::l inference system. Section 3 gives an overview of the system. In Sect. 4, remarks on our
experiences with the system are given. Finally, future research plans is deseribed in Seet. 5.

2 Design Principles

There are two most important sets of techoologies for high performance knowledge processing sys-
tems: One is technologies providing problem solving methods for knowledge information process-
ing; the other is technologies for actually applying such methods, providing massive computational
power and ease in programming. The parallel inference system subproject is aiming at establishing
the latter, both in hardware and software, through logic-based parallel processing.

Several problems that did not exist with sequential processing arise with parallel processing,
The most typical ones and our remedy for them are the following,

* The msecond author is currently at: Computer & lnformation Systems Laboratry, Mitsubishi Eleetric
Corp., 5-1-1 Ofuna, Kamakura. Kanagawa 247, Japan

Programming lunguage Traditionally, parallel processing software has been wrilten in sequential
programming languages augmented with features for parallel processing. This often complicates
software further. Oue of the most typical problems is synchronization between parallel computation
activities. Synchronization failures are frequent source of bugs hard to fix.

To solve the problem, we adopted a concurrent logic programming language KL1[UK1], which
was based on GHC{UK?2], KL1 is a born conenrrent language, where concurrent computation is the
default. Tts automatic data-flow synchronization mechanism eliminates most of the synchronization
problems.

Hardware architecture It was not clear which parallel processing architecture was most suited to
knowledge information processing. It was quite difficult to evaluate many architectural ideas only
through desk-top analysis. Software simulation is too time-consuming for evaluating with applica-
Lion software with practical complexity and size.

We thus decided to develop several (five, to be precise) models of PIM [TK1] with different
processor and interprocessor connection architectnres and evaluate them through experimentations
with practical application systems.

Software development environment Tools vriginally designed for sequential programming do not
always provide functionality required for debugging highly parallel software, even with extensions
made afterwards. The same can be said about the operating system features, such as interfaces
to the resource management mechanism and virtualized 1/0 devices, The original design relies so
much on sequential processing that most of the extensions for parallel processing are only snited
for small-scale parallelism.

An original operating system PIMOS (Parallel Inference Machine Operating System) [CT1) was
thus developed to provide a comfortable software development environment for parallel application
software,

The parallel inference system has an overall strocture as shown in Fig. 1. A notable difference
with conventional computer systems iz that the operating system is bunilt upon the level of the
programming language processor. For efficient exeention, highly parallel application software has
to control parallel processing activities in the system, which usnally was not necded in sequential
or small scale parallel systems. The application layer and the operating system layer thus require
the same primitives. We decided to provide their common basis, as the programming language
KL1.

Experimental Application Syatems

Operating System PIMOS \\

EL1 Language Processor

Parallel Inference Machine PIM

Fig. 1. Parallel Inference System

3 Overview of the System

3.1 The Kernel Language: KL1

This section describes the key features of KL1.

Basic Mechanism KL1 is a concurrent logic progrumming language based on GHC[UKZ]. lts
basic execution mechanism is common with other languages of the family, such as Concurrent
Prolog|SE2|, Parlog[CK1] or Janus[SA1].

KIL.1 programs consist of clauses, each of which corresponds to a logical axiom. Clanses that
define a program has the following syutax,

PredName{ Arglast, ...) 1= Guard | Dody.
Fach part has the following operational meanings.

PredName gives the name of the predicate (or subroutine, if you like} for which this clause gives
{a part of) the definition.

ArgList determines the correspondence of actual argnments given to the predicate and the vari-
ables written in the clawse definition.

Guard specifies the condition needed to be satisfied to apply the clause. Any number of goals, Le.
invocation of predicates, can be written separated by comunas and the condition is considered
to be satisfied when all of them are satisfied. In the guard, only unifications and invecations
of certain predicates defined in the language can be written,

Body specifies the action to be taken when the clause is selected. Like the guard. any number of
goals can be given here and all the goals will be executed when the clause is selected. Unlike
in guard, user-defined predicates can be invoked from the body. in addition to unifications and
language-defined predicates.

Execution of KL1 programs proceeds ronghly as follows,

1. First, the initial goal is the only wember of o mualli-set of goals called the goal poel,

2. Some of the gouals o the goal pool are picked up.

3. Goals picked up are matched against clouses of the program.

4. If there is some clause with its head matching a goal and its guard is satisfied, the original goal
will be reduced to goals in the body of the clause and the resultant new goals will be put back
to the goal pool.

5. The steps 2 throngh 4 are repeated until the goal pool beconws empty.

The steps 2 through 4 can be donre in parallel for many goals at a time. This i the source of
concurrency in this langnage.

The most notable features of the concurrent logic programming langnages are their side-effect
free semantics and implicit data-flow synchronization mechanism, As no notion of asstgnment is
in the language, value of a variable, once defined, will never change as the computation progresses.
The data-flow synchronization mechanism assures that, whenever a decision is to be made for
conditional execution, it is suspended automatically until the all the data required for the decision,
such as operands to a comparison, get ready.

The combination of these features assures that there would never be synchronization problemns
auch as follows.

= (hverwriting a variable before its value is read.
— Reading a variable’s value before it is set.

Pragrams in KL1 are usually organized using the object-oriented programming style [SE1].
Almost the whole PIMOS operating system and many of the application systems runuing on PIM
are written in this way.

Computation Mapping KL1 provides only low level process distribution and priority-based
scheduling features for controlling computation mapping. [t seems that, at least with the status
quo technology, no automatic load distribution schemes are universally effective to all kinds of
algorithms. Our decision thus was to provide lower level primitives in the programming language
level and make the software written in it responsible for computation mapping.

The primitives provided i KL1 are as follows, Note that, they are no more than pragmas that
only suggest the langnage processor for better performance: they will not change the meaning of
the programs.?

? To be precise, pragmas won't change the partial correctness of programs but certain diverging programs
may be assured to stop through pragma specifications.

Processor specification Each body goal may have a processor specification which designakes
the processor on which to execute the goal.

Priority specification Each body goal may have a priority specification. Each goal has an integer
priority associated with it.

Although process distribution is not, data distribution is made antomatic. Data referenced by
distributed processes are fetched from remote memory avtomatically on demand. The side-cffect
free semantics of KL allows copying of any data except for undefined variables without affecting
the semantics. Exceutable codes arc also distributed on demand, i.e., when a certain piece of code
is needed on some processor and the code is not in the memory of that processor, it will be fetched
from some other processor antomatically. Memory areas ncoupied by executable code, as well as
data structures, no longer needed are reciaimed with the garbage collection mechanism.

Several automatic mapping strategios have bren developed for diverse problems using the above
straightforward mechanism. Relatively universal ones are provided as libraries and used in many
application suftware systews [FM2].

Metalevel Control With the basic semantics of the concurrent logic programming langnages, all
the goals in the system form one logical conjunction. This means, a failure or an exception in one
of the goals makes the whole system fail. Also, there is no way to control execution of such goals.
With this semantics, it is almost impossible to build a system that requires efficient metalevel
control on computation activities, sueh as an operating aystem.

KL1 thus provides a metalevel execution contral fealure called “shoen”™ * A shoen is a group of
goals. This group is used as the unit of metalevel control, namely initiation, intermption, resump
tion and aboertion of execution. The shoen constrnct also provides exception handling and resource
r.‘lilllti'l.l.Il]IJliUl] mutml me:hamﬂm

A shoen has two communication streams as its interface: one. called the “control stream™,
directs inwards from outside of shoen for sending messages to control the execution; the other,
called the “report stream”, directs the reverse way for reporting events internal to the shoen, such
as exceptions {Fig. 2).

PIMOS uscs this shoen structure to construct a higher level notion of “task”, which is the
operating system level unit of resource management, Note that tasks are not a unit for parallel
execution. There are usually many parallel activities within one task,

Contral Report
Stream Stream
Shoen n ,ﬁ

T

v

Fig. 2. Shoen and Related Streams

3.2 Parallel Inference Machine PTM

Five models of PIM have been built as listed in the Table 1. They differ in both their processor
architectnre and their interprocessor connection architecture, Evaluaiion of their architectures is
one of the most important research topics currently going on.

* The Japanese word “shoen” ronghly corresponds to the English word “manor”.

Table 1. Five Maodels of PIM

model pame | PIM/p PIM/e PIM/mn PIM/i PIM/k
processor RISC+a Doriz. micro. horiz. micro. RISC RISC
device sid. cell pate array cell base atd. cell custom
PE/cluster & B 1 & 4
jnter-cluster hypercube crosshar mesh Bl s
total # PE 512 it 256 16 LG

The PIM model M, which was completed fiest, perforns 610 KTLIPS* with one processor, provid-
ing the total peak performance of 150 MLIPS. Its average performance when application software
is run upon PIMOS is usually somewhere between one third to one fifth of the peak performance.
The PTM model T*, which has 512 processors, marks similar total performance.

Some of the KL1 programs on PIM/m with 256 processors or PIM/p with 312 processors
run about ten times faster than programs with basically the same {bul sequential} algorithm on
high-end workstations,

3.3 PIMOS

PIMOS is an operating and programming systemn for all models of parallel inference machines. Its
overall strueture is as 2hown in Fig. 3. Some of the characteristic submodoles of PIMOS are as
follows.

e

Programming
Enviranmant

Debugger

Librarfan Lestener,
Ingpector

Linker, Relinker

Compiler,
Preprocessor

Sarvers

Muodele f__,..—-———..._‘_hunn.:ﬁ!img
Resource

Management Afenmt
Command

File

imarpreter BIOS
Shell Purser Unparser,
Timer Runtime-Utllity Pool, BIGNUM

Tuning tool
Para(iraph

Statlc anallzer

Variable
checker

KLt Language Processor

Fig. . The Structure of PIMOS

BIOS provides the most basie 1/ through SCSI interface. KLL provides a process model of the
5CSI interface through built-in predicates.

Y LIPS is an execution speed measure unit for logic programming languages, meaning Logical Inferences
Per Secawd. Logical inference corresponds to a subrontive or a function call in procedural languages. It
ig enstomury Lo measure it with a list reversal program.

Resource management provides a layer for communication wanagement. As all the 1/0 devices

and tasks have message strean interface, management of such streams is resonres management
means on PIMOS[YH1).
Tasks, implemented using the shoen mechanism, can be nested with arbitrarily many levels.
Thus, processes to control tasks form a tree structure, called the “resource tree”, Processes
to control communication with “servers” [described below) are also in this tree. By distribut-
ing such processes to the processor where user programs made request, the overhead of the
operating system can be distributed withoul increasing the amount of communication.

Servers are processes to implement virtual devices upon physical devices[YH1). Services provided
by software systems, such as the database management system[KM1] or the librarian of the
PIMOS described below, also have this server interface.

Debugging Tools provide features tailored for debugging parallel programs. It includes the “lis-
tener” with fracing and spying functions and the “inspector” to inspect data structures either
statically or during their dynamic generation.

ParaGraph is a program tuning tool providing graphic display of execution profile information]A51),
Such a visualization tool is quite powerful in tuning the performance of programs through
Ehﬁ.:ng"mg mﬂ.rrrrlug JPrignas e—:luLH,] ubuvc.

Note that, as stated above, changing pragmas will not change the meaning of the programs. It
only affects the performance. Data and executable code required are antomatically distributed.
This makes tuning of load distribution mich easier.

Librarian is responsible for maintaining the correspondence with executable code modules and

their names. It is implemented as a server.
MNote that, the side-effect free nature of the KLT docsn't allow even executable code to be over-
written. Updating some program module means generating a new one and changing the name
correspondence. The older version may still be running somewhere in the system (possibly on
the same processor). This scheme may seem inefficient but actually not, as updating executable
code is not so frequent, The clean semantics, on the other hand, made users' understanding
much easier.

3.4 Application Systems

Many experimental application systems have been developed and are ronning on PIMOS and PTM
(ewrrently, PIM/ i and PIM/p systems are used mainly). Tn parallel with the development of
independent application systems, performancee analysis study from more general standpaint is also
guing on (sce [KK1|, for example).

The following is a list of some of such application systems. They all available as free software
from TCOTS

Symbolic Processing

PIMOS is the operating system for PIM and Multi-PSI. The entire source code is available as
free software.

Strategy management shell which is an experimental mniti-task operating system that anto-
matically balances the load of wuailiple (asks dynamically.

Constraint Programuming

GDCC is u purallel constraint logic programming system. It provides highly declarative, fexible
and efficient constraint logic prograuming langusges, dealing with various kinds of constraints
including non-linear polynomial equations [TS1] .

Caonsort is a constraint solver for nonlinear iegualities.

Dynamical programming (DP) system is a logie programming system that controls symbolic
inferences aecording to general heuristics based on dynamics.

* For details, plesse cominet ifsficot, or jp

Knowledge Base

Quixote is a langnage system providing fundamental facilities for knowledge information process-
ingg, such as very high level knowledge representation and inferences [YH2].
Kappa-P is a parallel database management system based on o uested relational madel [KM1].

Theorem Proving

MGTP is a massively parallel, high performance bottom-up theorem prover on first order prob-
lems [FML).
The prover tries to generale models satisfying a given axiom set, The system can be used in two
ways. As a thearem prover, it will show that no models can satisfy a given axiom set angmented
with the negation of the given theorem. As a constrammt satisfaction system, models found by
the system satisfying a given axiom set are answers bo a constraint satisfaction problem. The
system showed almost lnear speed-up up to 512 processors,

FProblem Solving

Andor-II is a language systewn that allows simple description in a high level language which
provides high reasoning power by parallel processing [TA1].

Group problem solving system is a melti-agent system to help task alloeation to a group of
peaple conperatively solving a problem.

Meta Reasoning

ﬁrgusl,r‘v i= a syvatem bto analyze properties af Horn |:1gir. [T TRmA m—xiug fivst-order inference and
induction.

SME is a system that extracts the correspondences and similarities of two systems described in
tree forms, based on the structure-mapping theory,

MNatural Language Processing

PAX is a parallel bottom up parsing system for natural langnages.

Duleinea is an experimental aystem that generates natural language argument text to justify the
given assertion [IT1].

Laputa isanatural language processing system based on concurrent cooperation of morphological,
syntactic and semantic analysis [YS1].

Genetic Information Processing

Protein sequence alignment systems have several variations. based on parallel dynamic pro-
gramming [LM1], paralle]l simulated annealing [HML] and through knowledge based approach
nsing Quixote mentioned above [HW2].

Motif extraction systern extracts common motif patterns from amino acid sequences in the
snime protein category.

Protcin conformation prediction system s for predicting 3-D structure of proteins from amino
acid sequences based on gevmetrical stochastic reasoning [OK].

Game Players

GOG 3 o "go” puoe (oo oriental board game) player system [NK2].

=1

VLSI-CAD

Parallel logic simulator is a system to simulate VLSI circaits to verify their logical and timing
gpecifications [MY 1]
Thiz system adopts a virtual time algorithm, in which simulation done proceeds in & speculative
way assuming input signal to be notified from other processors won't change, If such a change
is notified later, the simulation will be rolled back. This strategy could extract much higher
parallelism than non-speculative algorithm. obtaining 166-fold speed-up on 236 processors of
"M/ m {534k events sec). Althongh the parallel algorithm used is rather complex. it took only
several man-month to build its first version.

Cell placement system automatically designs an optimal placement on standard cell LSI [DH1].

LSI router isasystem to route paths between terminals of cirenit modules on an LS1 [DH1] [DH2].

Case-based circuit design support system helps designing new civcuits using knowledge on
similar precedential circuits,

Co-Hlex geocrates a circuil layoul given a cicenit, chip space and a set of module proxdmity
conditions [WT1].

Rodin is a system for synthesizing LS circuits given behavior specifications.

Cooperative logic design expert system generates netlists for CMOS standard cell LS sat-
isfving given area and speed ronstraints [MYE].

Legal Reasoning

Helic-1T1 is a parallel legal reasoning system referencing lo both laws and precedents [NK1].
Reasoning from legal viewpoints is not simple inference process based only laws wnd regolations,
as many of the words and phrases appearing in them are left undefined. Their intepretation is
based on precedents. The system keeps two kinds of databases. one on laws and regulations and
another on precedents. Given new cases are matched against precedent cases nsing higher level
interpretaion (such as matching a Ltuxi driver and a flight pilot as a traffic operator). The laws
and regulations are applied after that. nsing abovementinned MGTP as the inference engine.

Others

Mendels zone is a software synthesis system for concurrent programs that allow very high level
sperificatinn.

Diesq is a tool to determine ranges of design parameters nsing qualitative reasoning.

Plant diagnosis and control expert system generates if-then type rules for plant contral from
high level model deseription of the plant.

Adaptive model-based diagnostic system generates a probability ordered fault suspect list
for given clectric cirenit with given symptom, estimating fanlt probahility of each component
from case records.

4 Through Our Experiences

This section swmmarize our experiences with building software systems in KL1 on the parallel
inference machines,

4.1 Programming Ease

The automatic synchronization mechanism and fine grain concurrency of KL1 made program-
ming much easier. The software productivity became far better than in sequential programming
languages with baroque parallel processing extensions.

When we started developing the first version of PIMOS in 1987, there was no parallel KL1
language implementations available. Thus, the operating system was debugged on a sequential
{psendoparallel) implementation, which had only fixed scheduling strategy. When the system was
ported to a prototype parallel iwachine, Multi-PS1, in 1988, we were ready for annoying synchroniza-
tion bugs that will not reproduce themselves. althongh the antomatic synchronization mechanism

of the language should avoid such problems in theory. The theory turned out to be the reality. We
found almost no synchronization problems except for a small number of design problems in very
high level, although the scheduling on the real parallel machine is quite diffevent from the emulator,
We knew this in theory, but actually experiencing this made ns much more confident of the great
merits of writing a system in a language with automatic data-low synchronization, When PIMOS
was ported to several other models of PIM systems later, each with its own scheduling strategy,
we almost never encouniered synchronization problems.

Muost. of the experimental application systems written for PIM were coded by programmers with
no experience in parallel programming. Nevertheless, they did not scem to have much problem on
synchronization.®

4.2 Development Environment

Software development tools, including debugging tools and performance tuning tools, taitored for
parallel processing, have been found indispensable for high software produoctivity.

Not all the PIM systems got ready with the final scale described above. Most of the application
software systems were first developed on Multi-PSI system with up to 64 processors, then ported to
PIM /1 with 128 processors when it got ready, then to its 256 processor version when its production
completed, and then to PIM/p with 512 processors. Many programs that showed almost linear
speed-up with 16 processors would not with 512 processors. Using the tuning tool ParaGraph was
very effective in finding the bottlenceks and it nanally took ouly a few weeks before a new version
with improved load distribution algorithm showed good parallelism on larger scale systems,

4.3 High Performance Hardware

Hardware systems with high performance have been very useful. It was helpful to be able to run
application systems in their earlier development pliases sl tune them geaduoally, sather than having
to develop an optimized version from scratch. It is especially true with considerably complicated
knowledge processing systems.

5 Future Work

A serious problenm with the current parablel inference systei is that it rens ouly on specially devised
hardware. Although the system is efficient and self-contained, requiring 2pecial hardware is a great
obstacle in sharing the environment with researchers world-wide.

Research in subsetting the langnage to allow more concise and efficient iinplementation has
been conducted with promising preliminary resulis [UK3]. A separate effort of implementing KL1
hy translating into O [(:TE] shows reasonahle performance with very high portability. These results
indieate the future direction of implementing the language and the system on stock hardware to
b shaved among wider range of rescarchers i parallel software area.

The Fifth Generaion Computer Systems project ended in March 1993, The Japanese Ministry of
Interpational Trade and Industry, considering abovementioned recent research on implementation,
lannched s new project of twoe years beginning from April 1993, aiming at disscminating the
technelogies established in the FOOS project by amalgamating it with conventional computer
technologies, such as UNIX and RISC processors. In this project, the following results are expected.

- KL1 implementation with ressonable sollware developioent environment on comercially avail-
able hardware. An implementation with excellent portability by compilation into C {nicknamed
KLIC, for KL1 in C) for UNIX workstations, parallel UNLX systems and network-connected
compuber svsbems i planoed.

— Knowledge processing software and experimental application software further refined and
ported to KLIC. It is also planned to include software already avallable on UNIX systems
w5 components such software, |:J.Jr nti]ia:illg Lo [urt:ign lnuguilgt' interface provided by KLIC.

All the resultant snftware is planted to be freely available worldwide to be utilized as the basis of
further research in the area of knowledge information processing systems.

8 Although those who had been too much acenstomed to Prolog fonod diffienlty i readizing large semantic
difference of the two languages with similar syntoo.

References

[AS1] Aikawa, 5. et el ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems. Proc. FGOS
G {1992) 2RG-203

[CK1] Clark, K. ef of: FPARLOG: Parallel Programming in Logic. ACM Traps. Prog. Lang. Syst, 8-1
{1986).

ICT1] Chikayama, T.: Operating System PIMOS and Kernel Language KLL. Proc. FGCS 92 (1892)
T3-88

['C’T'E] C]:'llla:,l'a.mﬂ., T.: A Portable and R.L-‘ea.l.-:nll:ﬂh]:.l Efficient Il.l'l.]'b]ﬂ!llmllr.rtl.'iurl uf KLY, Technical Rupurt. T4T
1COT (19%2)

[DH1] Date, H, et al: LEI-CAD Programs on Parallel Inference Machine, Proc. FGOS '92 (1992) 237-247

|DH2Z} Date, H. and Taki, K.: A Parallel Lockahead line Search Router with Automatic Ripup-and-reroute.
Proc, EDAC.EURCASIC 2% (1993)

[FM1] Fujita, M. ef al.: Model Generation Theorem Provers on a Parallel Inference Machine, Proc, FGOS
92 (1992) 357-375

IFME] Furuichi, M. et al: A Multi-Level Load Balancing Scheme for OR-Parallel Exhnustive Search Pro-
grams on the Multi-PSI. Proc. Second ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (1930) 50 50

IHM1| Hirosawa, M. et al: Folding Simulation using Temperature Marallel Simulated Anvealing, Proc,
FGOE 92 (1992) 300-306

{HM2| Hirosawa, M. et al: Protein Multiple Sequence Alignment using Koowledge, Proc. 26th Annual
HMawasi [nt. Conf. en System Sci, 1 (1993) 803-812

[IMl] Ishikawa, M. ef al: Protein Sequence Analysis by Parallel Tnference Machine, Proe, FOCF 982
{1992) 204 -299

[[TL] Ikeda, T. ef al: Argument Text Generation System (Duleinea). Proe, FGCE 92 {1992) 385-394

[KKI] Kimura, K. and Tchiyoshi, M2 Probabilistic Analysis of the Optimal Efficiency of the Multi-Level
Dynamic Load Balanemg Scheme. Proc. Sixth Distributed Memory Computing Conf. (1091)

[KM1] Kawamura. M. et al: Paralle] Database Management System: Kappa-T. Proc. FGOS 02 (1992)
248 256

[MY1] Matsomoto, ¥. and Taki, K.: Adaptive Time-Ceiling for Efficient Paralle] Discrete Fvent Simula-
tion, Western Multiconf. on Computer Simulation (1993) 10L-106

[MY2] Minoda, Y. et al: A Cooperative Logic Design Expert System on a Mulliproressor. Proc. FGOS
3¢ (1992) 1181-1159

[NK1| Nitta, K. et al: HELIC-II: A Legal Reasoming System on the Paraliel Inference Machine. Proc.
FGCS '92 {1992) 1115-1124

[NE2] Nitta, K. et al: Experimental Parallel [nference Software. Proc, FGCS '92 (1092) 166-190

[OK] Onizuka. K. et al: A Scheme for Protein Tertiary Structure Prediction Based on Stochastic Tea-
soning. submitled lo Warkshop “Artificial Intelligence and Genome” at IJCAT 93 (1953)

[SA1] SBaraswat, V. A. ef al: Janvs: A Step Towards Distributed Constraint Programming. Proc. North
American Conf. on Logic Programming (1990)

[SEl] Shapiro, E. ef al: Object-vriented Programming in Concurrent Proiog. New Generation Computing
1-1 {1983)

[SE2] Shapire, E. Systems Programming in Concurrent Prolog, In Logic Programming and its Applica.-
tions, M. van Canegham and D. H. D. Warren{eds.), Albex Publishing Co, (1986) 50-74

[TA.Il Takeuchi, A. et wl: An Operational Semantics of ANDOHR-1I, A Parallel Logic Programming Lan-
guage with AND- and OR-Parallelism, LNC5-491, Concurrency: Theory, Language, and Architec-
ture. Springer-Verlag (1983) 173-200

ITK1] Taki, K.: Parallel Inference Machine PIM. Proc. FGCOS '92 {1902) 50-T2

{TS1] Terasaki, 8. ¢t al: Parallel Constraint Logic Programming Language GDOC and its Parallel Con-
straint Solvers. Proc. FGCS 92 (1992) 330-346

[UK1] Ueda, K. et el Design of the Kernel Language for the Parallel Inference Machine. The Computer
Journal 33-6 {1%00) 404-500

[UK2] Ueda, K.: Guarded Horn Clauses: A Parallel Logic Programming Longuage with the Concept of a
Guard. Technical Report 208 [COT (1986)

[UK3] Ueda, K. et al: A New Implementalion Techuigue fur flat GHC. In Proc. Seventh Int, Conf, on
Logie Programming, MIT Press (1000} 3-17

[WT1) Watanabe, T, et al: Co-HLEX: Co-operative Fecursive LSI Layout Problem Solver on Japan's
Fifth Generation Parallel Inference Machine. Proc. FGCS '92 (1992} 1173-1180

[YH1] Yashiro, H. et al; Resource Managoment of PIMOS. Proc, FGCOS 92 (1992) 260-277

{YH2] Yasukawa. H. ef al: Ohject, Properties, and Modules in QUINOTE. Proe. FGOS 92 [10992) 257268

[¥51] Yamasaki, 5. ef al: A Parallel Cooperation Madel for Natural Langnage Processing. Proc. FGOS
92 (1092) 405413

—]Q_

